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Abstract. Spatial database systems and Geographic Information Systems frequently employ disk-based spatial indices
like the R-tree and the R*-tree to speed up the processing of spatial queries, such as spatial range queries. Commonly,
these indices are originally designed for Hard Disk Drives (HDDs) and thus, they take into account the slow mechanical
access and the cost of search and rotational delay of magnetic disks. On the other hand, flash-based Solid State Drives
(SSDs) have widely been adopted in local data centers and cloud data centers like the Microsoft Azure environment.
Because of intrinsic characteristics of SSDs like the erase-before-update property and the asymmetric costs between reads
and writes, the impact of spatial indexing on SSDs needs to be studied. In this article, we conduct an experimental
evaluation in order to analyze the performance relation of spatial indexing on HDDs and SSDs. For this purpose, we
execute our experiments on a local server equipped with an HDD and an SSD, as well as on virtual machines equipped
with HDDs and SSDs and allocated in the Microsoft Azure environment. As a result, we show experimentally that
spatial indices originally designed for HDDs should be redesigned for SSDs in order to take into account the intrinsic
characteristics of SSDs. This means that a spatial index that showed a good performance on an HDD often did not
show the same good performance on an SSD.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and GIS

Keywords: benchmarking, flash memory, spatial databases, spatial indexing

1. INTRODUCTION

Several advanced applications like agricultural systems, urban planning applications, and public trans-
portation systems make use of geometric or spatial information in order to represent spatial phenom-
ena. Commonly, these applications require specialized systems to manage, store, and retrieve spatial
phenomena. Spatial database systems and Geographic Information Systems (GIS) fulfill these re-
quirements allowing the processing of spatial queries on spatial objects [Güting 1994]. For instance,
a spatial selection that finds all the roads intersecting the Sao Paulo state. Another example is a
spatial range query that returns all the buildings overlapping a given rectangular object, called query
window. Due to the expensive processing of topological predicates (e.g., intersects, overlap), spa-
tial database systems and GIS widely employ spatial indices to speed up the processing of spatial
queries [Gaede and Günther 1998]. Frequently, hierarchical indices like the R-tree [Guttman 1984]
and the R*-tree [Beckmann et al. 1990] are employed.

In general, these indices are designed to be handled in Hard Disk Drives (HDD) and thus, they take
into account the slow mechanical access and the cost of search and rotational delay of magnetic disks.
We term them as disk-based spatial indices. On the other hand, flash-based Solid State Drives (SSDs)
have widely been used in many applications [Kryder and Kim 2009; Mittal and Vetter 2016] because
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of many positive characteristics compared to HDDs, such as (i) smaller size, (ii) lighter weight, (iii)
lower power consumption, (iv) better shock resistance, and (v) faster reads and writes. As a result,
SSDs are being used as the main storage device in local data centers and in cloud data centers, such
as the Azure Premium Storage of the Microsoft Azure environment1.

However, SSDs have intrinsic characteristics [Chen et al. 2009; Jung and Kandemir 2013; Mittal
and Vetter 2016] that may affect the performance of many spatial database applications. The main
intrinsic characteristic is the asymmetric cost between reads and writes where a write requires more
time and power consumption than a read. Another characteristic is the erase-before-update property
where an erase operation is performed in order to update the content of a flash page, leading to an
expensive operation.

Because of the intrinsic characteristics of SSDs, spatial database applications increasingly require
the performance evaluation of disk-based spatial indices on SSDs to analyze if there is a relation
with the well-known performance obtained on HDDs. As a result, we can analyze how similar are the
performance behavior of spatial indices on such devices. There are few approaches [Emrich et al. 2010;
Fevgas and Bozanis 2015] that conduct experimental evaluations of spatial indices on SSDs. There
are also approaches [Wu et al. 2003; Lv et al. 2011; Pawlik and Macyna 2012; Sarwat et al. 2013; Jin
et al. 2015] that propose flash-aware spatial indices by adapting the R-tree in order to deal with the
intrinsic characteristics of SSDs. The performance of these indices is measured through experimental
evaluations. However, the experiments conducted on these approaches face several problems, such as
the lack of an analysis of the performance relation of spatial indexing on HDDs and SSDs, the lack of
focus on the spatial query processing, and the lack of an analysis with respect to the use of different
parameter values of spatial indices on SSDs and HDDs.

To fill these gaps, this article has the following objectives. First, we aim to correlate the performance
results of spatial indices managed on SSDs and HDDs. The goal is to check whether a spatial index
that shows the best results on the HDD also shows the best results on the SSD and vice-versa. For this
purpose, we conduct an extensive experimental evaluation on SSDs and HDDs using a local server and
using virtual machines maintained in the Microsoft Azure environment. Second, we aim to verify the
performance impact of different parameter values in the evaluated spatial indices. For this purpose,
we analyze the performance relation between the used parameter values and the obtained results.
Finally, we aim to analyze if the same set of parameter values that shows a good performance to build
spatial indices also results in good performance to process spatial queries.

This article is organized as follows. Section 2 surveys related work. Section 3 summarizes underlying
concepts from spatial indexing. Section 4 briefly describes intrinsic characteristics of SSDs. Section 5
details our experiments and discusses the obtained results. Section 6 concludes the paper and presents
future work.

2. RELATED WORK

There are few approaches that conduct experimental evaluations of disk-based spatial indices on
SSDs [Emrich et al. 2010; Fevgas and Bozanis 2015]. Further, there also approaches that propose
flash-aware spatial indices based on the R-tree [Wu et al. 2003; Lv et al. 2011; Pawlik and Macyna
2012; Sarwat et al. 2013; Jin et al. 2015]. We classify these approaches according to the following
characteristics: (i) the performance evaluation of spatial indices on HDDs and SSDs, (ii) the variety
of spatial indices used in experiments, (iii) the parameter values considered in the indices, and (iv)
the types of workloads employed in the experiments.

Regarding the first characteristic, almost all the approaches do not evaluate the performance of
spatial indices on HDDs and SSDs. This kind of evaluation is important to study and check if the

1https://azure.microsoft.com
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performance of well-known indices (e.g., the R-tree and the R*-tree) is the same on HDDs and SSDs.
Only Emrich et al. [2010] conduct experiments considering both storage systems, HDDs and SSDs, to
evaluate the performance of the R*-tree in the computation of k-nearest neighbor queries. In contrast
to Emrich et al. [2010], we conduct experiments by taking into account other spatial indices, and other
kinds of workloads.

Regarding the second characteristic, the majority of the approaches [Wu et al. 2003; Lv et al. 2011;
Pawlik and Macyna 2012; Sarwat et al. 2013; Jin et al. 2015] employ the R-tree as a baseline in the
experiments, while the remaining approaches [Emrich et al. 2010; Fevgas and Bozanis 2015] employ
the R*-tree as a baseline. However, it is important to consider both the R-tree and the R*-tree in the
same experiment because of their good performance reported in the literature [Gaede and Günther
1998]. In addition, many approaches [Wu et al. 2003; Lv et al. 2011; Pawlik and Macyna 2012; Sarwat
et al. 2013; Fevgas and Bozanis 2015; Jin et al. 2015] also propose flash-aware spatial indices and thus,
they conduct experimental evaluations to measure the performance of the proposed indices. However,
the lack of studies about the performance of well-known spatial indices on SSDs can hide findings that
could improve the performance of the proposed flash-aware spatial indices.

Regarding the third characteristic, the main parameter analyzed in the approaches is the buffer size
employed in the main memory. However, parameterization plays an important role in spatial indexing
and the variation of specific parameter values of a spatial index can impact on its performance (see
Section 3). For instance, a well-known parameter used on hierarchical structures is the page (node)
size, which is ignored in the existing experiments. Thus, there is a lack of analysis of the impact of
the page size used in a spatial index handled on HDDs and SSDs.

Regarding the fourth characteristic, the existing experiments only focus on insertion and deletion
operations since random writes are expensive operations on SSDs. However, it is also important to
verify the performance of spatial queries since this is a very common operation in spatial database
systems and GIS. Unfortunately, there is a lack of studies for verifying the impact of the spatial
selectivity on the spatial query processing using indices stored on SSDs.

As a conclusion, we can note that there is a lack of experimental evaluations that understand
and correlate the performance of spatial indices managed on HDDs and SSDs. In this article, we
conduct experiments considering different spatial indices with different parameter values on both
storage systems. For this purpose, we consider disk-based spatial indices (i.e., the R-tree and the
R*-tree) and flash-aware spatial indices, which are summarized in the next section.

We extend our previous work in Carniel et al. [2016b] by performing experiments in virtual machines
equipped with HDDs and SSDs allocated in the Microsoft Azure environment, which is a cloud data
center. Further, we present details of our experimental setup, as well as discussions regarding newly
obtained results. We also compare the performance of the spatial indices managed on the different
environments in order to provide guidelines for spatial database applications.

3. SPATIAL INDEXING

In general, hierarchical structures are employed to index spatial objects. Due to the complexity to
store and handle complex shapes, spatial objects are approximated to Minimum Bounding Rectangles
(MBR). The MBR of a spatial object is a box that minimally encloses all the points of the spatial
object. Since MBRs are employed to represent spatial objects, two steps are required in order to
process spatial queries [Gaede and Günther 1998]: filter step, and refinement step. The filter step
employs a spatial index to discard portions of data where the answer of a spatial query cannot be
found and returns the possible candidates that answer the spatial query. Then, the refinement step
checks whether each object really belongs to the final answer or not. Thus, this step is a time-expensive
operation since spatial objects are accessed from the storage device and complex algorithms from the
geometry computational are employed to compute topological predicates [Gaede and Günther 1998].
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The R-tree [Guttman 1984] is a common hierarchical spatial index used in spatial database systems
and GIS. It is composed of internal and leaf nodes. A leaf node comprises entries in the format
(mbro, po), where mbro refers to the MBR of the spatial object o and po is a pointer that guarantees
the direct access to o. An internal node comprises entries in the format (mbr c, pc), where mbr c is the
MBR that encompasses all the entries of the child node c and pc is a pointer to the child node c. The
minimum and maximum capacity of internal and leaf nodes are parameters determined respectively
by m and M such that m ≤ M/2. If the maximum capacity of a node is achieved by an insertion,
a split operation is performed. There are different split algorithms with different complexities and
results, such as the linear split and the quadratic split.

The R*-tree [Beckmann et al. 1990] is a well-known variant of the R-tree that applies other aspects
to index spatial objects. For instance, the utilization of overlapping areas among the entries in internal
nodes, the redistribution of entries of overflowed nodes to maximize the storage utilization, and the
utilization of margin of nodes. Hence, the R*-tree modifies the insertion algorithm of the R-tree in
order to take into account these aspects. Further, it employs another split algorithm and applies a
reinsertion policy to decrease the number of split operations.

With the increasing use of SSDs in applications, flash-aware spatial indices have been proposed in
the literature. The RFTL [Wu et al. 2003], the ARFTL [Pawlik and Macyna 2012], the LCR-tree [Lv
et al. 2011], and the FOR-tree [Jin et al. 2015] are straightforward adaptations of the R-tree. A generic
framework, called FAST [Sarwat et al. 2013], is proposed to convert a disk-based spatial index into
a flash-aware spatial index. FAST does not change the index structure but only changes the way in
which the nodes are written to the SSD. Thus, we are able to define FAST-based spatial indices. For
instance, the FAST R-tree and the FAST R*-tree are based on the R-tree and R*-tree, respectively.

Despite the particular characteristic of each flash-aware spatial index, they often make use of a
buffer in the main memory that stores the most recent modifications of nodes instead of applying
directly the modifications to the SSD. The goal is to avoid random writes, such as those that occur
in splits. A flushing operation, composed of sequential writes, is performed when the buffer is full.
While there are indices [Wu et al. 2003; Lv et al. 2011; Pawlik and Macyna 2012] that flush all the
modifications leading to an expensive flushing operation, FAST and the FOR-tree employ a flushing
policy that chooses a set of nodes with modifications to be flushed. This set is called flushing unit.

Parameterization plays an important role in spatial indexing [Gaede and Günther 1998]. Examples
of typical parameters are the page (node) size and the minimum and the maximum number of entries
of leaf and internal nodes. In addition, each index may include specific parameters according to its
design. For instance, the reinsertion percentage of the R*-tree. Moreover, flash-aware spatial indices
introduced several new parameters, such as the buffer and flushing unit sizes, which impact directly
on the performance of flushing operations. Hence, there is a significant performance impact if different
parameter values are used in a spatial index under different storage systems.

4. FLASH-BASED SOLID STATE DRIVES

Flash-based Solid State Drives (SSDs) have been very popular in many applications [Kryder and
Kim 2009; Mittal and Vetter 2016]. Table I shows a comparison of the HDD and SSD used in our
experiments in the local server (Section 5). SSDs have intrinsic characteristics that introduce several
implications [Chen et al. 2009; Jung and Kandemir 2013] for the management of data in such devices.

SSDs store data in a block-oriented model, which means that a fixed number of flash pages com-
poses a flash block. Commonly, the flash page size is 4KB and the flash block size is 256KB [Chen
et al. 2009; Mittal and Vetter 2016]. SSDs provide the following operations: erase, read, and write
(program) [Chen et al. 2009; Jung and Kandemir 2013]. Erase is a block level operation that changes
the bits from 0 to 1 of all pages contained in the block and thus, this is the most expensive operation.
Read and write are page level operations with asymmetric costs. A read requires much less time and
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Table I. Comparison of the HDD2 and the SSD3 used in the experiments conducted in the local server.

4KB Random Transfers4 Power Consumption5 Endurance6Read Write Read Write

HDD 0.185MB/s 0.441MB/s 4.1W 4.1W > 1015

SSD 285.156MB/s 109.375MB/s 1.423W 2.052W 104 − 105

power consumption than a write (see Table I). A write is only able to change the bits from 1 to 0 in
an erased block. Hence, to write in a previously written block (i.e., update), an erase-before-update
operation is performed leading to a time-consuming operation. On the other hand, a write operation
in a previously erased block is a lower latency operation and is denominated as a sequential write. An-
other important characteristic of SSDs is their lower endurance than HDDs (see Table I). Endurance
refers to the maximum number of writes and erases in a block before its inability to save new data.

A Flash Translation Layer (FTL) [Chung et al. 2009] is employed to avoid erase-before-update
operations, to facilitate the integration of SSDs with current systems, and to improve the endurance
of SSDs. For this purpose, FTL provides an interface that allows operating systems to use SSDs
as a usual storage device and only enables reads and writes for application layers. Further, FTL
maps physical page addresses of the SSD into logical page addresses, which are effectively used by
application layers. A logical page is marked as either free, valid, or invalid. A free logical page is
a page ready to store data. A valid logical page contains data previously written. A logical page is
marked as invalid if a write is performed on a valid logical page; its new content is stored in another
free logical page. This operation is termed as an out-of-place update and avoids an erase-before-update
operation. A garbage collection is performed when space is required and there is a great number of
invalid pages. This operation selects a set of blocks to apply erase operations causing erase-before-
update operations. Hence, this is the most expensive operation performed by FTL. The algorithms of
the garbage collection and out-of-place update also consider a wear leveling in order to improve the
endurance of flash blocks. For a survey of FTLs, see [Chung et al. 2009].

5. PERFORMANCE EVALUATION

We conduct an experimental evaluation to analyze the performance of spatial indices on HDDs and
SSDs. Section 5.1 details the experimental setup. The obtained results related to the spatial index
construction and spatial query processing are discussed in Sections 5.2 and 5.3, respectively.

5.1 Experimental Setup

We used a real dataset extracted from the OpenStreetMap7, which consisted of 534,926 complex
regions possibly with holes. This dataset represents the buildings of Brazil, such as hospitals, schools,
universities, houses, stadiums, and so on. We used the PostgreSQL database management system
with the PostGIS extension to store this dataset in a relational table.

In order to conduct our experiments, we have extended the first version of FESTIval [Carniel
et al. 2016a] by adding new functionalities like the creation of user-defined workloads. FESTIval8 is
an open-source PostgreSQL extension that enables the benchmarking of disk-based and flash-aware

2https://support.wdc.com/product.aspx?ID=608&lang=en
3https://www.kingston.com/us/ssd/consumer/sv300s3
4Measured by Iometer (http://www.iometer.org/).
5According to the manufactures23.
6According to [Mittal and Vetter 2016].
7http://www.openstreetmap.org/
8http://gbd.dc.ufscar.br/festival/
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Table II. Configurations employed in the experiments.

Configuration Name Spatial Index Specific Parameters

Linear R-tree R-tree Split: Linear
Quadratic R-tree R-tree Split: Quadratic
R*-tree 20% R*-tree RP: 20%
R*-tree 30% R*-tree RP: 30%
R*-tree 40% R*-tree RP: 40%
FAST Linear R-tree FAST R-tree Split: Linear; FP: FAST*
FAST Quadratic R-tree FAST R-tree Split: Quadratic; FP: FAST*
FAST R*-tree 20% FAST R*-tree RP: 20%; FP: FAST*
FAST R*-tree 30% FAST R*-tree RP: 30%; FP: FAST*
FAST R*-tree 40% FAST R*-tree RP: 40%; FP: FAST*

Table III. Generic parameters used in the experiments.

Page Size Minimum Occupancy Maximum Occupancy

2KB 28 56
4KB 57 113
8KB 114 227
16KB 228 455
32KB 455 910
64KB 910 1,820

spatial indices with different parameter values under different storage systems by issuing workloads
in a unique environment. We used FESTIval to compare the following disk-based spatial indices: the
R-tree and the R*-tree. Further, we evaluate the following flash-aware spatial indices: the FAST R-
tree and the FAST R*-tree, which are FAST-based spatial indices (Section 3). Since we have updated
the version of the FESTIval used in our previous work [Carniel et al. 2016b], in this article we have
re-executed all the experiments.

FESTIval also enables the configuration of a spatial index by using specific and generic parameter
values. Specific parameters determine the configuration of a specific spatial index only. For the R-
tree, we varied its split algorithm by considering the linear and quadratic splits. For the R*-tree, we
varied the reinsertion percentage (RP) since it impacts on the number of writes. Further, based on
the recommendations for the R*-tree [Beckmann et al. 1990], we considered the close reinsert policy.
For the FAST-based spatial indices, we considered the FAST* flushing policy (FP) [Sarwat et al.
2013]. As a result, we employed the configurations depicted in Table II. We also studied the effect
of the variation of the buffer and the flushing unit size. For all FAST-based indices, we executed
our experiments considering the following buffer sizes: 128KB, 256KB, and 512KB. We have reported
results only for the buffer equal to 512KB since it showed similar performance behavior compared to
the other buffer sizes. In addition, we varied the flushing unit size from 1 to 5, which contributed to
analyzing the impact of this parameter in the flash-aware spatial indexing.

We also varied generic parameters, which can be applied for any spatial index of FESTIval. For
instance, the size in bytes of a node (i.e., page size), and the minimum and the maximum number
of entries of a node. Further, we considered the DIRECT I/O to avoid operational system caching
in reads and writes. Table III shows the page sizes, with its minimum and maximum occupancy,
employed for all the configurations in Table II.

We executed two workloads defined as follows. The first workload focused on the index construction
and thus, we collected the elapsed time in seconds for creating a spatial index (see Section 5.2). The
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(a) (b) (c)

Fig. 1. Query windows employed in the processing of IRQs: query windows with 0.1% (a), query windows with 0.5%
(b), and query windows with 1% (c).

creation of a spatial index was performed by inserting element by element according to the original
insert algorithm of the respective index.

The second workload focused on the spatial query processing (see Section 5.3). We executed in-
tersection range queries (IRQ) [Gaede and Günther 1998] because of its wide utilization in many
applications. This kind of query returns from a dataset D, a set of spatial objects R that intersects
a given rectangular-shaped query window QW , i.e., R = {o|o ∈ D ∧ intersects(o,QW ) = true}.
We synthetically generated three sets of query windows, which are depicted in Figure 1. Each set
was composed of 100 query windows, which had a x% of the area of the total extent of Brazil (i.e.,
the MBR of Brazil). The first set had 0.1% (Figure 1a), the second set had 0.5% (Figure 1b), and
the third set had 1% (Figure 1c). Considering selectivity as the proportion between the number of
returned elements in the query and the number of total elements in the dataset, these query windows
composed IRQs with low, medium, and high selectivity, respectively.

We collected the total elapsed time in seconds taken to execute the 100 IRQs of each set of query
windows. The total elapsed time was calculated as follows. For a specific set of query windows, we
executed 10 times each IRQ, collected the average elapsed time of its execution, and then calculated the
sum of the average elapsed times of the 100 IRQs. We flushed the system cache after each execution.
Further, we consider the elapsed time with respect to the index time.

The experiments were conducted on two different hardware environments. The first environment
was a local server equipped with an Intelr CoreTM i7-4770 with a frequency of 3.40GHz and 32GB
of main memory. For the experiments with HDD, we used a 2TB Western Digital with 7200RPM,
while for the experiments with SSD we used a 480GB Kingston V300. Hence, this environment gives
us experiment results under controlled conditions since we executed the workloads in a local server to
avoid network latency.

The second environment was composed of two virtual machines maintained in the Microsoft Azure in
order to analyze the efficiency of spatial indices in cloud servers, which are used by many applications.
The first virtual machine had the Standard A6 size (4 cores, 28GB of main memory) with an HDD of
500GB. The second virtual machine had the Standard DS12 v2 size (4 cores, 28GB of main memory)
with an SSD of 500GB. These two virtual machines and their storage devices were allocated in the
South Central US. This environment is not as much controlled as the first environment because of
the characteristics of the Microsoft Azure, such as the lack of guarantee that the storage device is
in the same physical place than the central processing unit. However, this environment gives us the
chance to analyze if the spatial indexing on HDDs and SSDs employed in such virtual machines have
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a performance behavior similar to the found in a controlled environment. For instance, we can find
out if a spatial index that shows a good performance on the SSD in the first environment also shows a
good performance on a virtual machine on a cloud data center with SSD. This would help applications
hosted in the cloud to make use of the better spatial index.

The software employed in all the environments are Ubuntu Server 14.04 64 bits, PostgreSQL 9.5,
and PostGIS 2.2.0.

5.2 Spatial Index Construction

Here, we detail the obtained results for creating spatial indices. Sections 5.2.1 and 5.2.2 discuss
the results for the local server and for the virtual machines of the Microsoft Azure, respectively.
Correlations are made in Section 5.2.3.

5.2.1 Execution on the Local Server. Figure 2 depicts the elapsed time for creating disk-based
spatial indices on the HDD and SSD. The page size equal to 4KB gathered the best performance
results for all spatial indices on both storage systems, indicating that this page size should be used for
creating spatial indices. Considering this page size, the SSD showed better performance results than
the HDD. The SSD showed performance gains between 4% and 16% over the HDD. A performance gain
is a percentage that shows how much one configuration is more efficient than another configuration.
On the other hand, for the page sizes equal to 16KB, 32KB, and 64KB, we obtained best performance
results by using the HDD. For these page sizes, the SSD introduced a performance loss ranging from
6% to 38% over the HDD. The main reason for this performance degradation is due to the interleaved
writes and reads that the index construction performs on the storage device. Thus, workloads that
mix many writes and reads tend to degenerate the performance of SSDs, such as discussed by Lee and
Moon [2007] and Chen et al. [2009]. In addition, the lack of a special treatment for random writes
was also determinant since writes are the most expensive operations of SSDs.

The results demonstrated that it is important to take into account the intrinsic characteristics of
SSDs to achieve good performance in these memories. Thus, the redesign of spatial indices originally
designed for HDDs is needed, such as the framework provided by FAST that transforms a disk-based
spatial index into a flash-aware spatial index.

Figure 3 shows the performance results for constructing spatial indices by using FAST. In general,
FAST-based spatial indices improved the performance of their counterparts on both storage systems.
For instance, the FAST Linear R-tree (Figure 3) showed lower elapsed times than the Linear R-tree
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Fig. 2. Performance results for creating disk-based spatial indices on the local server.
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Fig. 3. Performance results for creating FAST-based spatial indices on the local server.

(Figure 2) on both storage systems. The FAST Linear R-tree imposed performance gains ranging
from 22% to 40% on the SSD. Although FAST is designed for SSDs, it also showed performance gains
varying from 34% to 46% on the HDD.

An interesting fact was that the performance behavior for the construction of the FAST-based
indices on the SSD was different from the performance behavior obtained in the HDD. We emphasize
two main differences. The first difference was that the majority of the spatial indices showed best
performance results on the HDD by using the page size equal to 4KB and the flushing unit size equal
to 5. On the other hand, all the spatial indices showed the best performance results on the SSD by
employing the page size equal to 4KB and the flushing unit equal to 1. The second difference was
that with the increase of page and flushing unit sizes in the index construction on the SSD, the time
processing also increased. This was even much slower than the construction performed on the HDD.
For instance, for the page size equal to 64KB, the results demonstrated that the HDD was faster than
the SSD since big writes turned out problematic on the SSD.

5.2.2 Execution on the Microsoft Azure. Figure 4 depicts the elapsed time for creating disk-based
spatial indices on the virtual machines of the Microsoft Azure. Note that we use different scales in
the graphics to better compare the performance results. Clearly, the construction of spatial indices on
the virtual machine with SSD required much less processing time than the construction of the same
spatial indices on the virtual machine with HDD. The main reason is that the Microsoft Azure offers
a special attention for the use of SSDs, denominated as Azure Premium Storage9. It has a maximum
throughput of 200MB/s and maximum of 5,000 input/output operations per second (IOPS), while
a common storage device (i.e., HDD) has a maximum throughput of 60MB/s and a maximum of
500IOPS. It contributed to obtaining performance gains varying from 29% to 67% for constructing
spatial indices on the virtual machine with SSD. In general, the page size equal to 8KB showed the
best elapsed times for both the virtual machines.

9https://docs.microsoft.com/en-us/azure/storage/storage-about-disks-and-vhds-linux
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Fig. 4. Performance results for creating disk-based spatial indices on the virtual machines of the Microsoft Azure.
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Fig. 5. Performance results for creating FAST-based spatial indices on the virtual machines of the Microsoft Azure.

Although the expressive performance gains of the SSD over the HDD, these gains were yet improved
when constructing spatial indices by using FAST. Figure 5 depicts the performance results obtained to
construct FAST-based spatial indices on the virtual machines of the Microsoft Azure. The performance
gains imposed by FAST ranged from 19% to 72% for constructing indices on the HDD. These gains
were increased for constructing indices on the SSD, varying from 82% to 93%. It shows that FAST
improved the performance of this kind of workload on the virtual machine using SSD because it
takes into account intrinsic characteristics of these storage devices. Thus, we note that these intrinsic
characteristics are still present in the cloud data center, such as the Microsoft Azure environment.
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Fig. 6. Performance results to process spatial queries on the local server, considering IRQs with 0.1%.

5.2.3 Comparing the Obtained Results. The main difference among the results was that the disk-
based spatial indices executed on the local server with HDD showed, in general, better performance
results than the execution on the local server with SSD. This performance behavior did not happen in
the virtual machines of the Microsoft Azure. The main reason is that this cloud environment performs
a special treatment for the SSDs, where only specific virtual machines are able to use this kind of
storage system.

On the other hand, we can enumerate the following similarities among the results. First, since
FAST takes into account the intrinsic characteristics of SSDs, it showed the best performance results
for the environments using SSDs. It also improved the performance results for the environments using
HDDs due to the use of a buffer in the main memory. Second, in general, the page size equal to
4KB gathered the best performance results for the FAST-based spatial indices on the SSD and HDD.
Third, the use of page sizes greater than 4KB required an increasing elapsed time to construct a
FAST-based index in the SSD, as the page size and flushing unit size also increases. Finally, in both
the environments, the FAST Linear R-tree showed the fastest elapsed times, while the Linear R-tree
was the best configuration among the disk-based spatial indices.

5.3 Spatial Query Processing

This section details the obtained results for spatial query processing on the local server (Section 5.3.1)
and on the virtual machines of the Microsoft Azure (Section 5.3.2). Finally, these results are correlated
in Section 5.3.3.

5.3.1 Execution on the Local Server. Figures 6, 7, and 8 depict the obtained results for processing
spatial queries by employing IRQs with 0.1%, 0.5%, and 1%, respectively. In these figures, we use a
different scale to report the results for the SSD. Further, we considered only configurations based on
the R-tree and the R*-tree (Table II) since FAST does not change the structure of a spatial index
(e.g., the Linear R-tree using the page size equal to 4KB is the same as the FAST Linear R-tree using
the page size equal to 4KB). Thus, we are able to compare the performance behavior of the underlying
index that can organize spatially the data in different forms.

Clearly, the performance of spatial query processing on the SSD overcame the HDD in all experi-
ments because of its faster random reads. Considering all the page sizes, the performance gains of the
SSD varied from 89% to 96% for the query windows with 0.1%. Gains ranging from 54% to 86% and
from 51% to 85% were obtained for the query windows with 0.5% and 1%, respectively. The perfor-
mance gains were decreasing as the selectivity increased because of the number of elements returned
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Fig. 7. Performance results to process spatial queries on the local server, considering IRQs with 0.5%.
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Fig. 8. Performance results to process spatial queries on the local server, considering IRQs with 1%.

by the spatial queries. That is, the performance of the SSD benefited more spatial queries with low
selectivity than the other spatial queries because of the number reads made on the storage device.

With respect to the execution on the HDD, almost all the configurations improved their performance
by increasing page sizes. The reason is that if a spatial index employs large page sizes, more elements
are processed in the main memory with only a few reads from the storage device. For the query
windows with 0.1% (Figure 6), the R*-tree 30% using the page size equal to 64KB provided the best
results. For the IRQs with medium and high selectivity (Figures 7 and 8), the best configuration was
the R*-tree 40% using the page size equal to 64KB. The reason is that these queries returned more
elements than the spatial queries using the other query windows. Since the R*-tree 40% improved
the storage utilization and reduced the number of nodes, fewer accesses to the disk were required,
improving the elapsed time.

With respect to the execution on the SSD, the performance behavior was slightly different than the
HDD. For all IRQs, we obtained the best results by using the R*-tree 30% with the page size equal to
32KB. For the majority of the configurations, the use of the page size equal to 64KB deteriorated the
performance, if compared to the use of the 32KB. We observed this behavior here because the SSD
has a poor performance to retrieve large node sizes, thus degenerating the performance of the reads.
The results of this experiment demonstrated that the spatial organization for an efficient spatial query
processing on SSDs tends to be different.
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Fig. 9. Performance results to process spatial queries on the virtual machines of the Microsoft Azure, considering IRQs
with 0.1%.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

e
co

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

0.00

0.50

1.00

1.50

2.00

2.50

2KB 4KB 8KB 16KB 32KB 64KB

El
ap

se
d

 T
im

e 
(s

e
co

n
d

s)

Page Size

Linear R-tree Quadratic R-tree R*-tree 20%

R*-tree 30% R*-tree 40%

(performed on the virtual machine with HDD) (performed on the virtual machine with SSD)

Fig. 10. Performance results to process spatial queries on the virtual machines of the Microsoft Azure, considering IRQs
with 0.5%.

5.3.2 Execution on the Microsoft Azure. Figures 9, 10, and 11 show the obtained results for pro-
cessing spatial queries on the virtual machines of the Microsoft Azure. As in other figures, we used a
different scale to provide a better comparison of the results. Further, we considered only configurations
based on the R-tree and the R*-tree (Table II).

For the majority of the cases, the virtual machine equipped with the SSD showed better perfor-
mance results to process spatial queries. Considering the query windows with 0.1% (Figure 9), the
performance gains ranged from 3% to 72%. For both virtual machines, the R*-tree 30% using the
page size equal to 32KB showed the fastest elapsed time to process the spatial queries.

On the other hand, for the page sizes equal to 32KB and 64KB, the virtual machine with the
HDD overcame the virtual machine with the SSD to process the query windows with 0.5% and 1%
(Figures 10 and 11). The performance loss of the SSD is due to the great size of the nodes to be
processed by the virtual machine, which may have its storage device in a different location from the
processing unit. Smaller page sizes improved the performance.

For the majority of the indices, the page size equal to 16KB showed the best performance results
in the virtual machine with SSD. Considering this page size, gains ranging from 23% to 33% were
obtained for the query windows with 0.5% and gains varying from 4% to 20% were obtained for the
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Fig. 11. Performance results to process spatial queries on the virtual machines of the Microsoft Azure, considering IRQs
with 1%.

query windows with 1%. For the query windows with 0.5%, the R*-tree 30% was the best configuration
in both virtual machines, while the R*-tree 40% was the best configuration for the query windows
with 1%.

5.3.3 Comparing the Obtained Results. For the local server, the experiments showed that the SSD
always guaranteed the best performance results. On the other hand, we obtained a different behavior
in the virtual machines of the Microsoft Azure. The main difference was in the use of large page
sizes (i.e., 32KB and 64KB), where the HDD guaranteed the best performance results to process
query windows with medium and high selectivity because of the peculiarity of the cloud environment.
However, this behavior disappeared for smaller page sizes.

On the other hand, a common behavior was the benefit of using large pages in the HDD to process
the spatial queries. In addition, the R*-tree 30% showed the best performance results for the HDD
and SSDs for the majority of the spatial queries.

6. CONCLUSIONS AND FUTURE WORK

In this article, we conducted an extensive experimental evaluation to study the performance of spatial
indices on HDDs and SSDs under a local server and a cloud server. We considered the disk-based
spatial indices R-tree and R*-tree because of their positive characteristics well-known in the literature.
We also employed FAST in order to transform the disk-based spatial indices into flash-aware spatial
indices. By varying several parameters, we were able to analyze at least 210 distinct configurations of
spatial indices in our experiments.

We empirically evaluated spatial indices under two different workloads: spatial index construction
and spatial query processing. In the first workload, our experiments showed that the direct use of
disk-based spatial indices on SSDs did not guarantee good performance results. In the local server, the
use of the HDD showed better elapsed times to build the majority of the disk-based spatial indices,
if compared to the SSD. This means that to efficiently build spatial indices on the SSD, the design of
the spatial indices should consider the intrinsic characteristics of SSDs, such as the poor performance
of random writes. Based on that, the experiments showed that FAST-based spatial indices improved
the elapsed time for building spatial indices on SSDs and even on HDDs since FAST uses a buffer in
the main memory.

On both the environments considered in this article, our experiments showed that the FAST R*-
tree with page sizes varying from 4KB to 16KB did not require much time for creating the indices
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and provided a good performance in the spatial query processing. In special, the page size equal to
16KB guaranteed better performance on spatial queries with high selectivity. Regarding the cloud
server, we highlight the following two situations. First, the Microsoft Azure offers a special treatment
for virtual machines equipped with SSDs, resulting in a better maximum throughput and IOPS
compared to virtual machines equipped with conventional disks. Thus, our experiments showed the
best performance results on the virtual machine with SSD, in the most of the cases. Second, we
can improve the performance of spatial indices stored on virtual machines with SSDs by taking into
account the intrinsic characteristics of these storage devices. The reason is that the FAST-based
spatial indices showed expressive performance gains in this environment. Therefore, our experiments
showed that flash-aware spatial indices often improve the performance of spatial indexing on SSDs,
independently of the running environment, compared to the direct use of disk-based spatial indices
without any additional treatment.

Future work will consider new workloads by including insertions, deletions, and updates of spa-
tial objects in order to analyze the performance behavior for maintaining spatial indices. We will
also extend the experiments by considering other spatial indices, like the Hilbert R-tree [Kamel and
Faloutsos 1994]. Finally, we aim to propose a new flash-aware spatial index that takes into account
the findings of this article.
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