
HCAIM: A Discretizer for the Hierarchical Classification
Scenario Applied to Bioinformatics Datasets

Valter Hugo Guandaline1, Luiz Henrique de Campos Merschmann2

1 Federal University of Ouro Preto, Brazil
vhguandaline@gmail.com

2 Federal University of Lavras, Brazil
luiz.hcm@dcc.ufla.br

Abstract. Discretization is one of the stages of data preprocessing that has been the subject of research in several
works related to flat classification. Despite the importance of data discretization for a classification task, to the best of
our knowledge, when it comes to the hierarchical classification scenario, where the classes to be predicted are organized
according to a hierarchy, there are no discretization methods in the literature that take class hierarchy into account.
The development of discretization methods capable of dealing with class hierarchy is extremely important to enable the
use of global hierarchical classifiers that require discrete data. Therefore, in this work, we fill this gap by proposing
and evaluating a supervised discretization method for the hierarchical classification context. Experiments with 17
bioinformatics datasets using a global hierarchical classifier showed that the proposed method allowed the classifier to
achieve predictive performance superior to those obtained when other unsupervised discretization methods were used.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications; I.2.6 [Artificial Intel-
ligence]: Learning

Keywords: Discretization, hierarchical classification, CAIM

1. INTRODUCTION

Data mining is an integral step in a larger process known as KDD (Knowledge Discovery in Database),
which also includes data preprocessing and post-processing of the mined information [Fayyad et al.
1996]. Since some data mining techniques request discrete input data or achieve better results when
dealing with discrete data, the procedure of converting continuous data into discrete ones, named
discretization, is an important step of the KDD process. In this work, we propose and evaluate a
discretization method tailored for hierarchical classification datasets.

The main purpose of the preprocessing step is to prepare the dataset so that it can be used by
some data mining technique. One of the processes that can be performed in this step is discretization.
Its purpose is to transform continuous attributes into discrete ones. This transformation is done by
associating intervals of continuous values with new categorical values. Thus, discretization methods
reduce and simplify data, making the learning process faster and the results more compact [Garcia
et al. 2013].

Classification is one of the main tasks of data mining. Its objective is to be able to generate, from a
dataset containing instances with known characteristics and classes, models capable of predicting the
class(es) of new instances from their characteristics. Most of the classification problems addressed in
the literature are considered flat classification problems, where the classes do not have relationships
with each other. However, there are more complex classification problems, known as hierarchical clas-
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sification problems, where the classes to be predicted are structured according to a hierarchy [Freitas
and de Carvalho 2007]. For instance, hierarchical classification is very important in bioinformatics,
specially in gene and protein function prediction, where such functions are often organized as a hi-
erarchy. In this scenario, higher-level classes are related to general functions, while lower-level ones
correspond to more specific functions.

In spite of real-world applications often involve continuous attributes, some classification algo-
rithms deal only with discrete attributes. In addition, even though some classification methods are
able to handle continuous attributes, they perform better when continuous attributes are previously
discretized [Kurgan and Cios 2004].

Although the literature is still scarce in studies concerning data preprocessing tailored for hierar-
chical classification datasets, in recent years some works related to attribute selection and missing
attribute value imputation have been published (e.g., [Naik and Rangwala 2016], [Galvão and Mer-
schmann 2016], [Kamal et al. 2015] and [Paes et al. 2014]). Nonetheless, to the best of our knowledge,
there are no discretization methods in the literature that take into account the relationships between
existing classes in hierarchical classification problems. In bioinformatics area, studies that addressed
hierarchical classification problems and required data discretization, such as [Merschmann and Freitas
2013] and [Silla Jr and Freitas 2009], had to use unsupervised discretization methods, since unsu-
pervised methods can be used to the context of both flat and hierarchical classification. This has
motivated us to propose a supervised discretization method for the context of hierarchical classifi-
cation applied to gene and protein function prediction, which are important real world problems in
bioinformatics.

In [Dougherty et al. 1995], the authors have shown that, for flat classification scenario, supervised
discretization methods are usually better than unsupervised methods when considering the effect of
discretization on the classifiers accuracy. In addition, they have reported that the accuracy of the
flat Naive Bayes classifier significantly improved when attributes were discretized using a supervised
discretization method. Thus, the hypothesis raised in this work is that supervised discretization
methods, due to the fact that they take into account the class attribute at the time of discretization,
could provide more accuracy improvement of a classifier, that is an extension of the Naive Bayes
algorithm to handle hierarchical classification problems, than unsupervised discretization methods.

The proposal presented here corresponds to an adaptation made in the CAIM discretization method
[Kurgan and Cios 2004] to make it consider the existing class hierarchy in hierarchical classification
problems. In order to test our hypothesis, the proposed supervised method has been compared with
two unsupervised discretization methods using 17 bioinformatics datasets related to gene and protein
function prediction. The results show that, for most cases, the proposed method allowed a hierarchical
Naive Bayes classifier to achieve predictive performance (in terms of hierarchical F-measure) superior
to those obtained when the dataset was preprocessed by unsupervised methods.

The remainder of this article is organized as described below. Section 2 presents a brief review
of the literature on hierarchical classification and data discretization. Then, the proposed method is
detailed in Section 3 and the computational experiments with the results obtained are described in
Section 4. Finally, Section 5 presents the conclusions of this work and points out future work.

2. THEORETICAL FRAMEWORK

2.1 Hierarchical Classification

In a hierarchical classification problem, the relationships between the classes are represented by a
hierarchical structure which can be a tree or a direct acyclic graph (DAG). The main difference
between these structures is that in a tree a node (class) is associated with at most one parent node,
while in a DAG, a node can have more than one parent node.
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According to [Freitas and de Carvalho 2007], hierarchical classification methods differ in a number
of aspects. The first aspect refers to the type of structure the method is able to deal with. In the case
of this work, the hierarchical structure of the classes corresponds to a tree.

The second aspect is related to the depth of the execution of the classification in the hierarchy. A
method can perform predictions using only classes at leaf nodes in the class hierarchy (Mandatory
Leaf-Node Prediction – MLNP) or classes referring to any node (internal or leaf) of the hierarchy
(Non-Mandatory Leaf-Node Prediction – NMLNP). In this work, we consider the NMLNP scenario.

The third aspect is related to the number of different path labels in the hierarchy a method can
assign an instance to. A method can be able to predict multiple classes for a particular instance
(multi-label), thereby involving multiple paths of labels in the class hierarchy, or just a class (single-
label), which will be linked to a single path of labels in the class hierarchy. The method proposed in
this article deals with the single-label classification.

Finally, the fourth aspect is related to the type of approach that the classifier uses to explore the
hierarchical structure. According to [Silla Jr and Freitas 2011] there are three types of approaches: (i)
flat classification approach, in which the class hierarchy is ignored and the predictions are performed
considering only the leaf nodes classes of the hierarchical structure; (ii) local approach, where several
traditional flat classifiers are used, each with a local view of the hierarchical structure (e.g., [D’Alessio
et al. 2000] and [Koller and Sahami 1997]); and (iii) global approach, where a single classification model
is built taking the entire class hierarchy into account at once (e.g., [Labrou and Finin 1999], [Qiu
et al. 2009] and [Silla Jr and Freitas 2009]). The discretization method proposed in this work aims
to adapt the datasets to be used by global hierarchical classifiers, given that, for the local approach,
supervised discretization methods designed for the flat classification scenario can be used.

2.2 Data Discretization

Discretization is a data reduction strategy widely used in the data preprocessing step [Garcia et al.
2013]. The discretization process transforms continuous attributes into discrete ones by dividing them
into intervals and associating each of these intervals to a different discrete value.

According to [Garcia et al. 2013], discretization methods can be categorized as supervised or unsu-
pervised. A method is called supervised when its execution takes into account the values of the class
attribute. On the other hand, if the class attribute is not considered in the discretization process, the
method is said to be unsupervised.

Different criteria can be used to evaluate discretization algorithms, such as the number of intervals
generated, the level of inconsistency and the accuracy of classifiers. In this work, the discretiza-
tion methods were evaluated from the global hierarchical classifier named Global Model Naive Bayes
(GMNB), proposed in [Silla Jr and Freitas 2009].

In [Garcia et al. 2013] the authors evaluated 30 discretizers on 40 datasets using six flat classifiers.
This evaluation showed that the CAIM was one of the most efficient discretization methods. Therefore,
it was the method chosen in this work to be adapted to the hierarchical context. In addition, given
the lack of supervised methods for the hierarchical context, the unsupervised methods Equal-Width
and Equal-Frequency (adopted in [Merschmann and Freitas 2013] and [Silla Jr and Freitas 2009])
were used as baseline for comparison with the method proposed here. Next, more details of these
unsupervised methods and CAIM discretization method, which has been adapted to the hierarchical
classification context, will be presented.

2.2.1 Unsupervised Discretization Methods. Equal-Width and Equal-Frequency are unsupervised
binning methods, as sorted attribute values are distributed into a number of bins, and then each bin
value is replaced by a label.
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Equal-Width method divides the attribute’s range into k uniform sized bins. The width of each bin
is:

w = (max_value−min_value)/k, (1)

where min_value and max_value are the minimum and maximum values of the attribute to be
discretized, respectively. In this way, the bin boundaries are {min_value + w,min_value + 2 ∗
w, . . . ,min_value+ (k − 1) ∗ w}.

Equal-Frequency method divides the attribute’s range into k bins, where each bin contains approxi-
mately the same number of values. Given an attribute with N values, each bin contains approximately
N/k values. For both methods, k is a parameter specified by user.

2.2.2 CAIM. Class-Attribute Interdependency Maximization is a supervised discretization method
that uses a metric to evaluate the interdependence between the class attribute and the discretized
attribute [Kurgan and Cios 2004].

Consider a dataset composed of a set of instances M , characterized by a set of continuous at-
tributes F and a class attribute S, where|M |, |F | and |S| are, respectively, the number of instances,
number of continuous attributes and number of classes. In addition, each instance Mk is associated
with a class Si, where k ∈ {1, 2, ..., |M |} and i ∈ {1, 2, . . . , |S|}.

For each continuous attribute Fj , j ∈ {1, 2, . . . , |F |}, the CAIM method sorts its values in ascending
order and, after, divides them into n intervals as follows: D = {[d0, d1], (d1, d2], . . . , (dn−1, dn]}, where
d0 e dn, are respectively, the minimum and maximum values of the attribute Fj and di < di+1 for
i ∈ {0, 1, . . . , n − 1}. Each pair of values (di, di+1) defines an interval of the attribute Fj , where the
discretization result D, called discretization scheme of the attribute Fj , defines the following set of
cut points P = {d1, d2, . . . , dn−1}, which are the midpoints of all adjacent pairs in the set D.

The interdependence between the class attribute S and a discretized attribute Fj , according to a
discretization scheme D, is calculated using the CAIM metric (Equation 2), which makes use of a
frequency matrix, called contingency matrix, shown in Figure 1. In this matrix, which represents a
discretization scheme D = {[d0, d1], (d1, d2], . . . , (dn−1, dn]} of the discretized attribute Fj , qir is the
number of instances belonging to the i-th class that are contained in the r-th interval, Mi+ is the total
number of instances belonging to the i-th class and M+r is the total number of instances contained
in the r-th interval.

CAIM(S,D|Fj) =

∑n
r=1

max2
r

M+r

n
, (2)

where n is the number of intervals and maxr is the maximum number of instances contained in the
interval r belonging to the same class. This equation is used by the CAIM method to choose the
best cut point to be inserted in a given discretization scheme. The higher the value returned by this
metric, the greater the dependency between the Fj (discretized according to the D scheme) and the
class attribute S.

CAIM algorithm can be divided into three stages: initialization, evaluation and verification. These
steps are applied to each continuous attribute Fj . Next, we show each of them in detail.

Initialization: The first step of CAIM method is to identify the minimum (d0) and maximum (dn)
values of the attribute Fj and create the initial discretization scheme containing only one interval
limited by these two values (D = {[d0, dn]}), that is, the method starts with a single interval (K
= 1) containing all values of the attribute Fj . The CAIM metric assigned to this interval is 0
(GlobalCaim = 0). Then, the method initializes the set of possible cut points B. This set is formed
by calculating the midpoints between all the adjacent values of the set of distinct values of the attribute
Fj arranged in ascending order. For example, if U = {1, 2, 3, 4, 5} is the set of distinct values of Fj ,
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Classes Intervals Instances per Class[d0, d1] ... (dr−1,dr] ... (dn−1, dn]
C1 q11 ... q1r ... q1n M1+

... ... ... ... ... ... ...
Ci qi1 ... qir ... qin Mi+

... ... ... ... ... ... ...
Cs qs1 ... qsr ... qsn Ms+

Instances per Interval M+1 ... M+r ... M+n M

Fig. 1. Contingency matrix for the attribute Fj with discretization scheme D

# F1 Class
01 1.2 A
02 1.2 A
03 1.8 A
04 1.8 A
05 1.8 A
06 3.2 B
07 3.2 B
08 3.2 B
09 3.8 B
10 3.8 C
11 5.2 C
12 5.2 C

Fig. 2. Sample Dataset

then the set of possible cut points is B = {1.5; 2.5; 3.5; 4.5}. After the definition of the set B, the
method moves to the evaluation step.

Evaluation: This is an iterative step which consists in evaluating all cut points contained in B
while the stop criterion is not satisfied. For each cut point p in the set B, the method creates a new
discretization scheme D′ by inserting the cut point p into the discretization scheme D. Then, the
scheme D′ is evaluated by the metric CAIM(S, D′|Fj). After evaluating all cut points contained in B,
the method stores the cut point p∗ that obtained the highest value for the CAIM evaluation criterion.
This information is used in the verification step.

Verification: In this step, the method stop criterion is checked. The algorithm terminates its
execution when the following two conditions are false: i) if the number of intervals generated so
far (k) is less than the number of classes (|S|); ii) if the value of the CAIM metric for the cut point p∗
is greater than the one obtained in the previous iteration (GlobalCaim). If the opposite is true, the
algorithm removes the cut point p∗ from the set B and adds it to the scheme D, then it increases the
number of intervals created (k = k + 1), updates the value of the CAIM metric for the scheme D
(GlobalCaim = CAIM), and finally returns to the evaluation stage, where the insertion of a new cut
point will be evaluated.

In order to illustrate the application of the CAIM method, consider the dataset presented in Fig-
ure 2, where the column # contains the number of each instance, the column F1 corresponds to
the continuous attribute to be discretized and the column Class contains the class of each instance.
The dashed horizontal lines illustrate the possible cut points, which define the initial vector B as
B = {1.5; 2.5; 3.5; 4.5}. Its worth noting that the dataset is already ordered according to the values
of the continuous attribute F1.

Notice that the dataset of Figure 2 contains: 12 instances (|M | = 12); 3 classes (|S| = 3), where
S = {A, B, C}; and one continuous attribute (|F | = 1), where F = {F1}. In addition, F1 contains 5
distinct values (q = 5), forming the set of distinct values U = {1.2; 1.8; 3.2; 3.8; 5.2}.
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Classes Intervals Instances per Class[1.2; 1.5] (1.5; 5.2]
A 2 3 5
B 0 4 4
C 0 3 3

Instances
per Interval 2 10 12

Fig. 3. Contingency matrix for the scheme D′

p Scheme D′ CAIM metric
2.5 {[1; 2.5], (2.5; 5]} (52/5 + 42/7) / 2 = 3.64
3.5 {[1; 3.5], (3.5; 5]} (52/8 + 32/4) / 2 = 2.68
4.5 {[1; 4.5], (4.5; 5]} (52/10 + 22/2) / 2 = 2.25

Fig. 4. Evaluations of cut points in the first iteration of CAIM

The first step of the CAIM method is to identify the minimum (d0) and maximum (dn) values of the
attribute F1 and create the initial discretization scheme containing only one interval (k = 1) bounded
by these two values (D = {[1.2; 5.2]}). Furthermore, this initial discretization scheme is assigned the
value 0 for the CAIM metric (GlobalCaim = 0).

Afterwards, the method initializes the set of possible cut points B. Being U = {1.2; 1.8; 3.2; 3.8;
5.2} the set of distinct values of attribute F1, then the set of possible cut points will be B = {1.5; 2.5;
3.5; 4.5}. Thus, we have the following definitions necessary for the evaluation step: D = {[1.2; 5.2]};
GlobalCaim = 0; B = {1.5; 2.5; 3.5; 4.5}; |S| = 3 and k = 1.

On the first iteration, the CAIM method generates a scheme D′ inserting in D = {[1.2; 5.2]} the
first cut point p contained in B (p = 1.5), resulting in D′ = {[1.2; 1.5], (1.5; 5.2]}. Figure 3 presents
the contingency matrix for the scheme D′.

From the contingency matrix the method evaluates this scheme D′ using the CAIM metric (Equa-
tion 2). The calculation of the metric for the contingency matrix of Figure 3 is presented below.

CAIM =
22

2 + 42

10

2
= 1.8 (3)

Similarly, the method evaluates all other possible schemes D′ generated from the insertion (in
D = {[1.2; 5.2]}) of the other existing cut points in B. Table 4 presents the evaluation of the other
schemes D′ evaluated in the first iteration of the CAIM.

After evaluating all the possible schemes D′ generated from the existing cut points in B, the
method checks whether the CAIM stopping criterion has been satisfied. In this case, since k is less
than |S| (1 < 3), the method continues its execution by choosing the cut point that generated the
highest value for the CAIM metric, updating the value of GlobalCaim, removing this cut point of the
set B, updating the scheme D with the chosen cut point, and finally, adjusting the value of k. In this
iteration, the cut point p = 2.5 was the one that obtained the best evaluation (CAIM = 3.64) and,
therefore, was used to update the scheme D. Thus, the following updates are performed before the
method begins the second iteration: D = {[1; 2.5], (2.5; 5]}; GlobalCaim = 3.64; B = {1.5; 3.5; 4.5};
k = 2.

In the second iteration, the entire process of evaluating the possible discretization schemes D′,
generated from the insertion in D of each of the existing cut points in B, is done again. Table 5
presents the evaluation of each possible scheme D′ in the second iteration of the method.
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p Scheme D′ CAIM metric
1.5 {[1; 1.5], (1.5; 2.5], (2.5; 5]} (22/2 + 32/3 + 42/7) / 3 = 2.42
3.5 {[1; 2.5], (2.5; 3.5], (3.5; 5]} (52/5 + 32/3 + 32/4) / 3 = 3.41
4.5 {[1; 2.5], (2.5; 4.5], (4.5; 5]} (52/5 + 42/5 + 22/2) / 3 = 3.40

Fig. 5. Evaluations of cut points in the second iteration of CAIM

p Scheme D′ CAIM metric
1.5 {[1; 1.5], (1.5; 2.5], (2.5; 3.5], (3.5; 5]} (22/2 + 32/3 + 32/3 + 32/4) / 4 = 2.26
4.5 {[1; 2.5], (2.5; 3.5], (3.5; 4.5], (4.5; 5]} (52/5 + 32/3 + 12/2 + 22/2) / 4 = 2.62

Fig. 6. Evaluations of cut points in the third iteration of CAIM

# AF1 Class
01 1.2 A
02 1.2 A
03 1.8 A
04 1.8 A
05 1.8 A
06 3.2 B
07 3.2 B
08 3.2 B
09 3.8 B
10 3.8 C
11 5.2 C
12 5.2 C

(A)

# F1 Class
01 [1.2; 2.5] A
02 [1.2; 2.5] A
03 [1.2; 2.5] A
04 [1.2; 2.5] A
05 [1.2; 2.5] A
06 (2.5; 3.5] B
07 (2.5; 3.5] B
08 (2.5; 3.5] B
09 (3.5; 5.2] B
10 (3.5; 5.2] C
11 (3.5; 5.2] C
12 (3.5; 5.2] C

(B)

Fig. 7. (A): Original dataset. (B): Discretized dataset.

After evaluating the schemes D′, the method checks again whether the CAIM stopping criterion
has been reached. In this case, since k continues to be less than |S| (2 < 3), the method follows by
inserting in D the cut point (p = 3.5) that generated the best valuation (CAIM = 3.41) and updating
the other variables. Therefore, at the end of the second iteration we have: D = {[1; 2.5], (2.5; 3.5],
(3.5; 5]}; GlobalCaim = 3.41; B = {1.5; 4.5}; k = 3.

The third iteration of the method is done by adopting the same procedure described for the previous
iterations. Table 6 resents the evaluation of all the possible schemes D′ generated in this iteration.

Next, the method checks again whether the CAIM stopping criterion has been satisfied. As in
this case k is not less than |S| (k = 3 and |S| = 3) and the highest value of CAIM metric obtained
in this iteration is not greater than GlobalCaim (2.62 < 3.41), the method no longer updates the
discretization scheme D and ends its execution. Therefore, the discretization of the attribute F1

is finished. Figure 7 shows the result of the discretization of the attribute F1 (B) of the original
dataset (A). The horizontal lines in the discretized dataset (B) represent the cut points used in the
discretization of the attribute F1.

3. PROPOSED METHOD

The main problem in using traditional supervised discretization methods (used in conjunction with
flat classifiers) for databases related to the hierarchical classification context is in the fact that these
discretizers are not able to consider the information of the relationships between the classes of the
problem. In this work, it is assumed that this type of information, if considered along the discretization
process, may contribute to the generation of a better quality discretized dataset for the classification
task.
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Therefore, the discretization method proposed here, called HCAIM (Hierarchical CAIM), considers
the class hierarchy while performing the discretization process. The HCAIM corresponds to an adap-
tation of the CAIM discretization method for the hierarchical context, whose main difference is in the
evaluation metric used by the method for the definition of cut points of a discretization scheme.

3.1 Evaluation Metric

To evaluate a discretization scheme D = {[d0, d1], (d1, d2], . . . , (dn−1, dn]} for an attribute Fj , the
CAIM method checks how good the intervals are in this scheme. Through the metric also called CAIM
(see Equation 2), each interval contained in D is evaluated by measuring the correlation between the
values of the attribute Fj existing in that interval and the classes contained in it. This correlation is
given by (max2

r

Mr+
), where maxr is the number of occurrences of the most frequent class in the interval

r and Mr+ is the number of instances contained in that same interval. This calculation allows the
CAIM method to: (i) consider the degree of purity of the interval (the nearer maxr is to Mr+, the
purer the interval) and (ii) prioritize intervals with higher number of instances.

However, this CAIM metric does not take into account the existing class hierarchy in a problem
where classes are hierarchically organized. For example, given an interval r containing 9 instances
(Mr+ = 9), being 3 instances of the class R.2 and 6 of the class R.2.1, the evaluation of that interval
according to the CAIM metric is given by 62/9 = 4, since the majority class R.2.1 is considered as
completely distinct from R.2. However, in the hierarchical context, instances of the class R.2.1 also
belong to the class R.2, since R.2.1 is a child class of R.2.

Therefore, in this work, the CAIM metric was adapted to calculate the degree of purity of each
interval considering the class hierarchy. In the proposed adaptation, called HCAIM (Hierarchical
CAIM), the calculation of the purity of an interval is performed for each hierarchical level, its final
value being a weighted average of the values calculated for each one of the levels. Thus, the dependence
between the class attribute S and the discretization scheme D for a given attribute Fj taking into
account the class hierarchy is given by:

HCAIM(S,D|Fj) =

∑n
r=1

∑Hr

l=1

max2
r,l

M+r
.Wl,r

n
, (4)

where n is the number of intervals, Hr is the depth of the class hierarchy referring to the interval r,
maxr,l is the number of occurrences of the most frequent class in the interval r considering the class
hierarchy up to the level l, M+r is the total of instances contained in the interval r e Wl,r is weight
associated with the level l of the class hierarchy for the interval r.

When calculating the HCAIM metric for a given interval r, in addition to the contingency matrices
for each hierarchical level, it is necessary to calculate the weights Wl,r that will be applied according
to the hierarchical level l and the depth of the hierarchy Hr in that interval. The weight value for
each of the hierarchical levels is given by:

W (l, r) = (Hr − l + 1)
2

Hr × (Hr + 1)
(5)

given that
∑Hr

l=1 Wl,r = 1.

Going back to the previous example, where we consider a single interval r containing 9 instances
(Mr+ = 9), being 3 instances of the class R.2 and 6 of the class R.2.1, the evaluation of this interval
according to the HCAIM metric is given by 92/9 ×W1,r + 62/9 ×W2,r. The first portion (92/9) is
due to the fact that we consider all the classes present in the interval r only up to the first level of
the hierarchy, that is, all instances are associated with the class R.2. The second portion (62/9) is
calculated by considering all classes up to the second hierarchical level, where we have 3 instances of the
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class R.2 and 6 of the class R.2.1. Considering that the weights associated with the hierarchical levels
are W1,r = 2/3 and W2,r = 1/3, the final metric value for the example in question is HCAIM = 7.33.

3.2 HCAIM Method

In this work, the CAIM discretization method was adapted to the hierarchical classification context.
The main alteration occurred in the evaluation metric used to define the cut points of the discretization
scheme (see Section 2.2.2), so that in HCAIM this metric takes into account the class hierarchy of the
problem. In addition to the metric adaptation, another change was made in the way the set of cut
points B was initialized for the process of the discretization of a given attribute.

The pseudocode of the HCAIM method is shown in Figure 8. As input, the algorithm receives a
dataset consisting of N instances, |S| distinct classes, and continuous attributes Fi. Basically, for
each attribute Fi to be discretized, the algorithm performs two steps: a) initialization of the set of
possible cut points B and of the discretization scheme D; b) consecutive insertions of cut points in
the discretization scheme D from their evaluations by the adapted metric HCAIM. The detail of each
of these stages is described below.

The initialization step is performed for each attribute Fi (lines 3 to 7). In this step, the first
initialization (line 3) is that of the set of cut points B. Considering that the attribute to be discretized
Fi is ordered, the cut points inserted in the set B correspond to the average of the values of the
attribute Fi for each pair of neighboring instances that are associated to distinct classes and have
different values for the attribute in question. Then, the discretization scheme D is initialized (line 4)
with a single interval [-∞,+∞]. Finally, between lines 5 and 7, the variables globalHCaim (stores the
best value of HCAIM metrics throughout the discretization process), k (controls the number of cut
points inserted in scheme D) and stop (controls the finalization of the discretization process of the
attribute Fi) are also initialized.

Once the initializations described above have been achieved, while the stopping criterion is not
reached, new cut points are consecutively inserted into the discretization scheme D (lines 8 to 27).
The insertion of a new cut point in the discretization scheme is done by choosing, at each iteration,
the cut point contained in B which is best evaluated by the HCAIM metric (lines 11 to 19). The
localHCaim variable, initialized in the line 10, is responsible for storing the best value of the HCAIM
metric along the process of choosing the best cut point contained in B. Every time a new cut point
is inserted into the scheme D (line 22), it is also removed from the set of cut points B (line 23). The
method stop criterion (line 20) establishes that new cut points must be entered in the discretization
scheme D while the number of intervals in D is less than the number of distinct classes of the dataset
or while the insertion of a new cut point improves the best value already obtained for the metric
of evaluation (stored in globalHCaim). When the stopping criterion is reached, the discretization
scheme D of the attribute Fi is stored in a list of schemes (line 28) and if there are other continuous
attributes in the dataset, this whole discretization process is performed again.

Figure 9 presents the pseudocode of the algorithm used to calculate the HCAIM metric, which
receives as input the dataset BD, the scheme T and the attribute being discretized Fi. For each
interval I in the discretization scheme T , lists Lk (line 8) are built containing the frequency of the
classes (considering them up to the level k of the class hierarchy) associated to the instances whose
value of the attribute Fi is contained in the interval I. From these lists Lk, the metric value for each
interval I is calculated (lines 11 and 12) using: a) the highest value contained in Lk, that is, the
one associated with the most frequent class (line 10); b) the total number of instances whose value
of the attribute Fi is contained in the interval I (line 6) and c) weight assigned to the level k of a
hierarchical structure with depth H (line 9). The final value of the metric corresponds to the average
of the HCAIM values calculated for each interval I (line 16).
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Algorithm HCAIM (Dataset BD)
1: Initialize SchemeList = ∅;
2: for each continuous attribute Fi do
3: Initialize the set of cut points B of attribute Fi;
4: Create the initial discretization scheme D = {[−∞,+∞]};
5: Initialize globalHCaim = 0;
6: Initialize k = 1;
7: Initialize stop = FALSE;
8: while !stop do
9: stop = TRUE;
10: Initialize localHCaim = 0;
11: for each cut point c ∈ B do
12: T = D;
13: Insert the cut point c into the scheme T ;
14: hcaim = metricHCAIM(BD, T , Fi); //see Figure 9
15: if (hcaim > localHCaim) then
16: localHcaim = hcaim;
17: p = c;
18: end if
19: end for
20: if (localHCaim > globalHCaim or k < |S|) then
21: globalHCaim = localHCaim;
22: Insert the cut point p into the scheme D in ascending order;
23: Remove the cut point p form the set B;
24: stop = FALSE;
25: end if
26: k = k + 1;
27: end while
28: Insert the scheme D into SchemeList;
29: end for
end.

Fig. 8. HCAIM method’s pseudocode.

Algorithm metricHCAIM(Dataset BD, Scheme T , Attribute Fi)
1: Initialize hcaim = 0.0;
2: Initialize numberOfIntervals = 0;
3: for each interval I ∈ T do
4: S = Set of instances of the dataset BD whose value of the attribute Fi ⊂ I;
5: H = Depth of class hierarchy associated with the instances ∈ S;
6: M = Total number of instances contained in S

7: for k = 1 to H do
8: Create the list Lk containing the frequency of the classes associated to the instances ∈ S, considering

them up to the level k of the class hierarchy;
9: W = calculateWeight(k, H);
10: max = highest value contained in Lk;
11: caimInterval = (max2 / M) * W ;
12: hcaim = hcaim + caimInterval;
13: end for
14: numberOfIntervals = numberOfIntervals + 1;
15: end for
16: Return ( hcaim / numberOfIntervals);
end.

Fig. 9. Pseudocode of the algorithm used in the calculation of the HCAIM metric.

In the next section we present the computational experiments performed in order to evaluate the
proposed method.
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4. COMPUTATIONAL EXPERIMENTS

4.1 Datasets

All experiments were conducted from 17 datasets, 9 of which are related to classification of gene
functions and 8 with classification of protein functions. As these datasets were obtained from different
sources, they were organized into two groups.

Group A consists of 9 datasets of gene functions, in this case related to the yeast genome. On these
datasets, predictor attributes include several types of bioinformatics data, such as sequence secondary
structure, phenotype, homology, sequence statistics, and expression. These datasets, originally used
in [Clare and King 2003], are multi label. As the focus of this work is the hierarchical single label clas-
sification, these datasets have been transformed into single label data by selecting, for each instance,
the most frequent class in the original dataset.

Group B consists of 8 protein function datasets related to two different protein families: Enzymes
and G-Protein-Coupled Receptors (GPCR). Enzymes are proteins that catalyze chemical reactions,
while GPCRs are proteins that play central roles in biochemical and cellular processes, acting as
molecular targets for various medical drugs. Four databases of enzymes (whose names begin with
EC - Enzyme Commission) and four GPCR databases were used, where the predictive attributes
correspond to protein properties and the classes to be predicted are hierarchical protein functions.
Most of the predictive attributes are binary, indicating whether a protein signature (or motif) is
present in a protein, and two attributes are continuous: amino acid sequence length and molecular
weight. The names of the datasets are associated with the type of motif used: Interpro Entries,
FingerPrints, Prosite Patterns and Pfam. These datasets have already been used in other hierarchical
classification works, such as [Costa et al. 2007], [Holden and Freitas 2008] and [Silla Jr and Freitas
2009].

From the single label databases, an initial preprocessing was performed to replace the missing
attribute values. By identifying a missing value for a given attribute Fj of an instance associated with
the class Ci, we calculate the average of the observed values of the attribute Fj of all other instances
of the dataset associated with the Ci class, then this mean is used to replace the missing value. If
for class Ci no instance is found to have an observed value for the attribute Fj , the average of the
observed values of the attribute Fj of all dataset instances associated with descendant classes of Ci in
the hierarchy is calculated, then this average is used to replace the missing value. Ultimately, if class
Ci does not have descendant classes or if for the descendant classes of Ci no instance has an observed
value for the attribute Fj , then the missing value is replaced by the global average of attribute Fj .

In addition, prior to the execution of the classification algorithm, a second preprocessing was per-
formed. In this preprocessing, each class with fewer than 10 instances was merged with its parent
class. This process was repeated until every class in the hierarchy had at least 10 instances. If during
this process the most specific class of an instance has become the Root class, then the instance has
been removed from the database.

Table I shows the main characteristics of the datasets after these preprocessing steps. This table
presents, for each dataset, the number of instances, the number of predictor attributes, the number
of classes and their distribution by hierarchy levels (1◦|2◦|3◦|. . .).

4.2 Experimental Setup

Unsupervised discretization methods Equal-Frequency (EF) and Equal-Width (EW) were used as
reference for comparison with the proposed method, HCAIM. These methods were chosen for the
comparisons because they have already been adopted in hierarchical classification works, since there
are no supervised discretization methods for this context.
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Table I. Databases Characteristics

Databases # Instances # Attributes
Continuous / Categorical # Classes # Classes by Level

Church 3755 26 / 1 190 7|37|72|47|25|2
Cellcycle 3757 77 / 0 190 7|37|73|46|25|2
Eisen 2424 79 / 0 143 4|26|55|34|22|2
Expr 3779 547 / 0 191 7|37|72|47|26|2
Gasch2 3779 52 / 0 191 7|37|73|46|26|2
Gasch1 3764 173 / 0 191 7|37|73|46|26|2
Derisi 3725 63 / 0 190 7|37|72|47|25|2
Spo 3703 77 / 3 191 7|37|73|46|26|2
Seq 3919 473 / 5 192 7|37|73|47|26|2
EC-Interpro 5192 2 / 1214 105 6|29|47|70
EC-Pfam 5192 2 / 706 105 6|29|47|70
EC-Prints 5192 2 / 380 105 6|29|47|70
EC-Prosite 5192 2 / 583 105 6|29|47|70
GPCR-Interpro 5156 2 / 448 149 7|42|74|49
GPCR-Pfam 5156 2 / 73 149 7|42|74|49
GPCR-Prints 5156 2 / 281 149 7|42|74|49
GPCR-Prosite 5156 2 / 127 149 7|42|74|49

EF and EW methods were executed from their implementations available in the WEKA tool [Hall
et al. 2009]. As these methods have the parameter k, which defines the number of intervals (bins) to
be created in the discretization process, in order to have a fair comparison with the proposed HCAIM,
which is a method without parameters, we have adopted two comparison strategies. In the first batch
of experiments HCAIM was compared to EF and EW using different values of k, namely, 5, 10, 15
and 20. After, in a second batch of experiments, EF and EW methods were compared to HCAIM
using, for each attribute, the same number of intervals chose by HCAIM.

With the aim of evaluating the quality of the discretization performed by each of the methods
considered here, the global hierarchical classifier Global Model Naive Bayes (GMNB) [Silla Jr and
Freitas 2009] was used. In order to express the predictive performance of the GMNB the hierarchical
metric F-measure (hF ) proposed in [Kiritchenko et al. 2005] was adopted. In addition, the k-fold cross-
validation method (k = 10) was used in the performance evaluation of the GMNB. Thus, the results
presented in the next section correspond to averages of 10 executions. It is also worth mentioning
that the data discretization occurred only after the partitioning of the dataset by the method 10-fold
cross-validation, that is, for each dataset, it was applied considering each of the 10 training partitions.

4.3 Results

The results of comparative experiments are presented in Tables II and III. Table II contains the results
of the first batch of experiments, where EF and EW using four values of parameter k (5, 10, 15 and
20) are compared to HCAIM. Next, Table III presents the results of the second batch of experiments,
where the same number of intervals are considered for each attribute discretized by EW, EF and
HCAIM.

Table II presents the average hierarchical Precision (hP), average hierarchical Recall (hR) and av-
erage hierarchical F -measure (hF ) (with standard deviation of hF in parentheses) obtained by the
GMNB classifier for each discretized dataset using the HCAIM and the other two methods used as
reference, namely, Equal-Frequency (EF) and Equal-Width (EW). In the case of the discretization
methods EF and EW, the column name is formed by the name of the method plus, in parentheses, the
value of the adopted parameter k. For each dataset, in order to verify if there is difference with statis-
tical significance between the predictive performances (hF ) of the GMNB classifier when processing
the dataset discretized by HCAIM and another reference method, we used the Wilcoxon statistical test
with the Bonferroni correction due to the multiple comparisons between HCAIM and each reference
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method [Japkowicz and Shah 2011]. This statistical test was performed with a confidence level of
95%. The values in bold indicate the best result obtained for each dataset. In addition, the symbol •
shows that there is a difference with statistical significance between the reference method in question
and HCAIM. Finally, the last line of this table summarizes the result of the statistical test, i.e. for
each reference method, it is shown the number of times that the HCAIM outperformed it presenting
a better predictive performance (hF ) of the classifier GMNB.

The results presented in Table II show that the discretization method proposed in this work
(HCAIM) has provided the largest predictive performance (hF ) to GMNB for 11 of the 17 datasets
used in the experiments (bold values). In addition, the statistical tests show that, for 8 datasets,
HCAIM has outperformed all reference methods used in the comparative experiments. For only 5
datasets (Eisen, Seq, SPO, EC-Interpro and EC-Prints) the HCAIM obtained a statistically signifi-
cant lower performance than some reference method.

Statistical tests also show that when comparing HCAIM with each of the other methods used in the
experiments, it presents a statistically superior performance or at least the same as the other methods
for most of databases evaluated. For example, when compared to Equal-Frequency method with k = 5
(EF (5)), the HCAIM is better for 12 datasets, equivalent in 3 and worse in only 2 datasets.

Finally, summing up the whole comparative evaluation, from Table II, we can observe that of the
total of 136 comparisons, the HCAIM method was shown to be superior in 88 comparisons, equivalent
in 31 and lower in only 17. Therefore, in the first batch of comparative experiments, the statistical
tests confirm the superiority of HCAIM in relation to the other discretization methods used in the
experiments.

Table III depicts the results of the second batch of comparative experiments, where Equal-Frequency
(EF) and Equal-Width (EW) methods were ran using, for each attribute, the same number of intervals
chose by HCAIM. This table shows average hierarchical Precision (hP), average hierarchical Recall
(hR) and average hierarchical F -measure (hF ) (with standard deviation of hF in parentheses) ob-
tained by the GMNB classifier for each dataset discretized by HCAIM, EF and EW. For each dataset,
in order to verify if there is difference with statistical significance between the predictive performances
(hF ) of the GMNB classifier when processing the dataset discretized by HCAIM and another refer-
ence method, we used the Wilcoxon statistical test with the Bonferroni correction due to the multiple
comparisons between HCAIM and each reference method [Japkowicz and Shah 2011]. This statistical
test was performed with a confidence level of 95%. The values in bold indicate the best result obtained
for each dataset. In addition, the symbol • shows that there is a difference with statistical significance
between the reference method in question and HCAIM. Finally, the last line of this table summarizes
the result of the statistical test, i.e. for each reference method, it is shown the number of times that
the HCAIM outperformed it presenting a better predictive performance (hF ) of the classifier GMNB.

Similarly to the results obtained from the first batch of experiments, the statistical test results
presented in Table III show that, for 8 datasets, HCAIM has outperformed all reference methods used
in the comparative experiments. However, now, for only 3 datasets (Seq, EC-Prints, GPCR-Prosite)
the HCAIM obtained a statistically significant lower performance than some reference method. In
addition, for other 5 datasets all discretization methods are statistically equivalent.

In the comparison between HCAIM and each of the reference methods (EF and EW), HCAIM
presents a performance (hF ) statistically superior or equivalent to the other methods for most of
datasets evaluated. When compared to EF method, the HCAIM is better for 8 datasets, equivalent in
8 and worse in only 1 dataset. In the comparison with EW, HCAIM outperformed it in 10 datasets,
was equivalent in 5 and achieved lower performance in only 2 datasets.

Finally, summing up the whole comparative evaluation presented in Table III, we can observe that
of the total of 34 comparisons, the HCAIM method was shown to be superior in 18 comparisons,
equivalent in 13 and lower in only 3. Therefore, in the second batch of comparative experiments, the
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Table III. Mean values of hP, hR and hF obtained by GMNB after discretization of the datasets.

Base
EF

hP/hR/
hF (SD)

EW
hP/hR/
hF (SD)

HCAIM
hP/hR/
hF (SD)

Cellcycle 50,89/19,69 •
/28,39 (2,17)

37,86/15,41 •
/21,90 (1,31)

55,14/22,40
/31,85 (1,69)

Church 17,80/15,14 •
/16,35 (1,32)

16,95/14,82 •
/15,79 (1,37)

20,06/17,41
/18,63 (1,13)

Derisi 21,38/8,38
/12,04 (0,76)

19,10/9,96
/13,09 (0,74)

18,15/9,45
/12,42 (0,82)

Eisen 36,32/13,84 •
/20,04 (1,30)

31,47/13,23 •
/18,63 (1,71)

37,68/14,83
/21,28 (1,43)

Expr 64,96/24,75 •
/35,84 (2,12)

61,87/26,74 •
/37,34 (1,54)

75,28/33,55
/46,41 (1,66)

Gasch1 40,34/15,22 •
/22,10 (1,00)

32,74/15,50 •
/21,04 (1,95)

46,01/18,96
/26,86 (1,16)

Gasch2 33,57/12,61 •
/18,33 (0,80)

27,57/12,96 •
/17,62 (1,60)

39,19/18,92
/25,51 (1,74)

Seq 25,76/13,42
/17,64 (1,48)

26,16/15,57 •
/19,51 (1,35)

25,06/14,17
/18,10 (1,08)

SPO 24,15/8,84
/12,95 (0,97)

21,80/10,21
/13,90 (1,32)

21,23/9,52
/13,14 (1,73)

EC-Interpro 97,01/89,08
/92,87 (0,49)

97,10/89,02
/92,88 (0,70)

96,63/88,85
/92,58 (0,35)

EC-Pfam 96,30/84,76
/90,16 (0,48)

96,58/84,40
/90,08 (0,83)

96,53/84,54
/90,13 (0,61)

EC-Prints 95,91/84,68
/89,94 (0,60)

96,25/85,46 •
/90,53 (0,68)

95,85/84,45
/89,78 (0,70)

EC-Prosite 96,30/86,43
/91,10 (0,47)

96,34/86,04
/90,90 (0,75)

96,32/86,13
/90,94 (0,65)

GPCR-Interpro 90,38/75,93 •
/82,53 (0,99)

90,27/76,26 •
/82,67 (0,56)

91,89/76,90
/83,73 (0,84)

GPCR-Pfam 69,39/60,55
/64,67 (0,99)

70,33/49,47 •
/58,08 (0,69)

74,25/57,15
/64,58 (0,84)

GPCR-Prints 88,43/73,59 •
/80,32 (0,99)

89,52/73,42 •
/80,67 (0,65)

90,81/74,10
/81,61 (0,73)

GPCR-Prosite 74,00/62,81 •
/67,95 (0,66)

75,05/52,18 •
/61,55 (0,73)

76,37/59,07
/66,61 (1,18)

# HCAIM
Wins 8 10

statistical tests confirm the superiority of HCAIM in relation to the other discretization methods used
in the experiments.

5. CONCLUSION

In spite of the importance of discretization methods to preprocess datasets used by classification
techniques, to the best of our knowledge, there are no proposals in the literature of discretization
methods tailored for hierarchical classification datasets that could be used in conjunction with global
hierarchical classifiers.

Hierarchical classification is very important in bioinformatics, specially in gene and protein function
prediction problems, where such functions are often hierarchically organized. Thus, previous work
have already addressed these problems using hierarchical classification approaches. In addition, some
of them have required a preprocessing stage in order to adjust the datasets to classification step.
However, due to the lack of supervised discretization methods for the hierarchical context, works such
as [Merschmann and Freitas 2013] and [Silla Jr and Freitas 2009] have employed unsupervised methods
for data discretization.

Therefore, this work proposed a supervised discretization method for the hierarchical single label
classification context applied to gene and protein function prediction, which are important real world
problems in bioinformatics. The proposal presented here, called HCAIM, corresponds to an adaptation
of the supervised discretization method named CAIM.
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The computational experiments showed that the HCAIMmethod, for most of the datasets evaluated,
allowed the hierarchical classifier GMNB to achieve predictive performance (hierarchical F-measure)
superior to those reached when the datasets were preprocessed by the unsupervised methods Equal-
Width and Equal-Frequency. This result clearly demonstrates the superiority of HCAIM over two
unsupervised discretization methods and confirms the potential of applying the proposed method for
performing the discretization of datasets used in hierarchical classification works.

As a future work we intend to extend and evaluate the method proposed here for the context of
multi label hierarchical classification. In addition, evaluation of this proposal will be conducted using
hierarchical datasets related to other domains and considering different global hierarchical classifiers.
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