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Abstract.

We present an alternative method to use Principal Component Analysis (PCA) for supervised learning. The proposed
method extract features similarly to PCA, but the features are selected by minimizing the Bayes error rate for classi-
�cation. We show that the proposed method selects features that best separate the elements of the di�erent classes.
Using real datasets, along with four di�erent classi�ers, experimental results show that the recognition accuracy of the
proposed technique is improved compared to PCA.

Categories and Subject Descriptors: I.2.6 [Arti�cial Intelligence]: Learning.

Keywords: Principal component analysis, Dimensionality reduction and manifold learning, Supervised learning by
classi�cation, Data mining.

1. INTRODUCTION

Principal Component Analysis (PCA) is a technique used to reduce data dimensionality. It projects
data points into the directions of maximal variance within data space. These directions are the
eigenvectors of data covariance matrix. In most of the cases, only some few eigenvectors are selected,
normally the ones that have the highest eigenvalues. The eigenvalue is equivalent to the variance of
a new variable, that is obtained by projecting the data into an eigenvector. The new variables not
only have maximal variance, but they are also uncorrelated [Bishop 2006]. PCA is a very well-known
technique that is used in several di�erent applications such as face recognition [Turk and Pentland
1991] and text classi�cation [Alencar et al. 2014].

From the perspective of machine learning, PCA is an unsupervised feature extraction technique.
Nonetheless, it is also used in supervised tasks such as in classi�cation and regression. Some versions
of supervised PCA have been proposed, for example, Barshan et al. [Barshan et al. 2011] proposed a
version of supervised PCA for classi�cation. The method de�nes class representatives and computes
PCA for these points. Directions with maximal variances for those points are also the directions that
better separate the classes. Another version of supervised PCA was proposed by Bair et al. [Bair et al.
2006] for regression. The technique selects features that have high predictive power and compute PCA
using only those features. Therefore, avoiding the interference of features that have high variance but
low predictive power.

The Bayesian approach for classi�cation is very robust and, similarly to PCA, it depends on the data
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covariance matrix [Duda et al. 2000]. Here, we propose a supervised version of PCA that minimizes
the Bayes error rate for classi�cation. The method projects the same features as PCA but selects
the ones that minimize the Bayes error rate, while PCA selects the features with maximal variance.
Therefore, it can be more suitable for classi�cation task than standard PCA. Since projections of
maximal variance might not be the best way to separate data from di�erent classes [Bishop 2006].

The remainder of the article is organized as follows: the next section introduces the mathematical
notation and how to use PCA for feature extraction. Section 3 describes the Bayes error rate for
classi�cation and the imposed restrictions for calculating it. The proposed method is de�ned in
Section 4. Section 5 presents an analysis, using arti�cial data, of which features selected by each
technique: standard PCA and the proposed method. Section 6 present experiments using real datasets.
Conclusion and future work are discussed in Section 7.

2. FEATURE EXTRACTION WITH PCA

Suppose that the dataset is represented in a matrix. The dataset matrix X′n×d with n points and d
features. Each row of X′ is a data point and each column is a feature.

X′ =


xT
1

xT
2
...
xT
n

 . (1)

The j-th point is de�ned as a d dimensional column vector xj ,

xj =


xj1
xj2
...
xjd

 , (2)

for j = 1, . . . , n and the data mean vector is

x̄ =
1

n

n∑
j=1

xj . (3)

The centered matrix is X having the j-th row equal to (xj − x̄)T :

X =


(x1 − x̄)T

(x2 − x̄)T

...
(xn − x̄)T

 . (4)

The covariance matrix of X is de�ned as

ΣX =
1

n
XTX. (5)

Each column ξi, for i = 1, . . . , k, of the matrix

Ek = [ξ1 . . . ξk], (6)

is an eigenvector of ΣX. Ek have up to d eigenvectors, for k = 1, . . . , d. Each eigenvector ξi have an
associated eigenvalue λi, which is the variance of the extracted feature fi,

fi = Xξi. (7)
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The value of the i-th extracted feature for the j-th point is wij , where fi = [w1i . . . wni]
T .

The projection of the point xT
j = [xj1 . . . xjd] for the space of projected features iswT

j = [wj1 . . . wjk],
given by

wT
j = xT

j Ek. (8)

The eigenvectors in Ek are sorted, so that λ1 > . . . > λk. In PCA, the points are projected in the
directions of maximal variances, these directions are the eigenvectors of the covariance matrix that
has the greatest eigenvalues. The new data matrix Wn×k is de�ned as:

W = XEk. (9)

Each row of this matrix is a point and each column an extracted feature.

The covariance matrix ofW isΣW = n−1WTW, so thatΣW = diag(λ1, . . . , λk). The variables are
uncorrelated since the o�-diagonal elements of ΣW are equal to 0. This property is very important
for supervised learning, because it allows the selection of any subset of the projected variables by
ignoring their interaction. However, selecting the eigenvectors of highest eigenvalues may not be
the best strategy for classi�cation problems, since projections of maximal variance may mix points
from di�erent classes [Bishop 2006] within the same region. In Section 5 we show an example which
highlights how the component of the highest eigenvalue is less suitable for classi�cation than another
component. Therefore, we propose a method of selecting the eigenvectors by minimizing the Bayes
error rate for classi�cation.

3. BAYES ERROR RATE

The Bayes error rate for classi�cation is de�ned as the probability of the classi�cation error, i.e., the
expected error rate. This error estimation can have a simpli�ed form by imposing some restrictions.
Here, we consider the following �ve restrictions: (1) The data presents a multivariate normal distribu-
tion. (2) The problem has only two classes. (3) The prior probabilities of both classes are equal. (4)
Both classes have the same covariance matrix; the same assumption is used for PCA. Finally, (5) the
features are statistically independent, similarly to PCA. Then the Bayes error rate is given by [Duda
et al. 2000]:

P (error) =
1√
2π

∫ ∞
r/2

e−u
2/2du. (10)

The Bayes error rate decreases as r increases. We de�ne r2 as the Mahalanobis distance between
the mean vectors of the classes (µ1 and µ2):

r2 = (µ1 − µ2)Σ−1(µ1 − µ2), (11)

Σ is the data covariance matrix, which is the same for both classes; µT
1 = [µ11 . . . µ1d] and µT

2 =
[µ21 . . . µ2d] are the mean vector for classes 1 and 2, respectively.

For independent features, the covariance matrix is a diagonal matrix. The o�-diagonal elements are
the features covariances, which have values equal to zero. This means that each feature is uncorrelated
so r has a special form:

r =

√√√√ d∑
i=1

(
µ1i − µ2i

σi

)2

, (12)

where i = 1, . . . , d are the indexes for the features. The variables µ1i and µ2i are the mean of the
feature i for classes 1 and 2, respectively. And σi is the variance of the feature i that is the same for
both classes.
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We emphasize that the probability of classi�cation error decreases as r increases. From Equation
(12), we can conclude that each feature contributes for minimizing the probability of classi�cation
error. In fact, some feature contributes more than others. The larger the di�erence between the
means of the two classes related to the feature variance, the higher is the contribution of this feature
to minimize Bayes error. In the next section, we derive the proposed method based on this criterion
of Bayes error minimization.

4. PROPOSED METHOD

Since PCA generates uncorrelated features, and it also considers that the covariance matrix is the
same for every class in the dataset (because it computes direction of maximal variance for a covariance
matrix estimated for all data), then the Bayes error rate can be minimized proportionally to r, as
de�ned in Equation (12), for features extracted using Equation (9). The proposed method considers
these equations to choose the PCA projected variables. However, instead of selecting the directions of
maximal variance for the classi�cation task, we select the directions that minimize Bayes error rate.

The problem continues to be restricted to two classes, setting W = XEd, as in Equation (9).
However, now the features are extracted for d eigenvectors. We de�ne wij as the value of the i-th new
feature (i = 1, . . . , d) for the j-th point (j = 1, . . . , n). The mean of the i-th feature for the c-th class
(c = 1, 2) is

w̄ci =

∑n
j=1 wijδjc∑n

j=1 δjc
, (13)

where δjc is the Dirac's delta function δjc = 1 if the j-point belongs to the c-th class, and δjc = 0,
otherwise.

According Equation (12), each feature has a relevance for the classi�cation task. Then we propose a
score for the relevance of a feature for classi�cation. This score is calculated for each feature extracted
with PCA, si is the score for the i-th extracted feature:

si =

{
(w̄1i − w̄2i)

2/λi if λi 6= 0
0 if λi = 0

, (14)

where λi is the eigenvalue of the eigenvector from which the i-th feature were computed, and w̄ci is
the mean of the i-th feature for the c-th class (c = 1, 2). If λi = 0 the variance of the i-th extracted
feature is zero, which means that the variable has the same value for all points. Therefore it is not
useful for classi�cation and its score is set to si = 0. Otherwise, the score is positive and is de�ned
as the absolute value of the di�erence between the mean of each class divided by the variance of the
feature. Features selected according to this score minimize the Bayes error rate. In summary, the
proposed method consists of the following steps:

(1) Project the data as W = XEd, similar to Equation (9).

(2) Compute the mean of each feature for each class w̄ci, Equation (13).

(3) Compute the score si of each feature, Equation (14).

(4) Select k features with the highest score.

(5) De�ne the projection matrix as:

Sk = [ξ1 . . . ξk] (15)

with the eigenvectors that have the highest scores si, such that si ≥ sj if ξi ∈ S and ξj /∈ S.
(6) Project the data as:

V = XSk, (16)
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where Vn×k is the projected data matrix with n points and k discriminant features.

The di�erence between standard PCA and the proposed method is that the selected features in
PCA are the ones of highest eigenvalues (λi) and the selected features in the proposed method are
the ones with the highest discriminant score (si). In the next section, we present an example using
an arti�cial dataset.

5. EXAMPLE WITH ARTIFICIAL DATASET

In this section, we aim to explain how the proposed method works through an example. We use a
synthetic dataset to explain better how the proposed method di�ers from the standard PCA and how
it improves the classi�cation accuracy. The dataset has two variables, i.e., each data point has two
features. It allows us to visualize the datasets in a plot. The scatter plots of each dataset can be
visualized in Figure 1. In these �gures, it is also depicted (as a bell curve) the mean and the variance
of the normal distribution along each axis. There is a bell curve for each class. Horizontal Axis is the
�rst of the two features, and Vertical Axis is the second feature.

For this dataset, we consider all the �ve restriction imposed by the proposed method in Section
3 (the data presents a multivariate normal distribution, the problem has only two classes, the prior
probabilities of both classes are equal, both classes have the same covariance matrix, and the features
are statistically independent). There are 50 examples from each class randomly generate from a normal
distribution given a mean vector and a covariance matrix. Half of the examples are randomly chosen
as the training set, and the other half is used as the test set for each holdout evaluation. The mean
and standard deviation of the accuracy is computed for 100 holdout repetitions. This experimental
protocol is the same used with the real datasets (Section 6). We also used the same four classi�ers:
1-NN, Naive Bayes, Linear Discriminant, and Decision Tree. For all the four cases, the accuracy of
the recognition using raw data (2 original features) and feature extraction (1 extracted feature) with
PCA and Proposed method is described in Table I.

For the dataset, the mean vector for class 1 (µ1), the mean vector for class 2 (µ2), and shared
covariance matrix (Σ) are de�ned as:

µ1 =

[
0.0
0.0

]
, µ2 =

[
0.9
0.9

]
, Σ =

[
1.0 −0.9
−0.9 1.0

]
.

The full dataset can be visualized in Figure 1, it is presented data scatter plot and the distribution of
both variables (horizontal and vertical axis). It is easy to note that each feature individually has huge
class overlap in the raw data in Figure 1. Figure 2 shows the data transformed by PCA, i.e., all the
points of the dataset projected using all the two PCA eigenvectors. After the PCA transformation,
the Horizontal Axis is the feature with maximal variance. We highlight that the distribution of this
feature has almost the same mean and standard deviation for both classes, i.e., almost a full class
overlap. The proposed method gives a higher score for the other feature, the one that presents greater
mean separability.

Using the 1-NN classi�er the proposed method, with only one feature, has accuracy close to 93%,
similar to the raw data (2 features). The PCA (1 feature) has accuracy close to 51%. For the Naive

Table I. The results for the arti�cial dataset showing the Mean Accuracy (M.A.), Standard Deviation (S.D.) and the
number of Extracted Features (E.F.) for each method, using 1-NN, Naive Bayes, Decision Tree, and Linear Discriminant
classi�ers. Maximum mean accuracy within each column is emphasized for each classi�er.

Method E.F. Decision Tree Naive Bayes Linear Discrim. 1-NN

Raw 2 80.3% ( 6.0% ) 78.5% ( 7.3% ) 97.2% ( 1.8% ) 93.0% ( 3.4% )
PCA 1 52.1% ( 7.4% ) 55.0% ( 6.5% ) 61.0% ( 6.6% ) 50.9% ( 6.8% )
Proposed 1 93.9% ( 4.4% ) 94.5% ( 4.1% ) 95.3% ( 3.4% ) 92.9% ( 4.3% )
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Fig. 1. Case A. Scatter plot and the distribution of both variables in raw data.

Bayes classi�er, the proposed method showed an accuracy close to 95%, which is greater than using
raw data (79%). The PCA accuracy is 55%. Using the Linear Discriminant classi�er, the proposed
method has accuracy close to 95%, raw data 97%, and PCA 61%. For the Decision Tree classi�er, the
proposed method has accuracy close to 94%, greater than using raw data (80%), while PCA accuracy
is close to 52%. In Case A, the proposed method presents accuracy greater than PCA.

In this case, the proposed method has recognition accuracy higher than PCA. The proposed method
selects the features that best separate the classes. By the other side, PCA selects the features the
spread data the most. The proposed method is the proper method to choose the PCA directions for
the classi�cation task. In the next section, we assess the proposed method using nine real datasets.

6. EXPERIMENTS WITH REAL DATASETS

The experiments were performed using nine datasets from the UCI Machine Learning Repository
[Lichman 2013]. Each dataset has two classes:

�Banknote: the Banknote Authentication Data Set that has 1,372 points and four features.

�Bank: the Bank Marketing Data Set that has 4,521 points and 44 features (we converted some of
the original 16 categorical features to new binary features).

�Climate: the Climate Model Simulation Crashes Data Set that has 540 points and 18 features.

�Debrecen: The Diabetic Retinopathy Debrecen Data Set that has 1,151 points and 19 features.

�Occupancy: the Occupancy Detection Data Set that has 8,143 points (only the training �le) and
�ve features (we remove the date time feature).

�Pima: The Pima Indians Diabetes Data Set that has 768 points and eight features.
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Fig. 2. Case A. Scatter plot and the distribution of both variables after PCA transformation.

�Spambase: the Spambase Data Set that has 4,601 points and 57 features.

�VColumn: the Vertebral Column Data Set that has 310 points and six features.

�WDBC: the Breast Cancer Wisconsin (Diagnostic) Data Set that has 569 points and 30 features.

Accuracy, the rate of corrected classi�ed points, is the metric used to evaluate the methods. Each
mean accuracy is the average accuracy for 100 holdout experiments. In each holdout experiment, 50%
of the points from each class were randomly chosen for training and the remaining points were used
for testing. The training set was used for both PCA and the proposed method. Both training and
test sets were projected using k selected eigenvector, k = 1, . . . , d. The 1-NN (Nearest Neighbor) with
Euclidean distance, Naive Bayes with normal kernel smoothing density estimate, pruned Decision Tree
with Gini's diversity index and a minimum of 10 nodes per leaf, and Fisher's Linear Discriminant were
used for classi�cation. The experiment was performed using Matlab 2017b Statistics and Machine
Learning Toolbox.

We calculated the con�dence intervals assuming that each mean follows a Student's t distribution.
For a 95% con�dence level this interval is [ā − E, ā + E], where ā is the mean accuracy, E =
1.984b/

√
100, and b is the accuracy standard deviation. If there is no overlap between the con�dence

intervals of PCA and the proposed method the di�erence is considered signi�cant [Schenker and
Gentleman 2001]. The error bars shown for the datasets in the Figures 3 to 11, represent the con�dence
intervals. For some �gures, the values are too small to appear in the plots. If there is no overlap
between the error bars, we consider that the accuracies are signi�cantly di�erent.

The classi�cation accuracy for each dataset and the four classi�ers are summarized in Table II and
they are discussed in following. For each of the nine datasets, there are 20 mean accuracies in Table
II, �ve average accuracies for each one of the four classi�ers. The �ve results are, from top to bottom:
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Table II. Mean accuracy for each dataset and four classi�ers. The number of features for the respective accuracy is
indicated within square brackets.

Decision Tree Naive Bayes Linear Discriminant 1-NN
B
a
n
k

Raw [48] 87.4% [48] 88.4% [48] 90.0% [48] 84.4%
Proposed [1] 83.9% [3] 89.2% [9] 89.9% [1] 82.8%
PCA [1] 81.9% [3] 86.0% [9] 88.8% [1] 80.2%
Proposed [11] 86.4% [3] 89.2% [13] 90.0% [13] 85.2%
PCA [38] 86.2% [2] 88.5% [38] 90.1% [5] 84.5%

B
a
n
k
n
o
t
e Raw [4] 97.5% [4] 91.4% [4] 97.6% [4] 99.9%

Proposed [1] 85.7% [1] 89.0% [1] 88.9% [1] 85.0%
PCA [1] 69.7% [1] 69.4% [1] 61.3% [1] 68.4%
Proposed [4] 98.8% [4] 97.4% [4] 97.6% [4] 99.9%
PCA [4] 98.7% [4] 97.4% [4] 97.6% [4] 99.9%

C
li
m
a
t
e

Raw [18] 90.4% [18] 92.0% [18] 94.5% [18] 89.0%
Proposed [2] 87.7% [9] 92.2% [11] 94.0% [7] 89.9%
PCA [2] 86.5% [9] 91.5% [11] 92.0% [7] 86.8%
Proposed [7] 88.7% [11] 92.3% [18] 94.5% [10] 90.3%
PCA [7] 88.6% [18] 91.9% [18] 94.5% [18] 89.0%

D
e
b
r
e
c
e
n Raw [19] 61.0% [19] 55.8% [19] 71.2% [19] 61.7%

Proposed [3] 63.2% [1] 62.7% [3] 68.7% [3] 62.5%
PCA [3] 58.8% [1] 58.2% [3] 60.5% [3] 58.5%
Proposed [14] 65.5% [19] 70.0% [18] 71.3% [4] 62.5%
PCA [10] 66.2% [19] 70.0% [11] 71.8% [7] 61.8%

O
c
c
u
p
a
n
c
y Raw [5] 99.1% [5] 97.8% [5] 98.8% [5] 98.8%

Proposed [3] 98.9% [3] 96.1% [3] 98.6% [1] 92.8%
PCA [3] 98.9% [3] 95.8% [3] 97.6% [1] 92.8%
Proposed [5] 99.0% [3] 96.1% [4] 98.8% [5] 98.8%
PCA [4] 99.0% [5] 96.1% [5] 98.8% [4] 98.8%

P
im
a

Raw [8] 70.0% [8] 73.8% [8] 76.5% [8] 67.1%
Proposed [1] 67.4% [1] 72.5% [1] 72.5% [1] 65.6%
PCA [1] 62.6% [1] 58.7% [1] 65.4% [1] 61.4%
Proposed [5] 70.1% [2] 73.5% [7] 76.5% [5] 68.5%
PCA [6] 70.0% [8] 72.9% [8] 76.5% [5] 67.2%

S
p
a
m
b
a
s
e Raw [57] 90.6% [57] 56.3% [57] 88.9% [57] 79.4%

Proposed [3] 82.2% [3] 82.7% [4] 80.8% [2] 76.2%
PCA [3] 73.9% [3] 69.5% [4] 67.0% [2] 73.4%
Proposed [14] 87.1% [56] 86.8% [49] 88.9% [17] 79.6%
PCA [37] 87.0% [53] 86.9% [56] 88.9% [54] 79.5%

V
C
o
lu
m
n Raw [6] 80.2% [6] 77.0% [6] 83.0% [6] 81.5%

Proposed [2] 77.2% [2] 80.9% [2] 80.4% [2] 76.4%
PCA [2] 73.1% [2] 75.2% [2] 71.6% [2] 72.9%
Proposed [4] 80.2% [3] 82.2% [3] 83.0% [6] 81.5%
PCA [5] 80.3% [5] 80.8% [5] 83.5% [5] 81.5%

W
D
B
C

Raw [30] 92.2% [30] 93.8% [30] 95.2% [30] 91.3%
Proposed [3] 92.1% [3] 93.9% [3] 94.3% [1] 85.4%
PCA [3] 90.2% [3] 89.6% [3] 87.5% [1] 85.4%
Proposed [3] 92.1% [3] 93.9% [15] 95.3% [30] 91.3%
PCA [5] 91.9% [5] 92.0% [17] 95.8% [5] 91.4%

(1) mean accuracy for raw data,

(2) mean accuracy for the proposed method with maximum di�erence to PCA,

(3) mean accuracy for the PCA with maximum di�erence to the proposed method,

(4) maximum mean accuracy for the proposed method, and

(5) maximum mean accuracy for PCA.

Other relevant results that are not described in the table are described in details during the analysis
of the results. The next subsections describe the analysis for each dataset.
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Fig. 3. Mean accuracies for the Bank dataset per number of extracted features, per each classi�er.

6.1 Bank Dataset

The maximum accuracy for the Bank dataset is 90% using the Linear Discriminant (LD) classi�er.
The proposed method (PM) achieve this result using only 13 of the 48 features, and PCA using 34
features. For 38 features with PCA and LD, the mean accuracy is 90.1%, but it is not signi�cantly
higher. For the Naive Bayes (NB) classi�er using 2 features, the accuracy for PCA is 88.5% and for
PM 89.2% (89.21% for three features). For LD with two features, the accuracies are 89.2% (PM) and
88.9% (PCA). For many di�erent numbers of features, considering the four classi�ers, the proposed
method presented signi�cant higher accuracy, although the di�erence is only 1% (Figure 3).

6.2 Banknote Dataset

Figure 4 depicts the results for Banknote dataset. The maximum accuracy of 99.9% occurs for the
1-NN classi�er using all the four features. However, the proposed method (PM) have an accuracy
of 97.5% using only two features, and PCA 85.1%. For Naive Bayes (NB) using four features after
projection increases the accuracy to 97.4% comparing to raw data (91.4%), similar fact occurs to
the Linear discriminant classi�er. The greatest di�erence is 89.0% (PM) and 69.4% (PCA) for one
extracted feature using the NB classi�er. A similar di�erence occurs for other classi�ers using the
same number of features.

6.3 Climate Dataset

Figure 5 depicts the results for Climate dataset. The maximum accuracy of 94.5% occurs using all
the features with Linear Discriminant (LD) classi�er. However, the proposed method (PM) has an
accuracy of 94% using 11 features. For the same number of features with PCA, the accuracy is 92%.
For the Decision Tree classi�ers, the accuracy decreases when using more than seven features for both
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Fig. 4. Mean accuracies for the Banknote dataset per number of extracted features, per each classi�er.

methods. PM presents accuracy signi�cantly higher for many numbers of features for all the classi�ers.
The maximal accuracy for PM is higher or equivalent to PCA in all classi�ers, and the PM requires
fewer features for Naive Bayes and 1-NN.

6.4 Debrecen Dataset

Figure 6 depicts the results for Debrecen dataset. For this dataset PCA and the proposed method
(PM) achieve very similar accuracy using 7 or more extracted features. For Decision Tree (DT) and
Linear Discriminant (LD), PCA demands fewer features for the higher accuracy. Except for DT and
LD (around ten extract features), PM presents accuracy higher or similar than PCA for the same
number of features. Most of the greatest di�erence occurs for three extracted features; they are
68.7% (PM) and 60.5% (PCA). PM presented a result very close to the maximal accuracy (71.8%, 11
features, PCA) using very few features.

6.5 Occupancy Dataset

Figure 7 depicts the results for Occupancy dataset. For this dataset PCA and the proposed method
present very similar accuracies. The greatest di�erence occurs for three extracted features and Linear
Discriminant classi�er: 96.1% (proposed) and 95.8% (PCA).

6.6 Pima Dataset

Figure 8 depicts the results for Pima dataset. The greatest di�erence occurs using a single extracted
feature for all the classi�ers, for Naive Bayes the results are 72.5% (proposed method) and 58.7%
(PCA). The accuracy of the proposed method (PM) with one feature is similar to the accuracy of
PCA using all the eight features (72.9%). The greatest of 76.5% accuracy occurs for the Linear
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Fig. 5. Mean accuracies for the Climate dataset per number of extracted features, per each classi�er.
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Fig. 6. Mean accuracies for the Debrecen dataset per number of extracted features, per each classi�er.
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Fig. 7. Mean accuracies for the Occupancy dataset per number of extracted features, per each classi�er.

Discriminant and PM using seven features.
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Fig. 8. Mean accuracies for the Pima dataset per number of extracted features, per each classi�er.
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Fig. 9. Mean accuracies for the Spambase dataset per number of extracted features, per each classi�er.

6.7 Spambase Dataset

Figure 9 depicts the results for Spambase dataset. PCA and the proposed method (PM) have similar
accuracies. The greatest di�erence occurs for few extracted features. The maximum accuracy of 90.6%
occurs for raw data (57 features) and the Decision Tree (DT) classi�er. A good trade-o� result is for
PM with DT 87.1% for 14 extracted features, because it is a high accuracy for few extracted features.
PCA has similar accuracy with DT for 37 features (2,64 times more features). The greatest di�erence
between PCA and PM are for Linear Discriminant with four features, 80.8%(PM) and 67% (PCA).
A similar di�erence occurs for Naive Bayes (3 features) 82.7% (PM) and 69.5% (PCA), note that is
higher than accuracy for raw data (56.3%).

6.8 VColumn Dataset

Figure 10 depicts the results for VColumn dataset. The greatest di�erence occurs for the Linear
Discriminant (LD) classi�er, 80.4% (proposed method) and 71.6% (PCA). The highest accuracy is
also achieved using LD, 83.5% (PCA, �ve features), but it is not signi�cantly di�erent from 83% (PM,
three features). For 2 and three extracted features PM has accuracy signi�cantly higher, and close to
the maximum, with every classi�er.

6.9 WDBC Dataset

Figure 11 depicts the results for WDBC dataset. The greatest accuracy occurs for the Linear Discrim-
inant (LD) classi�ers, 95.8% (PCA, 17 features), 95.3% (proposed method, 15 features), and 95.2%
(raw data, 30 features). The greatest di�erence also occurs for LD (3 features), 94.3% (proposed)
and 87.5% (PCA), almost 7%. The proposed method presented accuracy very close to the maximum
using only 10% (3 out 30) of the features.
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Fig. 10. Mean accuracies for the VColumn dataset per number of extracted features, per each classi�er.
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Fig. 11. Mean accuracies for the WDBC dataset per number of extracted features, per each classi�er
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6.10 Final remarks

For all the 36 (4 classi�ers × 9) plots, the only case where PCA has accuracy higher than proposed
method (PM) for few extracted features is for 1-NN and WDBC dataset. For the Bank dataset with
Naive Bayes classi�er, there is a case where PCA accuracy is signi�cantly greater than proposed
method (from 10 to 34 extracted features), but those accuracies are much smaller than the accuracy
for two extracted features. In 34 out 36 cases, PM present accuracy close or signi�cantly greater than
PCA for the same number of extracted features. The greatest accuracy di�erences occur using less
than half of the features. The proposed method can extract more discriminant accuracy and reduce
accuracy, and it seems more suitable for dimensionality reduction in supervised tasks.

7. CONCLUSION

We proposed a feature extraction technique that is similar to PCA but selects features that minimize
the Bayes error rate instead of features that maximizes the variance. The method presented a higher
mean accuracy compared to PCA in two real datasets using a small number of features. The accuracy
was evaluated using four distinct classi�ers. Experiments with four arti�cial datasets show how the
proposed method chooses discriminant features. We present some graphical examples to describe how
the proposed method selects the directions that reduce the overlap between the classes.

For future work, the proposed method can be extended to problems with more than two classes.
Also, the Bayes error rate can be computed using fewer restriction. By doing these extensions, it is
possible to evaluate the proposed technique using other real datasets. Another research investigation
is to test the method presented herein other PCA-based techniques such as Fractional Eigenfaces
[de Carvalho et al. 2014] and Supervised Fractional Eigenfaces [de Carvalho et al. 2015].
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