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Abstract. The volume of complex data (images, videos, audio, time series, DNA sequences, and others) has been
growing at a very fast pace. Although they are not naturally handled by Database Management Systems (DBMSs), it
is necessary to store them in databases. Complex data are well-suited to be queried by similarity, and several works
have been addressing techniques for similarity searching. However, the majority of the techniques is not conceived to be
integrated into a database engine. To include similarity search into the database core requires allow taking advantage of
the DBMS resources to perform queries, integrating complex and conventional data. Oracle Corp. developed the Oracle
interMedia module to support multimedia data in its database manager, providing several operations to manipulate
them. It allows performing content-based image retrieval through proprietary functions to extract intrinsic features from
images and to compute their similarity. In this paper we describe another module for similarity search, also developed
using the Oracle’s Extensible Architecture Framework. Our approach allows including user-defined feature extraction
methods and distance functions into the database core, whereas providing wider flexibility. The similarity operators
supported include both similarity selection on a single relation, as well as similarity range joins performed over two
relations. The experiments show that employing our module to query images by content improves the results obtained
using Oracle alone, both in the precision of the results and in the performance of executing queries.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Databases; H. Information
Systems [H.3. Information Storage and Retrieval]: H.3.1. Content-Analysis and Indexing

Keywords: Content-Based Image Retrieval, Metric Access Methods, Similarity Queries

1. INTRODUCTION

Database Management Systems (DBMSs) provide effective resources to perform queries comparing
data using the relationships of equality and order. However, complex data, such as audio, video, time
series and DNA sequences, cannot be compared by such criteria, as ordering does not apply, and it is
very unlikely to have two complex elements exactly equal. Therefore, similarity is the most rewarding
concept employed to retrieve complex data by content.

Similarity comparison requires a distance (or dissimilarity) function to quantify how close (i.e.
dissimilar) each pair of data elements is. In order to enable DBMSs to provide support for content-
based similarity comparison of complex data, it is necessary to implement algorithms to extract
intrinsic characteristics (features) from the data, generating mathematical signatures that represent
them. The distance functions employed to compare complex data are usually based on their signatures.
Attaching feature extraction algorithms and distance functions into the database core is necessary and
sufficient to allow DBMSs to integrate complex and conventional data querying.

In [Kaster et al. 2009] we described a module called the FMI-SiR (user-defined Features, Metrics
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and Indexes for Similarity Retrieval), developed to perform data selection on a relation executing
similarity search operations. It included the two required mechanisms aforementioned into a database
core to perform similarity search, as well as included Metric Access Methods (MAMs) to efficiently
execute similarity queries based on selections. To evaluate our approach, we implemented a version
of FMI-SiR using the Oracle’s Extensible Architecture Framework to handle complex data, called the
FMI-SiRO. Applications employing complex data can take advantage of FMI-SiRO, by defining its
own domain specific feature extractors and/or distance functions, whereas using the powerful resources
of the Oracle database in an integrated way.

In this paper we present further research accomplished on the FMI-SiR. We highlight that FMI-SiR
is also capable to perform indexed range join operations on a pair of relations sharing atributes from a
single complex domain. Thus, since the original FMI-SiR publication in [Kaster et al. 2009], we worked
on several new developments and experiments, more specifically regarding range join operations and
also its scalability.

The remainder of this paper is structured as follows. Section 2 summarizes the concepts needed to
understand our approach and existing related works. Section 3 presents the FMI-SiRO module, while
Section 4 presents experiments performing join operations and discusses the results achieved. Finally,
Section 5 presents the conclusions and future directions.

2. BACKGROUND AND RELATED WORK

This section presents the main concepts to understand the techniques required to perform similarity
comparison in complex data domains. It also presents existing approaches to execute similarity queries
on DBMSs.

2.1 Similarity Search and Metric Spaces

In this paper, a complex data domain is called the one whose requirements to perform similarity
comparison are fulfilled, which means that it has a function defined to measure similarity. It is often
defined as a distance function, which quantifies how dissimilar two elements are. A similarity query
returns the stored elements that satisfy a given similarity criterion.

Similarity selections are usually expressed in terms of one or more reference elements, which are
called the query center(s). The two main comparison operators employed to perform similarity selec-
tions on a relation having a complex attribute follows:

Range query (Rq). given a dataset S ∈ S, a distance function δ, a query center sq ∈ S and a
radius ξ ∈ R+, a range query selects every element si ∈ S such that δ(si, sq) ≤ ξ;

k-Nearest Neighbor query (k-NNq). given a dataset S ∈ S, a distance function δ, a query
center sq ∈ S and an integer value k ≥ 1, the nearest neighbor query selects the k elements si ∈ S
that have the shortest distance from sq.

Similarity joins [Böhm and Krebs 2004] are useful to cross information of two datasets. One of the
most employed similarity join is the Range join, as follows.

Range Join (Rj). Given two datasets R,S ∈ S, a distance function δ and a radius ξ ∈ R+, a
range join retrieves the pairs 〈r, s〉, r ∈ R and s ∈ S, such that δ(s, r) ≤ ξ;

The nature of similarity queries precludes using conventional indexes based on the total order
property to speed up their execution. Many complex data can be represented as points in a vector
or in a multidimensional space, but there also are “adimensional” domains, such as words and genetic
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sequences. Metric spaces are adequate to represent complex data, as they only require the elements
and their pairwise distance, being data either dimensional or adimensional [Zezula et al. 2006].

A metric space is formally defined as a pair M = 〈S, δ〉, where S denotes the universe of valid elements
and δ is a distance function δ : S× S→ R+ (called a metric) that satisfies, for any s1, s2, s3 ∈ S, the
following properties: (1) Symmetry: δ(s1, s2) = δ(s2, s1); (2) Non-negativity: 0 < δ(s1, s2) < ∞ if
s1 6= s2 and δ(s1, s1) = 0; and (3) Triangular inequality: δ(s1, s3) ≤ δ(s1, s2) + δ(s2, s3).

There are several kinds of metrics, however the most employed are those from the Minkowski
family [Long et al. 2003]. Nonetheless, it has been shown that there is an appropriate relationship
between the intrinsic features extracted from complex data and the distance function employed that
improve the quality of the similarity evaluation [Bugatti et al. 2008].

Metric Access Methods (MAMs) are structures developed to index data in metric domains. Existing
MAMs can be classified as: (i) static, which are constructed in a single operation using the whole
dataset and need to be rebuilt upon modifications, such as the BK-Tree [Burkhard and Keller 1973]
and the VP-Tree [Yianilos 1993]; and (ii) dynamic, which allow further modifications, such as the
M-tree [Ciaccia et al. 1997; Skopal and Lokoč 2009], the BM+-tree [Zhou et al. 2005], the DBM-
tree [Vieira et al. 2004] and the Slim-tree [Traina Jr. et al. 2002].

Indexing structures are usually developed under a software library that provides the primitives
required to their execution. The similarity querying module that is described in this paper attaches the
Arboretum library to the Oracle database, providing indexed search. Therefore, the next subsection
introduces this library.

2.2 The Arboretum Library

Arboretum1 is a C++ open source software library, developed by the Databases and Images Group
at ICMC–USP, which implements several indexing structures, mainly MAMs. It is organized in 3
different and independent layers. The “User layer” defines the application-dependent object types and
the distance functions employed to compare them. Indexing structures are defined in the “Structure
layer”. It provides the methods to manipulate the index, including object insertion, query answering
and structure optimizations. The “Storage layer” contains the page managers, which manage storing
pages into memory or disk.

There are many indexing structures implemented on the Arboretum. We use the Slim-tree to
develop the FMI-SiRO module, as it is a mature, fast and scalable structure. In the next subsection
we briefly describe the Slim-tree.

2.3 The MAM Slim-tree

Slim-tree is a dynamic, height-balanced and bottom-up constructed tree, presenting the first technique
to measure and reduce overlap between subtrees. It divides the metric space into not necessarily
disjunct regions, each one composing a tree node. Each node is stored as a fixed size disk page, and
has one element acting as a representative for the elements stored at that node and a node covering
radius. A node defines a region of the metric space whose the center is the representative element,
that covers all elements in this node, or in any subtree rooted at one of its elements. Slim-tree has
two node types: the leaf nodes, whose entries are the indexed elements, and the index nodes, where
the representatives of the subtrees are replicated in the hierarchy.

The representatives guide the search that answers a query, enabling pruning the subtrees that do not
contain result candidates, as well as reducing the amount of distance calculations, since the distances
between the elements and their representatives are pre-computed during insertion.

1Available at http://gbdi.icmc.usp.br/arboretum
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2.4 Support for Similarity Queries in DBMSs

Similarity applies to a broad variety of data domains. However, to support similarity queries in a
DBMS it is necessary to provide the distance functions and the feature extractors specific to each
application domain. For example, many systems requires retrieving digital images by content, such
as medical and agrometeorological applications. This section presents existing solutions to enable a
DBMS to support similarity searching over a set of images.

The ISO/IEC SQL/MM is a standard proposed for multimedia data. Its SQL/MM StillImage is
devoted to images, defining an abstract data type that encapsulates the binary image, its metadata,
a set of basic image processing functions and data types aimed at executing similarity queries over
image contents. However, this standard does not address either query representation or similarity
query processing. Thus, each DBMS vendor uses its proprietary extensions.

The IBM DB2 was one of the first DBMS to offer a module to query images by content, named
the DB2 Image Extender [IBM Corporation 2003]. The query-by-content functionality is based on
the QBIC system [Flickner et al. 1995], and both Rq and k-NNq are provided. Modules from other
database vendors, such as the Informix Excalibur Image Data Blade [Informix Corporation 1999] and
the Oracle interMedia [Oracle Corporation 2005] also provide support for image query-by-content.
However, these modules are commercial and their source code are not available to make improvements
and develop domain specific features. There are a variety of image contents and although the fact
that they could be used for different purposes, the generalist approaches provided by these systems
are not satisfatory for many applications.

There are academic open source systems to perform similarity search over images, such as SIREN [Bar-
ioni et al. 2005] and PostgreSQL-IE [Guliato et al. 2008]. SIREN (SImilarity Retrieval ENgine) is
a prototype that implements an interpreter over Oracle and PostgreSQL. It recognizes an exten-
sion to the SQL language [Barioni et al. 2009] that allows the representation of similarity queries.
PostgreSQL-IE (PostgreSQL with Image-handling Extension) is a prototype extension to PostgreSQL
that encapsulates the images in a new data type and provides a number of feature extractors for
medical images. Nevertheless, the similarity search on these systems are not fully integrated into the
query plan, preventing exploiting optimization alternatives.

The FMI-SiRO module presented in this paper is not only open source, enabling the inclusion of
application specific features, but it can also be controlled by the DBMS query processor, allowing a
tight integration to other DBMS operations. As it is implemented on the Oracle database, the next
section explains the mechanism available on Oracle interMedia, to serve as a baseline to evaluate the
developed module.

2.5 Image Similarity Search on Oracle interMedia

The Oracle interMedia [Oracle Corporation 2005] (now called Oracle Multimedia) is a module devel-
oped by Oracle Corp. to support multimedia data inside its DBMS. Content-based image retrieval is
implemented through proprietary functions to extract features and generate signatures, which are en-
capsulated using the ORDImageSignature type. The most important functions regarding this type are
ORDImageSignature.generateSignature, which generates a signature according to an input image,
and ORDImageSignature.evaluateScore, which receives two image signatures and a string defining
the parameters of similarity comparison, and returns the distance between these signatures. The
similarity comparison is computed by a linear combination of the partial similarity of the descriptors:
color, texture, shape and location.

Oracle interMedia allows to perform range and k-NN queries over images using the standard SQL
syntax. The examples presented in this subsection consider the attribute image as an ORDImage type,
and the image signatures are stored in the ORDImageSignature attribute image_signature of the
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table person. The following query illustrates how a range query can be requested2:

SELECT * FROM person p
WHERE ORDImageSignature.evaluateScore(image_signature,

ORDImageSignature.generateSignature(’example.jpg’),
’color="1.0" texture="0.8" shape="0.1" location="0"’

) <= 1.5;

Aimed at accelerating range queries, Oracle interMedia provides a specific operator, the IMGSimilar,
which encapsulates a range query, allowing it to be indexed using a specific index type called the
ORDImageIndex. The ORDImageIndex comprises a set of 63 bitmaps, filtering and reducing similarity
calculations. The following statement creates an index of type ORDImageIndex to accelerate range
queries:

CREATE INDEX image_ix ON person(image)
INDEXTYPE IS ORDImageIndex;

To perform an indexed range search, the query must be rewritten substituting the ORDImageSigna-
ture.evaluateScore by the IMGSimilar operator, which integrates the range search into the query
plan.

A k-NN query can be solved using the window functions that are included in the SQL [ISO/IEC
2003] standard. Consider a k-NN query standard as follows:

SELECT * FROM (
SELECT p.id, p.name, ROW_NUMBER() OVER (

ORDER BY ORDImageSignature.evaluateScore(
image_signature,
ORDImageSignature.generateSignature(’example.jpg’),
’color="1.0" texture="0" shape="0.1" location="0"’)

) AS rownum
FROM person p

) WHERE rownum <= 10;

where the function ROW_NUMBER assigns the position of each tuple to the defined window. In this
case the tuples are ordered following the similarity between the stored and the query images. Thus,
this information allows returning the k-nearest neighbors. This type of query is always performed in
Oracle by a sequential scan over the table.

Despite the tools that Oracle interMedia offers, only sequential scan is available to solve k-NN
queries. Moreover, experimental evaluations revealed that Oracle’s indexed range scan produces false
negatives, i.e. it discards tuples that should be part of the result, making the indexed scan inconsistent
with the sequential one. The next section describes the new FMI-SiRO module for similarity searching
that we developed, which does not present such problems and, moreover, as it is open source, it can
be enriched with new domain specific functionalities.

3. THE FMI-SIRO MODULE

This section describes the FMI-SiRO module, a FMI-SiR (user-defined Features, Metrics and Indexes
for Similarity Retrieval) implementation over the Oracle DBMS. To explain its implementation, a
running example is provided considering that a table called image_table exists, containing an iden-
tifier id, a BLOB attribute image populated with image data, and a BLOB attribute image_sign to
store the signature that describes the image’s content, which is used in the similarity queries.

2The queries presented in this section employ a slightly simplified syntax to improve readability.
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3.1 Signature Generation and Sequential Similarity Querying

The first task addressed by the FMI-SiRO is to generate signatures describing the complex data
content. To generate signatures we developed the generateSignature function, which can be called
in the following way:

FOR csr IN (SELECT image, image_sign FROM image_table FOR UPDATE) LOOP
generateSignature(’’, csr.image, csr.image_sign, ’Histogram’);

END LOOP;

The SQL function generateSignature maps to a C++ function, whose execution is illustrated
in Figure 1. When this function is called, the query processor provides a text parameter (detailed
below), the feature extractor identification and the LobLocators of the BLOB attributes, which point
to the stored raw binary data (Step 1). If the first parameter is empty, the function loads the image
and the signature binary data pointed by the locators (Step 2). The image is forwarded to the feature
extractor defined in the last parameter (in the example, the Histogram image color extractor), which
processes the image and returns the feature vector (Step 3). The feature vector is serialized and stored
in the attribute pointed by the locator image_sign (Step 4) and the function returns to the query
processor (Step 5). Notice that the signature is an IN/OUT parameter, thus it is necessary to select
the data using an exclusive lock, expressed in the example by the FOR UPDATE clause.

In this description of the FMI-SiRO implementation we address only image extractors. However,
the module architecture supports including additional feature extractors and also loading features
extracted by an external software stored in a text file. This functionality is enabled filling the first
parameter of the generateSignature function with the feature file name. In this case, the last two
parameters are ignored and the signature BLOB is populated with the features read from the file.

Fig. 1. Steps of function generateSignature.

After having the signatures computed, the complex data are ready to be compared by similarity.
Similarity queries are based on similarity functions, which are defined in FMI-SiRO as follows:

<distance_name>_distance(signature1 BLOB, signature2 BLOB);

This command returns the distance between the two signatures as a real value. Several distance
functions are available, such as the Manhattan_distance, the Euclidean_distance and the Canber-
ra_distance. However, new distance functions can also be easily included according to application
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requirements. These functions can be employed to formulate similarity queries following the standard
SQL syntax, like those presented in Subsection 2.5. However, the queries are executed through a
linear scan. To enhance performance, we developed indexes for similarity search, as described in the
next subsection.

3.2 Similarity Index Definition and Construction

We developed a new index type for the Oracle query processor aimed at similarity searching, based
on the Oracle’s Extensible Indexing Interface. This interface allows defining the methods required by
a data type implementing the new index type. The type that was created has the header as follows:

CREATE OR REPLACE TYPE index_im_type AS OBJECT (
scanctx RAW(4),
STATIC FUNCTION ODCIIndexCreate(),
STATIC FUNCTION ODCIIndexDrop(),
STATIC FUNCTION ODCIIndexInsert(),
STATIC FUNCTION ODCIIndexDelete(),
STATIC FUNCTION ODCIIndexUpdate(),
STATIC FUNCTION ODCIIndexStart(),
MEMBER FUNCTION ODCIIndexFetch(),
MEMBER FUNCTION ODCIIndexClose());

The type definition body maps the functions to external C++ functions. A new index type was
defined using this structure based on the Slim-tree implementation in the Arboretum library. In fact,
we developed a number of new index types, one for each distance function available, as a Slim-tree
is tightly coupled to the distance function employed to index the data. A complex data signature
attribute can be used in similarity queries through distinct distance functions, but each index can
only be used in queries that employ the same distance function employed for its construction. Thus,
the index types are distinguished by the distance function employed. This approach avoids that the
query processor use an invalid index and enables to create more than one index over the same complex
data signature attribute for different distance functions.

Oracle index types require declaring the operators that will trigger index scanning. In Oracle’s
conception, an operator links a user-defined function to an index type. For example, we defined an
operator for range similarity query using the Manhattan distance function as follows:

CREATE OPERATOR Manhattan_dist BINDING (BLOB, BLOB)
RETURN FLOAT USING Manhattan_distance;

The operator for the k-NN similarity query follows a similar approach. Having defined the operators
and the implementation type, the new index types were created in a way similar as shown below:

CREATE INDEXTYPE Slim_Manhattan FOR
Manhattan_dist(BLOB, BLOB), Manhattan_kNN(BLOB, BLOB)
USING index_im_type;

After having the index types created, the Oracle database becomes aware of the new index. There-
fore, the users are ready to create indexes over the application data based on the new index types, as
exemplified below:

CREATE INDEX new_index ON image_table(image_sign)
INDEX TYPE IS Slim_Manhattan PARAMETERS (’8192’);

The single parameter required in our current implementation is the desired index page size (8192).
Creating an index triggers the process illustrated in Figure 2. The query processor calls function

Journal of Information and Data Management, Vol. 1, No. 2, June 2010.



236 · Daniel S. Kaster et al

ODCIIndexCreate passing the new index information, such as the table and attribute to be indexed
(Step 1). Function ODCIIndexCreate requests Arboretum to create an empty Slim-tree (Step 2).
Thereafter, it queries the data (signature and RowId) stored in the table (Step 3). Using the signature
LobLocators returned, the function fetches the BLOB data (Step 4) and inserts the signatures with
the respective RowIds in the Slim-tree (Step 5). Finally, the function returns the control to the query
processor (Step 6).

Fig. 2. Steps executed by function ODCIIndexCreate.

The created indexes are dynamically updated when insertions, deletions or updates occur on the
underlying tables. The functions implementing such operations on the index (ODCIIndexInsert,
ODCIIndexDelete and ODCIIndexUpdate) execute the steps 4-6 of the create index process, using the
LobLocator and the RowId of the updated row provided by the query processor as parameters. When
an index is dropped, function ODCIIndexDrop is called to remove the index.

The next subsection shows how the proposed indexes are used to execute similarity queries.

3.3 Execution of Indexed Range and k-NN Queries

To take advantage of the new indexes in a query, the associated operators need to be employed. For
instance, an indexed range query must be written as in the following example:

SELECT * FROM image_table
WHERE Manhattan_dist(image_sign, center_sign) <= 0.5;

where center_sign is a BLOB containing the query center signature, the relational operator <= in-
dicates that a range query has been requested, and the value 0.5 is the range radius. The index
is used only if it is available and the first argument for the operator is the attribute of the table
referred in the FROM clause. In other words, the index would not be used if the query was writ-
ten using Manhattan_dist(center_sign, image_sign). If any of these conditions is not satisfied,
the query processor performs a sequential scan employing the underlying function (in this case, the
Manhattan_distance).

In the same way, an indexed k-NN query is stated as follows:

SELECT * FROM image_table
WHERE Manhattan_knn(image_sign, center_sign) <= 10;
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This command asks for the 10 nearest neighbors of the image whose signature is given as center_sign,
considering the Manhattan distance.

Fig. 3. Execution of an indexed similarity query in FMI-SiRO.

The execution of an indexed similarity query in FMI-SiRO occurs as shown in Figure 3. The
application submits a SQL query to the database manager (Step 1). The query processor identifies the
similarity operator, which is a candidate for an indexed scan, and calls the function ODCIIndexStart,
passing information about the operator, the index and the predicate used, the query center LobLocator
and the search limits (Step 2). Function ODCIIndexStart loads the BLOB signature pointed by the
query center LobLocator (Step 3) and executes the requested query over the index on Arboretum
(Step 4). Then, the function saves the RowIds of the elements returned by the index in the current
session context area, identifying the memory area by a unique key (Step 5). The context key is saved
in attribute scanctx of the index type object to be used by the next functions called, and returns the
control to the query processor (Step 6).

Thereafter, the query processor calls the function ODCIIndexFetch, providing the number nrows of
rows to be fetched (Step 7). Function ODCIIndexFetch gets the context key stored in the scanctx
object attribute and retrieves the first nrows RowIds stored in the context area (Step 8), returning
them to the query processor (Step 9). If there are more tuples in the result, the query processor keeps
calling function ODCIIndexFetch until the result set is completed.

When the fetch phase is finished, the query processor calls function ODCIIndexClose to end up the
search (Step 10). Function ODCIIndexClose gets the context key and releases the memory allocated
in the context area (Step 11), and then returns to the query processor (Step 12).

Finally, the query processor loads the row data pointed by the RowIds returned by the indexed scan,
performs the remainder operations stated in the submitted SQL query and returns to the application.
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As the module uses the Oracle’s Extensible Interface, the query optimizer is aware of the indexed
similarity search. Thus, it is possible to interleave its execution with other operations and choose
the access paths properly. In an execution plan, the indexed similarity search is identified as a
DOMAIN INDEX scan, as shown following for the previous k-NN example query:

|Id | Operation | Name |
---------------------------------------------------------
| 0 | SELECT STATEMENT | |
| 1 | TABLE ACCESS BY INDEX ROWID| ALOI |
| 2 | DOMAIN INDEX | SLIM_MANHATTAN_ALOI |

3.4 Execution of Range Join Queries

FMI-SiR is also capable of answering similarity joins, performing range joins using both sequential
and indexed access. A join operation combines tuples from two relations in a database, each one
assuming the role either of the external or of the internal relation in the join operation. There are
well-known basic algorithms in the literature to perform join operations. In this work we adapt two
of them to perform similarity range join operations, the nested loop join and the indexed loop join.

The nested loop join is the naïve method to join two relations. For each tuple of the external
relation, the nested loop algorithm scans the internal relation matching the tuples that satisfy the
join condition. For two relations R and S, the similarity join algorithm performs |R| ∗ |S| distance
calculations. Usually, the minor of the two relations is stated in the external loop to take advantage
of the buffer management and achieve better performance. However, it is important to notice that
the whole space of the internal relation is repeatedly explored at each step.

If one of the input relations possesses an index over the attribute and distance function employed
in the range join, this index can be used to match tuples satisfying the join condition. The algorithm
that employs this approach is the indexed loop join. It assigns the relation that has this index as
the internal relation and executes over this index a range query centered in each tuple of the external
relation. In each iteration, each tuple returned by the range query is concatenated to the respective
tuple of the external relation, composing the result of the range join. The indexed loop strategy allows
reducing the search space, exploring at each step only the region of the internal relation space centered
in the current external tuple and delimited by the range join radius. The cost of the indexed loop join is
|R|∗indexed_Rq_cost(S, ξ), where |R| is the size of the external relation and indexed_Rq_cost(S, ξ) is
the average cost of indexed range queries over S with radius ξ. The cost of the indexed loop algorithm
depends on the radius of the similarity join condition, but, in the great majority of the queries, this
radius is small enough to outperform the nested loop method.

In FMI-SiRO, the user can perform a similarity range join with the following clause, considering
another table, image_table2, with structure similar to image_table:

SELECT out.id, inn.id
FROM image_table out, image_table2 inn
WHERE Manhattan_dist(inn.img_sign, out.img_sign) <= 0.5;

where image_table and image_table2 are the input relations, Manhattan_dist is the operator em-
ployed, whose arguments are the signature attributes joining the two relations, and 0.5 is the join
radius. The order of the parameters to the operator is important for efficient join execution. If there
is an index regarding the distance function employed on the attribute provided as the first param-
eter (inn.img_sign in the example), it will be used to execute an indexed loop join algorithm. In
this case, the external table would be image_table and the internal image_table2. If such index is
not available, as well as the operator’s underlying function is employed instead of the operator (e.g.
Manhattan_distance), the nested loop algorithm is executed (See Section 3.3). Unfortunately, the
Oracle’s query processor is not capable to automatically choose the less costly option if the joining
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attributes are indexed in both relations. Thus, it is the user’s responsibility to pose the query that
would lead to the most efficient execution.

4. EXPERIMENTS

We evaluated FMI-SiRO over several image datasets. In this section we present the results obtained
using the Amsterdam Library of Object Images (ALOI)3 [Geusebroek et al. 2005], which is a collection
of color images from one thousand small objects, with 108 images of each object, varying illumination
color, illumination angle and viewpoint, totalizing 108,000 images. Figure 4 shows a small sample of
this dataset.

Fig. 4. A sample of the ALOI image collection.

We bulk-loaded the ALOI dataset images into the Oracle database, and for each image we gener-
ated four signatures: (i) the Oracle’s native ORDImageSignature, (ii) a 256 bins Histogram for the
Color descriptor, (iii) the first 256 Zernike moments for Shape, and (iv) the Haralick descriptors with
140 features for Texture. Thereafter, we performed several tests on the Oracle Database 11g Enter-
prise Edition Release 11.1.0.6.0 64bit under Kubuntu GNU/Linux 8.10 64bit, running on a machine
equipped with an Intel Core 2 Quad 2.83GHz processor, 4GB of RAM and a SATA2 HD of 750GB
and 7,200RPM. The next section presents the results of these experiments.

4.1 Retrieval Quality

The quality of the retrieval was evaluated using Precision versus Recall graphs (P×R) [Baeza-Yates
and Ribeiro-Neto 1999]. It was assumed that an image is similar to the query center if it is an image
of the same object. The query recall is the fraction of the relevant elements that has been retrieved.
The query precision is the fraction of the retrieved elements that are relevant. Thus, the closer to the
top a P×R curve is, the better the result.

We evaluated several distance functions over each descriptor and selected the best for each one: L1
for both Color and Shape descriptors and Canberra for the Texture descriptor. Figure 5 presents the
P×R graphs comparing the retrieval quality of our descriptors, implemented in Oracle, to the Ora-
cle’s corresponding one alone, considering individually Color, Shape and Texture (i.e., the evaluated
descriptor was weighted with 1 and the remainders with 0). Analyzing the graphs of Figure 5, it is
observed that the proposed approach clearly improves the precision of similarity queries in every case.
Considering the Color descriptor, a precision gain of up to 50% was achieved in comparison with the
precision obtained by the Oracle’s descriptor. Regarding the Shape descriptor, FMI-SiRO reached
up to 92% of precision gain considering a recall level of 5%. Our approach for Texture descriptor
presented a notable gain in precision achieving a gain of up to 171% at the same recall level. It is
important to emphasize that k -NN queries usually ask for small values of k. Thus, the small values
of recall are the most relevant ones.

3Available at http://staff.science.uva.nl/∼aloi/
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Fig. 5. P×R graphs comparing the retrieval quality of FMI-SiRO and Oracle alone.

4.2 Range and k-NN Query Performance Evaluation

We also performed analyses based on the time requirements to execute similarity queries. This sub-
section shows results regarding range and k-NN queries. It is important to emphasize that it is not
possible to compare a FMI-SiR index using the Oracle’s distance function, as the function imple-
mented by Oracle is not a metric. All values presented herein were obtained by the average of 500
queries over the dataset.

Figure 6 shows the time required to perform k-NN queries, with k varying from 1 to 100. Notice
that the time is shown in logarithmic scale. It can be observed that the FMI-SiRO sequential scan
approach performs queries about twice slower than Oracle did, regardless of the value of k. It is
due to the higher overhead to compute the distance functions, which are executed through external
C++ functions embedded into a shared library, called repeatedly for each image. We verified that
the cost of the arithmetic calculations over the features is almost irrelevant compared to the overall
cost of the distance function call (less than 5% in fact), since the distances employed are cheap to
compute (L1 and Canberra). The major computational cost is in the connection between Oracle and
the external library and in the functions to handle BLOBs, being the latter responsible for more than
60% of the overall cost. However, as Oracle does not support indexed k-NN queries, our indexed k-
NN search approach using the Color descriptor was able to perform 116 times faster than the Oracle
sequential scan. Notable gains were also accomplished regarding the Shape and Texture descriptors,
where FMI-SiRO was 71 and 175 times faster than Oracle alone, respectively.

Fig. 6. Comparing k-NN queries execution times in FMI-SiRO and Oracle alone.

Regarding the range queries, we evaluated indexed and sequential accesses, both using only Oracle
with interMedia and attaching FMI-SiRO over it. The radius for each range query was defined by the
distance between the query center and its k-NN, in order to obtain k elements as a result. Figure 7
shows results for range queries. As occurred with the k-NN queries, the FMI-SiRO performs sequential
scan about 2 times slower than the Oracle. However, our indexes allowed Oracle to be up to 2.7 times
faster than using its internal index for the Color descriptor. Regarding the Shape descriptor, we again
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achieved better results, as our index was up to 3.5 times faster than the Oracle’s internal index. With
regard to the Texture descriptor, both approaches tied for k ≤ 5, then we lost. However, this is due to
the Oracle’s indexing approach, as the data obtained by its indexed access differs from those obtained
by its sequential access.

Fig. 7. Comparing range queries execution time in FMI-SiRO and Oracle alone, for both sequential and indexed access.

To illustrate the problem on Oracle’s indexing approach, we evaluated the number of rows retrieved
by each approach. The results are shown in Figure 8. The graphs show that neither the FMI-SiRO

indexed scan nor the Oracle range sequential scan generate false negatives, returning 100% of the
rows that satisfy the range predicate. However, the curves of Figure 8 reveal that the Oracle’s index
produces a huge amount of false negatives, considering any descriptor. For instance, using the Color
descriptor, the Oracle index does not retrieve up to 47% of the answer set. Considering the Texture
descriptor, which was the faster in the performance evaluation, it misses almost the entire dataset
for large radii (missing up to 98% of the elements). Since the source code of Oracle interMedia is
proprietary, we could not investigate why this occurs. However, it is important to highlight the fact
that if an index generates false negatives, its answers become unreliable. Therefore, our indexed range
scan must be compared to the Oracle sequential range scan, where Oracle enriched with the FMI-SiRO

indexes performed up to 165, 210 and 123 times faster than the Oracle alone sequential range, with
regard to Color, Texture and Shape respectively, with no misses.

Fig. 8. Evaluation of false negatives generated by Oracle indexed retrieval compared to the sequential scan ground truth
and to FMI-SiRO indexed scan.

Finally, we evaluated how much time is spent by the Oracle query processor during a search over a
FMI-SiRO index and how much time is spent traversing the index. We compiled FMI-SiRO comment-
ing the source code lines that perform the searches and just generate an empty result set. The queries
over this “fake” indexed search took about 0.07 seconds in the average, which we can consider to be
the overhead of calling our indexes. Notice that this overhead corresponds to from 16% to 44% and
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from 10% to 18% of the elapsed time, in the average, respectively by the 10-NN and 100-NN queries
executed over FMI-SiRO indexes in the experiments shown.

4.3 Range Join Performance Evaluation

This subsection shows results of tests regarding the time requirements and scalability of range join
operations. In order to evaluate our approach regarding the time requirements we divided the ALOI
dataset to compose the internal and external relations, according to each experiment’s goal.

The first experiment aims at evaluating how the join cardinality affects the performance. We created
a relation with 1K (1000) tuples and other with 10K (10000) tuples, which demands up to 10 million
comparisons to perform a range join. Thereafter we performed range joins varying the join cardinality
from 1K to 100K tuples. The comparisons of the time requirement were performed regarding Oracle-
only sequential range join and the FMI-SiRO using the sequential (nested loop) and indexed range
join (indexed loop). Despite Oracle alone supports indexed range join queries, it also produces false
negatives. Thus, only the sequential approach is considered in the experiments.

In Figure 9 we can observe that the FMI-SiRO sequential range join approach again performs the
queries about twice slower than Oracle alone, for the several join cardinality values. On the other
hand, when analyzing the performance obtained by the FMI-SiRO indexed range join, a notable gain
can be observed. The time is shown again in logarithmic scale. Our approach was up to 252 times
faster than using Oracle alone for the Color descriptor. With regard to Shape and Texture descriptors,
we again achieved outstanding results, as our approach was, respectively, up to 135 and 360 times
faster than Oracle alone.
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Fig. 9. Comparing range join queries execution times in sequential and indexed FMI-SiRO and Oracle alone with
varying join cardinality.

With the purpose of evaluating the scalability of the FMI-SiRO indexed range join, we performed
two experiments. In the first we execute the indexed range join varying the size of the internal relation
from 1K to 108K tuples, maintaining the size of the external join relation in 1K tuples and the join
cardinality in 10k tuples. As it can be seen in Figure 10, FMI-SiRO exhibits sub-linear behavior when
the size of the internal relation grows, considering all descriptors, that makes the method adequate to
execute indexed range join operations with very large internal relations. It is important to highlight
that due to the prohibitive time execution for the sequential range join, it was not showed in the
scalability experiments.

In the second scalability experiment, we set in the size of the internal join relation to 10K and
varied the size of the external relation from 1K to 10k tuples. The join cardinality was also set in
10K tuples. Figure 11 shows that FMI-SiRO again presents a sub-linear behavior for growing external
relation size.

The experiments show that the FMI-SiRO is adequate to perform range join operations in very
large datasets, in any of its configurations. Moreover, comparing the results of Figures 10 and 11,
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Fig. 10. Scalability of the range join query execution in FMI-SiRO for indexed access, varying the size of the internal
relation.

we can notice that increasing the external relation size causes greater impact than the the internal
relation size increasing, as FMI-SiR indexes scale better.
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Fig. 11. Scalabity of FMI-SiRO join query execution for indexed access, varying the size of the external relation.

Considering the results achieved, we argue that our proposed approach not only accomplished high
flexibility including new feature extraction methods and distance functions into the database core, but
it is also well-suited to perform similarity queries improving the precision of them in a great extent
while reducing their time requirements by two orders of magnitude or more. Moreover, our approach
do not present false negatives.

5. CONCLUSIONS AND FUTURE WORK

Similarity searching is a research topic that has been investigated during several years. However,
few tools exist making them available for industrial strength software production. Oracle released its
interMedia module, aimed at providing image query-by-content resources for its DBMS. However, it
is a proprietary tool and it does not allow users to provide their own definition of what is similarity,
so users cannot adapt it for their own requirements. Moreover, the Oracle index generates many false
negatives, turning the answer incompatible with that obtained by a sequential scan.

In this paper we presented an open source module for similarity search, called the FMI-SiR (user-
defined Features, Metrics and Indexes for Similarity Retrieval over Oracle). Our approach, called the
FMI-SiRO, is implemented on top of the Oracle’s Extensible Architecture Framework. It allows users
to include new feature extraction methods and distance functions, to enhance domain specific data
search as well as new index structures, without generating false negatives. Moreover, the developed
module takes advantage of the Oracle query optimizer, making it possible to the user to mix regular
and similarity operations, and the database engine to choose a good access path. We also presented
experiments that shows that using Oracle with FMI-SIRO outperforms Oracle alone, both regarding
the precision of similarity queries, with gains up to 171% in precision, and regarding performance,
with indexed similarity selections being up to 175 times faster, and similarity range joins being up to
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360 times faster, whereas presenting a sub-linear scaling regarding the size of the relations. Future
work include to implement statistics gathering and cost models for similarity queries in the module,
provide transaction support for FMI-SiRO indexes and develop additional similarity operators.
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