ALOCS: An Allocation-Aware Key-Value Repository
Response to Reviewer Comments

We thank the reviewers for their feedback and suggestions. We have made the utmost effort to
carefully incorporate most of the feedback in the short time given for reviewing the article. We think
the article has improved substantially as a result of these changes. All substantial changes made to
the article have been highlighted with red font color. In this letter, we discuss the changes made
and respond to the specific revision items listed in the reviews. As an overall summary, we made
three major changes to the article: (1) The focus of the article has been changed from scalability to
the ability to control data placement; this is in fact the major contribution of the proposed system:;
(2) A reference to the SBBD conference paper and list of differences between the submissions have
been included; (3) A discussion on the role ALOCS can play in a layered DBMS architecture has
been added; besides providing a better contextualization for the system, it helped in pinpointing the
differences between ALOCS and related works, such as Autoplacer.

1. REVIEWER A

Comment 1: The paper describes ALOCS, a key-value storage system that is allocation aware. This
is an extended version of a full paper published in SBBD 2016. The original paper is not even cited
in this JIDM submission, and thus there is no clear statement of what the differences between these
two submissions are.

Response: We have included a reference to the SBBD 2016 paper, and listed the differences. The
new version highlights the distinctive features proposed by ALOCS: (1) a data model that supports
access to individual key-value pairs, while grouping them into buckets in order to reduce inter-server
communication; (1) caching of buckets; and (3) a modular design. To this end, we have included
the interface specification of all modules that compose the system, as well as examples to show the
flexibility of the proposed storage model, and a new experiment to determine the effectiveness of
our design goals. Moreover, we extended the article with: (1) a more detailed contextualization of
the functionality ALOCS can provide in the physical layer of a DBMS; (2) extended the related work
discussion; (3) presented a more detailed discussion on the importance of a standard interface between
the modules in order to obtain “pluggable” components.

Comment 2: In my opinion, this is not enough to justify a new submission. What I would like to
see in this paper is a clear comparison of ALOCS with existing storage systems. For instance, what
would figure 9 look like for Autoplacer and Scalaris? This would give robustness to the paper, since
you would not be only comparing different configurations of ALOCS. The current experiments of the
paper shows benefits of the allocation schema, but also shows that there are overheads. There is no
clue on what is the performance of related systems, and so no clue on the benefit that it brings to
applications in practice. Also, related work should compare ALOCS with Autoplacer. What are the
advantages of ALOCS when compared to Autoplacer?

Response: A more detailed comparison of ALOCS with Autoplacer has been added in the related
work section. Although we did not have enough time to run new experiments, we included a discussion
at the end of Experiment 3, highlighting the differences of accessing key-value pairs using ALOCS and
a DHT such as Scalaris.

Comment 3: In the experiments, you mention that using an odd number of servers is better “to
guarantee the majority of the quorum”. However, the concept of quorum was not explained in the
paper. Where is it used? Why?

Response: A paragraph in Experiment 4 has been added to present the concept of quorum and
justify the choice of odd number of servers.



2 . P.A. Bungama, W. Oliveira, F.R.C. Sousa, and C.S. Hara

Comment 4: The last paragraph of the conclusion mentions the Metamodel module. What is this?
Response: We apologize for the mistake. We meant “metadata” module.

Comment 5: The paper also needs a careful English revision. There are several grammar problems
along the text, and also words that are being used wrongly.

Response: The entire text has been revised to correct the mistakes.

2. REVIEWER E

Comment 6: Este artigo traz uma proposta de arquitetura de persisténcia de dados distribuida com
foco no controle de localidade. De maneira bem argumentada pelos autores, este é um problema
que ainda nao conta com boas solugoes, quando buscamos os trabalhos da literatura e ferramentas
disponiveis. O artigo é bem escrito de maneira geral mas, mesmo para ndo "native english speakers",
nota-se que ha bastante margem para melhorias. Nada que comprometa a leitura do texto, com boa
organizagao e clareza na maior parte do tempo.

Response: O artigo foi revisado completamente. Pedimos desculpas pelos erros.

Comment 7: Apesar da énfase em localidade, um dos assuntos mais discutidos e que motiva a
proposta do trabalho envolve escalabilidade. De fato, a ideia dos buckets de pares chave-valor para
dados usualmente acessados em conjunto € interessante e, quase 6bvia. E estd na base da ideia da
possivel escalabilidade. Mas aqui me parece que o artigo peca bastante em termos de discussao da
solugao. Nao somente acaba se limitando as situagoes onde a clusterizagao é possivel com grande grau
de independéncia como também a atribuicao da responsabilidade da politica de fragmentagdao mais
alocacao fisica ficar com o desenvolvedor da aplicacdo pode comprometer bastante os resultados.

Response: O foco do artigo foi mudado para dar énfase a questao da localidade ao invés da escal-
abilidade. Além disso, o introdugao coloca em evidéncia o objetivo do sistema proposto, mostrando
que componentes de particionamento e politicas de alocacao fisica sdo ortogonais a infra-estrutura de
armazenamento.

Comment 8: Em particular, clusterizar é um problema por si s6 complicado e computacionalmente
complexo. Os exemplos simples mencionados pelos autores nem sempre estao presentes na pratica.
No caso de bancos de dados em grafos, por exemplo, a distribuicdo dos nés em clusters nem sempre é
trivial, inclusive quando arcos relacionam nés de clusters distintos. No caso de bancos relacionais, o
livro de Ozsu e Valduriez discute bem o problema de otimizagao relacionado a modelos de fragmentagao
e, sobretudo, alocagao fisica.

Avaliando o artigo pontualmente no que diz respeito a proposta de acesso via localidade, de fato,
nao ha duavida de que se trata de uma solugao bem planejada e pensada pelos autores. O trabalho
de implementagao, mesmo descrito de maneira sucinta no artigo, convence o leitor de que é robusto o
suficiente para permitir a bateria de testes inicialmente proposta. As escolhas de tecnologias parecem
corretas, mas mesmo assim sente-se falta de discussao sobre alternativas e argumentagao melhor para
os produtos adotados. A ideia de flexibilidade na hierarquia é muito boa e valoriza a contribuigao
trazida no artigo.

Response: De fato os problemas de fragmentagao e alocagao de dados sao bastante complexos e ha
um grande ntimero de soluc¢oes propostas. O ALOCS foi proposto para dar suporte & implementagao
destas técnicas. A escolha das ferramentas utilizadas na implementacao foi justificada no artigo.

Comment 9: Acredito também que faltou maior detalhamento e, principalmente, motivagao para
cada uma das fungoes e operadores propostos para os 3 modulos. Simplesmente listar obriga o leitor
a ficar pensando nas situagoes, utilidade e completeza.

Response: O detalhamento e justificativa das fungdes propostas foram adicionadas no artigo.



JIDM - Journal of Information and Data Management . 3

Comment 10: No que diz respeito aos testes experimentais, me parecem que sao bem simples e
iniciais. De novo, com relagao a localidade, tudo certo. Mas nao ha nada com respeito & escalabilidade,
aspecto fundamental para a proposta de arquitetura distribuida.

Response: O foco do artigo foi alterado para a questao do controle de localidade. Devido a restrigoes
de tempo para preparar a nova versao, nao foi possivel a realizagao de novos experimentos. No
entanto, a analise dos experimentos foi estendida, justificando as escolhas e comparando com possiveis
alternativas.

Comment 11: Me parece particularmente estranho ler um trecho do trabalho onde os autores men-
cionam que o modulo de persisténcia pode herdar da ferramenta Ceph algumas de suas propriedades,
como escalabilidade, performance e alta disponibilidade. Idem depois quanto & Zookeeper. Nao faz
sentido isso pois sao adjetivos que precisam ser demonstrados e qualificados. Insisto: o tema de escala-
bilidade, mesmo fundamental no artigo, acaba sendo pouco explorado. O leitor se permite "imaginar"
que é possivel mas sem mais discussoes ou explicacoes por parte dos autores.

Response: Concordamos com o argumento do revisor. De fato algumas caracteristicas do sistema
desenvolvido nao sao decorrentes do modelo proposto, mas das ferramentas sobre as quais ele foi
implementado. Como o objetivo do ALOCS foi incorporar conceitos aos repositérios chave-valor
(buckets e diretorios) que permitam o controle de localidade, o artigo foi alterado de acordo. A
idéia central é que buckets correspondam as paginas em disco nos SGBDs centralizados. Assim,
como os SGBDs atuais ja foram desenvolvidos baseados no modelo de péaginas (compostas por um
conjunto de registros) e sao otimizados para minimizar a quantidade de transferéncias entre disco e
memoria, as mesmas técnicas podem ser diretamente aplicadas utilizando o ALOCS como backend de
armazenamento. Neste caso, a unidade de acesso dos SGBDs, que sdo os registros, correpondem aos
pares chave-valor do ALOCS e a unidade de transferéncia entre servidores é o bucket.

Comment 12: Alguns comentarios pontuais sobre o texto: binary tree apenas nao! E binary search
tree! S6 néo ficou claro por que binary e nao n-ary. Depois fala rapidamente no problema de bal-
anceamento e da a entender que deveria ser b-tree-like.

Response: O texto foi corrigido para “binary search tree” e tentamos remover os termos “abrasileira-
dos”. A necessidade do balanceamento da arvore ficou clara com os resultados dos experimentos e seré
implementada futuramente.

Comment 13: Em suma: o artigo é sucinto e pouco detalhado em partes relevantes porém traz
algumas claras contribuicoes que podem interessar ao publico alvo do JIDM e comunidade de banco
de dados no Brasil. Talvez acrescentando-se uma maior discussao sobre escalabilidade de arquitetura
tivéssemos um texto com maiores contribui¢oes. Por outro lado, é verdade que o proposito principal
ap6s motivagoes genéricas diz respeito a um repositério de pares chave-valor com localidade devida-
mente tratada. Restringindo-se o texto para esta motivacao e objetivo especifico, acredito que o artigo
ficaria devidamente auto-contido.

Response: Agradecemos a sugestao. Alteramos o foco do artigo para ressaltar a importancia do
controle de localidade e acreditamos que a contribuigao ficou mais clara na nova versao.

3. REVIEWER F

Comment 14: There is relatively little difference between this version of the paper and the one
published at SBBD. If one requires the usual 30% new contribution wrt the conference version, I do
not believe that is the case. Thus I think the paper should be revised. A fair question then is "revised
how?", while I appreciate the question I don’t think it’s the job of the reviewer to suggest how the
paper should be revised to address that (30% new contribution) issue. I do have a few questions about
the submitted version, which are presented below.



4 . P.A. Bungama, W. Oliveira, F.R.C. Sousa, and C.S. Hara

Response: Please refer to the response of Comment 1.

Comment 15: The paper proposes ALOCS, a distributed key-value data repository that allows ap-
plications to make use of data locality to avoid metadata network traffic and increase its performance.
The authors claim that ALOCS is scalable and is able to deal with large volumes of data. ALOCS
is based on two existing systems (Ceph and Zookeeper). Although it is reasonable to believe that
ALOCS provides scalability and the ability to deal with large volumes of data, two facts should be
noticed: (1) these features depend on the underlying systems and (2) the experiments do not consider
large volumes of data/transactions to support such claim.

Response: We agree with the reviewer that scalability derives from the tools on which ALOCS
has been implemented. As pointed out in the response for Reviewer F, we modified the article to
focus on the locality control provided by ALOCS. The concept of buckets as communication units
brings key-value repositories closer to traditional disk page accesses, but in a distributed setting.
Clustering commonly accessed data items on disk pages has long been an important technique to
optimize DBMS performance. Moreover, query plans are constructed to minimize the number of page
transfers between disk and memory. Results of our experimental study show that the same applies
in a distributed setting. That is, minimizing the number of communication among servers is essential
for optimizing the overall system performance. The similarity between page/items in a traditional
DBMSs and buckets/pairs in ALOCS may allow traditional query optimization techniques to be more
readily applied, and highligths the importance of using a repository that supports data allocation
control as a DBMS backend.

Comment 16: One of ALOCS’ main features is that it gives the user/application total control over
data location. However, some parts of the process are not very clear in the text. It seems that the
user/application has to create buckets (with their associated intervals of keys) before inserting any
data items into them. However, in cases where the application does not know how to properly define
the intervals, the performance of the system may be compromised (as shown in the experiments, where
sequential bucket creations lead to a poor performance). This brings me to another question: if these
situations lead to such a poor performance, why not dealing with it by rebalancing the metadata
trees?

Response: Controlling data placement based on key intervals was a design choice, which resembles
the idea adopted by DHTs. However, as opposed to DHTs, which have dynamic intervals, in ALOCS
intervals are fixed and determine the buckets location. An alternative would be to control data locality
based on key-value pairs, instead of buckets. In this case, the volume of metadata would be much
larger and may not fit in main memory, and would lead to poor performance. We intend to balance
metadata trees in a future version of ALOCS.

Comment 17: Still regarding the data locality, why is it better to give the user/application control
over the data allocation while other systems, such as Autoplacer, take care of the data distribution
automatically? Even though the systems (ALOCS and Autoplacer) do not deal with data in the same
fashion, in a higher level they serve the same purpose. They should be compared in the experimental
evaluation.

Response: Indeed they have the same goal of minimizing inter-server communication. However,
Autoplacer proposes an algorithm for placing replicas of key-value pairs stored on a DHT, whereas
ALOCS proposes a storage system on which different partitioning and allocation algorithms can be
developed. We have extended the related work section to make this distinction clear, as well as a
better contextualization of ALOCS in a DBMS architecture in the introduction. Due to the short
time for revising the article, it was not possible to run additional experiments, especially ones that
require third party software. However, the analysis of the existing experiments has been extended.

Comment 18: Regarding the experimental setup, the authors have not considered large scale envi-
ronments. Not only the used infrastructure was relatively small, the volume of data and the amount



JIDM - Journal of Information and Data Management . 5

of transactions do not reflect real situations. If the use of a larger infrastructure was not viable, why
haven’t the authors considered at least using a benchmark to evaluate the performance of ALOCS?

Response: There are some benchmarks for evaluating key-value systems. However, these benchmarks
do not address the allocation problem. Thus, we generated a synthetic database in order to control
data co-allocation and run the experiments.

Comment 19: The authors say that data collocation is inherited from CRUSH, an algorithm in
Ceph that implements the distribution of the data items according to a set of rules. Are these rules
user-defined? If so, it would be interesting to have them discussed, as they are highly related to a
major feature of the system (data locality).

Response: Rules are user-defined. They are compiled and kept in binary format in order to be
used when pools are created. The system administrator is allowed to modify the rules after pools are
created. We have added this information in Section 4.1.

Comment 20: Overall, ALOCS seems like a promising idea. The architecture proposed and the
generic interfaces allow it to be extended in several manners. However, the experimental evaluation
does not seem to explore all the flexibility and scalability that ALOCS supposedly has to offer. Issues
like the unbalanced metadata tree or the choice of the experimental setup could have been discussed
in more details.

Response: Indeed the experimental results show the importance of keeping the metadata search
structure balanced. We intend to implement it in the future. Although we have not been able to run
new experiments, we extended the analysis of the experiments, and discussed how they are meaningful
in the development of a DBMS using ALOCS as its storage backend.

Comment 21: (a) The authors state that vertical scalability is expensive, however in cloud environ-
ments it is not exactly the case. (b)“... bring information closed to their user applications.” - what
does that mean exactly? (c)“Once in the buffer, it is unlikely that subsequent access to key-value
pairs in the same bucket require additional transmissions” - why just unlikely? Unless it is a “write”
operation, it should always use the cache to access the data, right? (d)“For grouping a set of key-value
pairs in a bucket and store them in a Ceph object, we’ve adopted the following strategy.” - Although
it is important detail of the paper, such strategy is not clear to the reader.

Response: (a) The focus of the article has been shifted from scalability to allocation control; (b) The
idea is to store the data on the same server as the one that uses them more often in order to minimize
inter-server communication; (¢) The cache has a limited size. We implemented an LRU policy (which
has not been detailed in the article), but it is possible that the bucket has been flushed out before
subsequent accesses of keys in the same bucket; (d) The mapping of concepts in ALOCS to Ceph has
been rewritten to make the strategy clear.

Comment 22: “An important point to notice is that the total execution time for the configuration
with replication on three metadata servers is only 34% higher than the time without replication.” -
Wouldn’t 34% be a relatively large amount in a large scale environment?

Response: In fact, the difference is negligible for sequences with up to 40 (bucket) insertion opera-
tions, and 34% higher for 50 insertions. Moreover, Experiment 4 shows that with 3 metadata servers
the throughput of the system for read operations almost doubles. We can conclude that the number
of metadata servers must be determined by taking into consideration the expected load of read an
write operations.

Comment 23: The placement of the Figures in the experimental section compromises the readability
of the paper. The results of the experimental evaluation deserve a more detailed discussion.

Response: Figures placement has been corrected and the experimental analysis has been extended
in order to highlight the main features supported by ALOCS.



