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Abstract. The correct identification of the protein coding region is an important and latent problem of biology.
The challenge is the lack of deep knowledge about biological systems, specifically the conservative characteristics of the
messenger Ribonucleic Acid (mRNA). Thus, the use of computational methods is fundamental to discovery patterns
within the Translation Initiation Site (TIS). In Bioinformatics, machine learning algorithms have been widely applied,
among them we have the Support Vector Machines (SVM), which are based on inductive inference. However, the use of
SVM incurs a high computational cost when applied to large data sets, and its training time scales up to quadratically
in relation to the data set size. In this study, to tackle this challenge and analyse the algorithm’s behavior, we employed
a Cascade SVM approach to the TIS prediction problem. This strategy proposes accelerating the model training
process and reducing the number of support vectors. The results achieved in our study showed that the cascaded SVM
approach is able to significantly reduce model training times while maintaining accuracy and F-measure rates similar to
the conventional approach (SVM). We also demonstrate the scenarios in which the cascade approach is more suitable
for reducing training time.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Translation Initiation Site, Cascade SVM, Data Mining, Machine Learning.

1. INTRODUCTION

The prediction of Translation Initiation Site (TIS) from a Ribonucleic Acid Messenger (mRNA) is a
relevant and latent problem of molecular biology, which has benefited from the evolution of computa-
tional techniques. The correct prediction of TIS is an important task, and a high accuracy rate in its
prediction may aid in the understanding of protein-coding from nucleotide sequences. However, this
is not a trivial task, since lack of knowledge of conservative characteristics to identify the translation
start site makes the TIS prediction problem complex.

There are several repositories like RefSeq. [Pruitt and Maglott 2001] which contain molecules of
mRNA, DNA and proteins of various organisms, and the amount of these molecules is continuously
growing. In this work, 113,011 mRNA molecules from six eukaryotic organisms are considered. From
the molecules, typically nucleotide sequences are extracted to represent TIS and non-TIS classes to
compose the vector of characteristics used by the classifiers. According to the different methodologies
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for obtaining the sequences and the number of nucleotides (N) of each of them, an amount of up to
4N can be reached. Analyzing a large volume of sequences can have a high computational cost which
would require strategies to overcome this problem and guarantee the quality of the models.

One of the first prediction works of TIS was developed by Stormo et al. [1982], where the authors
used Artificial Neural Networks to predict TIS in prokaryotic cells. Pedersen and Nielsen [1997] also
used neural networks to predict TIS using a database with 13,502 eukaryotic sequences. Zien et al.
[2000] and Liu and Wong [2003] were first to use the Support Vector Machine (SVM). The authors
used the same databases as Pedersen and Nielsen [1997] and demonstrated satisfactory performance
of SVM. Works such as Guimaraes et al. [2017] and Pinto et al. [2017] explored the SVM in their
experiments both with datasets with approximately 20,000 sequences. In recent work, Zhang et al.
[2017] used Deep Learning with a data set of approximately 100,000 sequences. Note that the number
of sequences considered for constructing the classifications models has increased significantly in order
to improve their performance. For example, in our work we consider 100,000 sequences which were
extracted with 1081 nucleotides (N) each.

However, it should be noted that SVM is an efficient classification technique, but it has drawbacks
when applied to large datasets because its memory consumption can reach quadratic scales O(N2) in
relation to the size of the dataset N [Graf et al. 2004], and cubic O(N3) in time to find a solution. To
try to circumvent this problem, in Graf et al. [2004], the authors developed an approach capable of
accelerating the SVM training process. This approach consists of dividing the training data typically
into k inputs (k = 2n, n = 1, 2, 3, ..., where 2n is the desired number of divisions), and for each input an
independent SVM is applied. The support vectors resulting from the previous SVMs are merged two
by two, and these new datasets are used as input to new SVM’s. Such a process creates a cascading
structure that repeats itself until only one SVM remains. The Cascade SVM’s execution framework
enables the training to be done independently, distributed, and with fewer records for each SVM,
greatly reduces the training time of the model, in addition to maintaining the quality of the results.

In this work, we applied the Cascade SVM structure to the prediction problem of TIS considering
databases with more than 113,011 mRNA molecules. The sequences that compose the training sets,
obtained by a 1081 nucleotide mRNA window as suggested by Pinto et al. [2017], represent the
positive class (TIS) and the negative class (nTIS). Differently to what was proposed by Pinto et al.
[2017], who considered as the nTIS negative sequences the upstream sequences out of reading phase
(UPOP) in relation to the TIS of the molecule, in this work only the downstream sequences out of
reading phase with the TIS were considered nTIS [Guimarães et al. 2017], see Fig. 1. A problem
with the methodology proposed in Pinto et al [2017] is that it limits its applicability to organisms
without the upstream region.

Using the Cascade SVM allows us to analyse the behavior and applicability of the strategy in
the scenario of large TIS prediction datasets. Another applicable approach would be specialized
algorithms, typically based on gradient descent methods, that achieve impressive gains in efficiency,
but still become impractically slow for problem sizes in the order of 100,000 training vectors (2-class
problems)[Graf et al. 2004]. To validate the scalability of the cascade strategy for TIS prediction, the
present work also proposes the training of a single model containing all the sequences of all organisms
studied. In experimental results, training of this model containing about 100,000 sequences spent
approximately 6 hours through the standard SVM method, whereas with our approach based on
Cascade SVM the computational time was reduced 15 times. To the best of our knowledge, the use of
this structure in this context of application has not been found in the literature. In addition, a new
methodology for sequence extraction is proposed that reduces the aforementioned limitations of the
Pinto et al. [2017] strategy.

By applying the cascade SVM strategy to TIS prediction, we sought to answer the following ques-
tions: What impacts are brought by the approach of dividing a large problem into several smaller
problems? Is the quality of the final model inferior to the model constructed in the conventional
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approach? Does the reduction in training time always occur? The more divisions are made, the faster
is the training of the model? Is the cascade strategy ideal for all analyzed organisms? Thus, there are
several issues motivating our analysis of the behavior of the cascade SVM applied to the prediction of
TIS.

This article is organized as follows: Section 2 is showed the TIS classification problem. Section
3 presents related works. Section 4 provides a discussion of the materials and methods used. The
experimental results are shown in Section 5. Finally, Section 6 contains our conclusions and future
work.

2. THE TRANSLATION INITIATION SITE PREDICTION PROBLEM

Molecular Biology is an area of biology that studies what happens in the cell at the molecular level,
analyzing the relationship between DNA, RNA and protein synthesis. According to the Dogma of
molecular biology, information is perpetuated through DNA replication and is translated through two
processes: transcription which converts the DNA information into a complementary RNA strand, and
through translation, which converts the information contained in RNA into proteins.

Thus, the translation and transcription processes of the mRNA sequences are used by cells to
transmit and express their genetic information. However, only a few parts of the transcript sequence
carry the information which is necessary to, in fact, encodes the proteins. These sequences are called
CoDing Sequences (CDS). Determining whether a given mRNA “ribbon” does or does not contain the
CDS region is considered a central problem of molecular biology [Zien et al. 2000].

In eukaryotes1, the CDS region is delimited by flags named start codon and stop codon (see Fig.
2). The start codon, identified by the AUG triple, also known as Translation Initiation Site (TIS), is
responsible for the beginning of the process of protein synthesis, which is one of the most important
processes in the regulation of gene expression. The stop codon, identified through the occurrence
of UAA, UAG or UGA, determines the end of the translation process of the protein [Pedersen and
Nielsen 1997].

In the work developed by Kozak [1984] a statistical analysis was performed on mRNA sequences from
eukaryote cells and showed that some positions of these sequences, relative to TIS, are conservative.
The experiments identified a conservative pattern at the -3 and +4 positions of the mRNA. For
reference the ATG (AUG) start codon corresponds to +1 through +3 (see Fig. 1). It was defined
that position -3, that is, three nucleotides to the left of the TIS in the upstream region, conservatively
presents a purine, nucleotide A (Adenine) or G (Guanine), 79% of these sequences corresponding
to nucleotide A; and that at the +4 position the nucleotide G is found, thus establishing the Kozak
consensus. Despite the existence of conservative information indicated by Kozak [1984], these positions
are not sufficient for TIS identification. The correct identification of TIS in a sequence of nucleotides
is part of an important previous step in the process of discovering the characteristics and functions of
proteins.

Fig. 1. mRNA sequence with identification of upstream and downstream regions and reading phases.

1Eukaryotes are all living beings made up of cells that have a nucleus.
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The translation process often occurs at the first occurrence of an AUG codon2 [Kozak 1984], but
it can also start in different codons depending on the position and context of the sequence [Pedersen
and Nielsen 1997]. According to Kozak [1984], in eukaryotes, the scanning model assumes that the
link between the mRNA sequence and the ribosome for protein translation initially occurs in the
5’ region and goes to the 3’ region, see Fig. 2. The position of the beginning of the translation
directly influences the produced protein, being able to alter its structure and function in the cellular
environment.

Fig. 2. Model of mRNA scanning in eukaryotes.

The Kozak consensus is used in problems of prediction or classification of TIS for the construction
of methodologies based on the extraction of nucleotides, by means of windowing, when collecting sets
of sequences for the application of Machine Learning techniques [Silva et al. 2011][Pinto et al. 2017].
As pointed out in [Silva et al. 2011], the window size definition has a direct influence on the quality
of the prediction model. The authors establish that windows with an unsymmetric size between AUG
codon are adequated for this kind of problem. In the classification methodology proposed in Pinto
et al. [2017], the authors defined the beginning of the windowing from the nucleotide -9, that is, 9
positions in the upstream region, ensuring that the conservative patterns indicated by Kozak [1984]
form part of the extracted window. The generated classification model’s results were superior to the
models created by TISHunter3, TIS Miner4, and NetStart5, tools already known in TIS prediction. As
mentioned, although this methodology has achieved superior results, it limits the number of extracted
sequences as well as the number of organisms analyzed, since it discards molecules that do not contain
9 nucleotides in the TIS upstream region. In addition, it discards organisms that do not have this
sequenced region, as is the case of the organism Caenorhabditis elegans, which has only the downstream
region of the molecule.

Typically, a sequence extraction process begins with the identification of all AUG codons present in
the molecule, both in the upstream and the downstream regions, with only one of them being the TIS
and the others being negative sequences (nTIS). The nTIS sequences of the upstream region that are
read in the same reading phase of the TIS are classified as upstream in phase (UPIP), and those that
are read out with the reading phase are called upstream out of phase (UPOP). The sequences located
in the CDS region that are in the same reading phase of the TIS are called CDS in phase (CDSIP),
and those that are out with the reading phase are classified as CDS out of phase (CDSOP), as shown
in Fig. 1. The different methodologies proposed in the literature vary according to the window size,
the number of nucleotides before and after the AUG codon, and the use of the UPIP, UPOP, CDSIP
and CDSOP sequences. The task of computationally identifying the AUG codon depends on a method
capable of accurately predicting both the positive class (TIS) and negative class (nTIS) examples.

2Codon is a sequence of three nucleotides that encodes a given amino acid or indicates the end point of translation.
3Available at http://tishunter.ucr.edu/
4Available at http://dnafsminer.bic.nus.edu.sg/Tis.html
5Available at http://www.cbs.dtu.dk/services/NetStart/
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3. RELATED WORKS

In Silva et al. [2011], the authors present a methodology for the SVM-based TIS prediction problem
and propose an undersampling method, called M-Clus, to address the problem of class imbalance,
characteristic of this type of problem. This method consists of grouping majority class samples
(nTIS) and selecting the most significant examples from each cluster to represent this class. In this
way, the number of clusters considered corresponds to the number of samples available in the minority
class (number of TIS sequences). The results obtained show that the proposed methodology improves
the accuracy, sensitivity, specificity and adjusted accuracy metrics, with values higher than 93% for
Mus musculus and Rattus norvegicus and ranged from 72.97% and 97.43% for Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens and Nasonia vitripennis.

In their study, Pinto et al. [2017] compared the supervised and semi-supervised approaches through
the Inductive Support Vector Machine (ISVM) and Transductive Support Vector Machine (TSVM),
for predicting TIS. The authors use the 235, 518, 800, 1081, 1365, and 1650 nucleotide sills in two
distinct scenarios. In Scenario 1 the 10-fold cross-validation method was applied, using 90% of the
training base and 10% for validation. In Scenario 2, the same cross-validation method was applied,
however, using 10% for model training and 90% for validation. According to the authors, the latter
scenario is appropriate for transductive learning because it has fewer molecules sequenced. The win-
dowing adopted was asymmetrical with the extraction of sequences always starting at position -9, to
include the conservative positions, as presented by Kozak [1984]. The obtained results show that the
TSVM method can be applied to solve the TIS prediction problem, mainly for organism with smaller
number of sequences, and that the windowing with 1081 nucleotides resulted in a greater accuracy
and sensitivity in the prediction, for both approaches TSVM and ISVM.

Regarding the studies that applied the cascade architecture based on SVM, we can cite the work of
Garg and Gupta [2008]. The authors applied a two-layered structure in the context of prediction of
virulence6 in bacterial pathogens. The first layer is composed of SVM classifiers trained and optimized
with different characteristics of the protein. The results produced by the first layer are used as input
for the training of a new SVM in the second layer, which produces the final model. Employing this
methodology, the authors reached an accuracy of 81.8%.

In the context of Bioinformatics, the SVM technique has offered high accuracy rates when compared
to commonly used methods, such as Random Forest and Linear Discriminant Analysis. In Mazo et al.
[2017], the authors analyse heart problems through images of heart cells using these three methods.
The results confirm that the SVM application, specifically the Cascade SVM, can perform better
when compared to the other methods. At a 98% area rate under the ROC curve (Receiver Operating
Characteristic), Cascade SVM was the best performing method compared to Random Forest and
Linear Discriminant Analysis methods.

In Sun and Fox [2012], the authors applied the Cascade SVM in a distributed and parallel pro-
gramming model based on MapReduce. The authors used an iterative architecture called Twister
which allows the calling of the Map and Reduce processes successively within a loop until a pre-set
stop condition is satisfied. The experiments showed that the Cascade SVM can significantly reduce
computational time, although partitioning training data in many parts does not imply a proportional
reduction of training time. This is due to the cost of managing the cascading structure files, which
can become more expensive than the efficiency provided by the cascade structure.

In Papadonikolakis and Bouganis [2012], the authors explored the parallelism and scalability inhe-
rent to the Cascade SVM architecture through a Field Programmable Gate Array (FPGA) imple-
mentation. The authors highlight the computational power of the architecture and claim that their

6The virulence of a bacterial pathogen is its relative ability to cause a disease, generally described in terms of the
number of infecting bacteria.
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implementation on a hardware like FPGA can outperform even parallel solutions using Graphic Pro-
cessor Unit (GPU). To validate the FPGA implementation, the authors used a handwritten digits
recognition base, the MNIST Dataset. The accuracy of the created model remained the same as the
other implementations, but with a speedup of 25 times when compared to the implementation of the
conventional SVM.

Problems related to computer vision are present in the automotive industry, in robotics and in
visual recognition systems. According to Baek et al. [2015], the Cascade SVM architecture has
features favourable to pedestrian detection in applications for autonomous vehicles. In this work
the authors apply the architecture for real-time rejection of negative examples of pedestrian. Their
results demonstrated that the Cascade SVM architecture can be applied to real-time applications in
the context of computer vision. Recently, the Cascade SVM architecture got great scientific interest
in contexts typically tackled with Deep Neural Networks (DeepLearning).

In this work, we applied the Cascade SVM architecture to the prediction problem of TIS showing
their performance and limitations. We also propose a new methodology to obtain the set of training
that allows to consider organisms that do not have the upstream region.

4. MATERIALS AND METHODS

In this section, we describe the materials and methods used in our study, including a description of the
databases, the sequence extraction process, data coding, database balancing, definition of the SVM
parameters, and the metrics and the validation environment.

4.1 Datasets description

The datasets used in our study correspond to those used in Pinto et al. [2017]. Data were extracted
from the public database RefSeq [Pruitt and Maglott 2001] from NCBI7 on 22 April 20148. The data
refers to the organisms Rattus norvegicus, Mus musculus, Homo sapiens, Drosophila melanogaster,
Caenorhabditis elegans and Arabidopsis thaliana, representing 96.07% of all molecules available in
the RefSeq database. The other 3.93% were the molecules disregarded due to the fact that there is
little representativeness in their sequence sizes, considering a window of 1081 nucleotides, as used
in this study. Therefore, the organisms Nasonia vitripennis, Gallus gallus, Macaca mulatta, Pan
troglodytes, Bos taurus, Capra hircus, Bubalus bubalis, Susscrofa, Danio rerio, Orcinus orca, Lipotes
vexillifer, Oryctolagus cuniculus, Peromyscus maniculatus bairdii, Macaca fascicularis, Paniciscus,
Gorilla gorilla, Callithrix jacchus, Chrysochloris asiatica, Trichechus manatus latirostris and Vicugna
pacos were not considered.

Table I contains the number of molecules extracted from the RefSeq database, for each of the consi-
dered organisms. It is important to emphasize that the molecules of the RefSeq database have different
levels of inspection, and are classified as Model, Inferred, Predicted, Provisional, Reviewed, Validated
and WGSk9. In this work, only mRNA molecules with a reviewed inspection were considered, since
the molecules received a more rigorous revision process.

In addition to the datasets of the aforementioned organisms, a set of data composed of all organisms
studied in this work was used, which has more than 100,000 sequences and is referenced in the course
of the article as ALL-ORG.

7Available at http://www.ncbi.nlm.nih.gov
8The databases are available at http://icei.pucminas.br/projeto/licap2/download/cascadesvm-bio/
9The description of each status is available at http://www.ncbi.nlm.nih.gov/books/NBK21091/
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Table I. Number of reviewed mRNA molecules by organism.
Organism Number of molecules

Arabidopsis thaliana 35,173
Caenorhabditis elegans 26,066
Drosophila melanogaster 27,764
Homo sapiens 21,528
Mus musculus 1,097
Rattus norvegicus 1,383
Total 113,011

4.2 Sequence extraction

During the sequence extraction process, we only considered windows where the AUG is, at most, at
the end of the CDS region. That is, the sequences whose AUG is after this region were disregarded.
In this way, we ensure that all the sequences used to obtain the model have at least a portion of the
CDS region, which is supposed to contain the pattern for TIS prediction we are interested in [Li and
Jiang 2004].

For the extracted sequences, we performed the pre-processing step of removing duplicate sequences.
Table II shows the number of sequences extracted per organism and the quantity that were duplicates.

Table II. Number of sequences extracted per organism and number of duplicate sequences,
Organism SIT nSIT

UPIP UPOP CDSIP CDSOP
Unique Duplicated Unique Duplicated Unique Duplicated Unique Duplicated Unique Duplicated

Arabidopsis thaliana 11,152 2,168 5,150 604 12,111 1,720 74,308 17,205 160,575 38,395
Caenorhabditis elegans 10,602 1,149 0 0 0 0 65,313 28,221 131,373 60,023
Drosophila melanogaster 9,896 6,793 12,252 6,264 26,053 13,639 81,905 109,764 123,776 177,920
Homo sapiens 9,602 3,544 6,852 1,761 16,602 5,188 65,514 48,550 125,919 91,139
Mus musculus 392 168 261 109 645 300 2,954 2,290 5,273 3,903
Rattus norvegicus 69 22 59 24 102 44 546 824 976 1,285

In preliminary tests, the UPIP and CDSIP sequences were used as negative sequences (nTIS) as
input to the classifier, but the results expressed relatively lower accuracy values than the results obtai-
ned using the UPOP and CDSOP sequences as nTIS sequences. This confirms a previous observation
by Li and Jiang [2004] and Nobre et al. [2007] that the UPIP sequences have a biological context
very similar to the sequences containing the TIS and can thus degrade classifier performance. These
sequences may even initiate the protein translation process and be stopped early by the presence of a
stop codon [Luukkonen et al. 1995]. In the experiments, the CDSOP sequences were used to represent
the negative class (nTIS) and the TIS sequences to represent the positive class in the training sets
applied as input to the Cascade SVM. As observed in Guimarães et al. [2017], the CDSOP sequences
may represent the negative class better than the UPOP sequences, in addition to providing training
for organisms lacking the sequenced upstream region, as in the case of the Caenorhabditis organism
elegans. Thus, for all AUGs found (TIS and nTIS), whether they were in the upstream or downstream
region, the 1081 (downstream) nucleotide window was extracted starting at the AUG codon.

At the end, all nucleotides of the positive and negative sequences were converted to a 4-bit binary
chain, with A, C, G, and U being encoded as: 1000, 0100, 0010, and 0001, respectively. This coding
is also used in Stormo et al. [1982], Hatzigeorgiou [2002], Silva et al. [2011], Pinto et al. [2017] and
Guimarães et al. [2017].

4.3 Balancing and encoding the dataset

The prediction context of TIS induces a natural imbalance in the dataset, since for each mRNA
molecule there is only 1 (one) AUG codon identified as start codon (TIS), while all other AUG codons
are identified as non-TIS (nTIS). The imbalance ratios for Mus musculus and Rattus norvegicus, for
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example, is 1:23 and 1:131, respectively, as observed by the authors in Silva et al. [2011]. In our
dataset, the use of the CDSOP sequences for model training generated a slight imbalance, in which
the number of negative sequences is higher than the number of positive sequences, being on average
a ratio of 1:14 from one class to another.

Two approaches, oversampling and undersampling, are usually adopted to handle class imbalance
in datasets. The oversampling approach consists in artificially generating minority class records in
order to balance the representativeness of both. The undersampling technique removes instances of
the majority class [Morais et al. 2016], [Liu et al. 2009], in a heuristic or random fashion, in order
to reduce imbalance.

It is further noted that, due to the modification of the biological context, there are problems in
both the oversampling and undersampling approaches. The first method generates artificial samples
of the minority class, allowing the creation of sequences possibly inconsistent with the class, and also
increases the number of sequences to be analyzed by the classifier. Similarly, the second approach
may disregard majority class sequences that may be relevant to the model, but provides a smaller
number of instances to be analyzed by the classifier.

As mentioned, Silva et al. [2011] proposed a heuristic method of undersampling called M-Clus,
which performs the grouping of the samples contained in the majority class and selects the centroid
to represent this class. In view of the results found, it is possible to observe that although the
heuristic method M-Clus presents results slightly higher than those reached by the method of random
undersampling (where the sequences are randomly selected), its computational cost is greater since
in the random method there is no need to use clustering techniques to select the records that best
represent the class.

Therefore, to handle the class imbalance in the CDSOP sequences in our dataset, we chose to employ
random undersampling in entire dataset (training and validation sets), which got satisfactory results
and did not incur any considerable computational cost increase in our strategy.

4.4 Cascade SVM and parameter definition

The SVM is a machine learning (ML) technique based on the field of statistical learning [Vapnik
1995]. The SVM creates an optimal hyperplane capable of dividing the data into two classes, trying
to maximize a margin as they separate. For problems that are not linearly separable, such as the
TIS prediction problem, it is necessary for the constraints to solve the optimization problem, allowing
some classification errors to occur. The use of a kernel function allows for the mapping of the training
data to a characteristic separation space.

The SVM aims to separate supporting vectors from the rest of the training data, and performs
this as a quadratic programming problem whose solution can reach the cubic order O(N3), regarding
the number of training vectors N . In order to reduce the computational effort, one might consider
parallel programming of the SVM algorithm, but that may not be feasible in this case due to the high
dependency of computational calculations [Graf et al. 2004]. However, there are other strategies to
accelerate the quadratic programming solution. One of them is based on “Chunking” [Boser et al.
1992], which iteratively searches for a well-defined and unrelated “Chunk” subset of support vectors.
Another strategy known as “Shrinking” is used to previously identify non-support vectors [Joachims
1999] and save unnecessary computational effort. The strategy known as “Digesting” [Decoste and
Schölkopf 2002] optimizes subsets of support vectors next to the final solution before adding new data,
thus saving storage resources.

Graf et al. [2004] proposed the distributed architecture named “Cascade Support Vector Machine”
(CSVM). As mentioned, in the CSVM the training data is initially divided into small subsets that
will be used as input for several SVMs. The support vectors (SV) resulting from the first training
are combined two by two, creating a single set that will be the input to a new SVM. This cascade
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(a) Outside (b) Inside

Fig. 3. Cascade SVM’s Filtering Process.

process continues until only one set of SV remains. Each SVM serves as a filter, eliminating vectors
that do not make up the best set of support vectors at each level (“Shrinking” strategy). This strategy
is effective in decreasing the training time of SVM [Platt 1999], because it greatly reduces the number
of records to be analyzed at each step.

Fig. 3 illustrates the cascading process. In the structure shown in Fig. 3, (a) represents the scheme
of the externally viewed Cascade SVM, (b) represents how the cascade structure works internally.
Observing the “inside” region, it is verified that the first layer is represented by two disjoint subsets
and that they were selected from a training set. Each of them is passed individually as input to an
SVM, which results in two subsets of support vectors (highlighted in the image). The support vectors
of each SVM are combined resulting in a final classifier, represented here by the second layer of the
“inside” region.

Formally we can describe the process as follows: consider the problem of classifying two classes from
a training set of N examples (xi, yi), where xi ∈ Rd (d-dimension) and yi = ±1 is the class label.

The solution developed by the SVM consists of maximizing a quadratic optimization function,
expressed in its dual formulation, Equation 1.

L(α) =

N∑
i

αi −
1

2
×

N∑
i

N∑
j

αiαjyiyjK(xixj) (1)

Respecting the following restrictions: ∀i 0 ≤ αi ≤ C and
∑N
i αiyi = 0, where αi corresponds to

the Lagrange coefficients to be determined by the optimization process. K(·) = (xi)
Txj corresponds

to the matrix of kernel values between the patterns xi and xj , and C is a penalty factor imposed by
the regularization scheme.

Let T denote the full training set, and Q a family of subsets of training examples Q = {S1, · · · , SM}
where Si, Sj ⊂ T and Si

⋂
Sj = { }.

To the family Q it is possible to define the objective functions {L(Si) · · ·L(SM )}, Equation 1.

Since that Si ⊂ T , it is possible to verify that ∀ Si ⊂ T, L(Si) ≤ L(T ) and as result of the
optimization process of each funcition L(Si), the support vectors, SV(Si) ⊂ Si can be obtained.

Definition 1. A cascade corresponds to a sequence (Q(t)) of families of subsets of T wich satisfy:

For t = 1,

Q(t) = {S(t)
1 , S

(t)
2 , · · · , S(t)

2n−1, S
(t)
2n }, n = 1, 2, 3, · · ·
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P (t) = {SV (S
(t)
1 ), SV (S

(t)
2 ), · · · , SV (S

(t)
2n )}

For t = 2, · · · , n+ 1

Q(t) = {p(t−1)2i+1 ∪ p
(t−1)
2i+2 , i = 0, · · · , n(t−1) − 1 and p(t−1) ∈ P (t−1)}

The solution is given by:

P (n+1) = {SV (Qn+1)}

In the other words, the Cascade SVM architecture defines a sequence of families Q(t) in order to
L(T ) in a finite time, i.e:

∃ t∗,∀ t > t∗, L(Q(t)) = L(T )

The demonstration of the convergence of this structure in given in more detail in the work of Graf
el al. [2004].

The cascade architecture10 used in this study was proposed by Wen and Lu [2004]. In this structure,
illustrated in Fig. 4, unlike the structure proposed by Graf et al. [2004], there is no feedback from last
to the first layer of the structure, in which the process is executed repeatedly until the stop criterion
is reached.

Fig. 4. Cascade SVM training flow.

To analyse the behavior of the CSVM, we proposed variations in the number of inputs and layers of
the CSVM. In this proposal, experiments were performed dividing the input into k parts, considering

10The code is available at http://icei.pucminas.br/projeto/licap2/download/cascadesvm-bio/
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k = 2n and n = 1, 2, 3, 4, 5 and 6. The number of layers used for each set of entries was n+1.
Each k part passed as input to CSVM is constructed from the pre-processed dataset through 10-fold
cross-validation and whose randomness of data is guaranteed.

The performance of the SVM classifier depends on the proper selection of the parameters of the
kernel function used and the smoothing parameter of the separation margin of the hyperplane, repre-
sented by the C symbol. We employed the gaussian kernel function RBF (Radial Basis Function),
defined by Equation 2. The function requires the adjustment of the σ parameter, which represents
the standard deviation in the Gaussian curve and controls the width of the curve. For simplicity,
the SVM implementation used in our study employs a γ parameter, represented by − 1

2σ2 , where σ2

corresponds to variance.

K(xi, xj) = exp−
1

2σ2
||xi−xj ||2 (2)

For the adjustment of the parameters C and γ we employed the Grid Search algorithm11 [Chang
and Lin 2011].

In preliminary experiments, it was observed that for execution of the Grid Search method using the
complete set of Homo sapiens organism sequences (approximately 20,000 sequences), it took about
360 hours to find the best pair of parameters. This computational time spent makes the methodology
of using the whole set of the organism sequence unviable in this procedure. Thus, the procedure was
repeated, considering only 10% of the sequence set. The results showed that the parameters C and γ
were adequate to maintain satisfactory performance measures of the classifier.

The values of parameters C and γ (presented in the Table III) were determined from a sample of
10% of the dataset for the organisms with a large number of sequences. It is important to note that
this procedure is a limitation of the CSVM structure. Although, this motivates future work such
as proposing a parallel solution based, for example, on GPUs in order to determine the C and γ
parameters. The parameters of Table III were used in each cascade structure for a given organism.

Table III. Parameters used in SVM.
Organisms Gamma(γ) C

Rattus norvegicus 1.220703125 x 10−4 8
Mus musculus 1.220703125 x 10−4 8
Homo sapiens 4.8828125 x 10−4 8
Drosophila melanogaster 3.0517578125 x 10−5 8
Arabidopsis thaliana 3.0517578125 x 10−5 32
Caenorhabditis elegans 4.8828125 x 10−4 2
ALL-ORG 3.0517578125 x 10−5 32

4.5 Validation and evaluation metrics

The evaluation of the results was done using the metrics of precision, sensitivity and F-measure.

The precision metric, described by Equation 3, evaluates among all the sequences classified as a
given class, those which are truly of the class.

Precision =
TP

TP + FP
(3)

11Available in https://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
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The sensitivity measures the correctness of classification in each class, and is calculated using
Equation 4.

Sensitivity =
TP

TP + FN
(4)

Finally, the model can also be evaluated by the F-measure metric, described by Equation 5, which
considers the precision and sensitivity metrics to calculate the model quality, calculating a harmonic
average between them.

F −measure = 2 × Precision × Sensitivity

Precision + Sensitivity
(5)

being TP, TN, FP and FN, the number of True Positive, True Negative, False Positive and False
Negative examples, respectively.

For the validation of the classifiers, the cross-validation technique was employed: k-fold [Kohavi
1995]. This process consists of dividing the total set of data into k mutually exclusive subsets,
where k -1 subsets are intended for training the model and the remaining subset, k, is reserved for its
validation. The error estimate is calculated by averaging the k folds to get the full effectiveness of the
model. In our study, we set k = 10.

5. EXPERIMENTS AND RESULTS ANALYSIS

Our experiments started with the pre-processing of the databases explained in the Sections 4.1 to 4.3
with the steps of extracting, coding and balancing the sequences. After pre-processing, we searched
for the best C and γ parameters for the RBF Kernel setting of our SVM. The parameters were applied
in the CSVM structure to the TIS prediction problem, and the results obtained are presented in Table
IV. The table presents the mean values of the evaluation metrics, the standard deviation, and the
number of support vectors (SV) that make up the respective models.

For better understanding of the results, they are presented according to each variation of the
performed experiments. Thus, the numbers 1, 2, 4, 8, 16, 32 and 64 refer to the number of subsets in
which the dataset was divided, with 1 being equivalent to the conventional SVM application without
cascade training.

Analysing the evaluation metrics obtained with the cascade approach, it is observed that they
remained practically unchanged, regardless of the number of variations to which the dataset was
submitted. It can be observed in Table IV that the precision and sensitivity metrics are high, indicating
a low number of false positives and false negatives, respectively, in the obtained models. This reflects
on the F-measure metric, which is a harmonic mean between these two measures. The best results
are highlighted in bold.

These results show that for the problem addressed, dividing it into several smaller problems did
not detract from the solution or the quality of the models. In contrast, in addition to maintaining
the quality of the evaluation metrics, the number of support vectors of the models constructed with
the cascade method was reduced, in the best case, to 9% fewer support vectors than the conventional
SVM model. This occurs for datasets with the highest number of sequences as the ALL-ORG that is
about five times greater than the biggest organism‘s dataset (see Table II). For organisms with smaller
training sets, the reduction was 3% and 2% for Mus musculus and Rattus norvegicus, respectively.

Unlike the previous results, for Caenorhabditis elegans organism there was an increase in support
vectors. This can be explained by the following reason: as the number of subsets increases and the
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Table IV. Evaluation metrics - Conventional SVM versus Cascade SVM.
Precision
no SubsetsOrganism

1 2 4 8 16 32 64
Rattus norvegicus 95.40 ± 8.14 95.40 ± 8.14 95.40 ± 8.14 95.40 ± 8.14 95.40 ± 8.14 95.40 ± 8.14 95.40 ± 8.14

SV of Model 107 108 105 105 105 105 105
Mus musculus 98.29 ± 1.88 98.29 ± 1.88 98.29 ± 1.88 98.29 ± 1.88 98.29 ± 1.88 98.29 ± 1.88 98.29 ± 1.88

SV of Model 434 423 425 429 429 422 422
Homo sapiens 98.85 ± 0.44 98.87 ± 0.45 98.87 ± 0.44 98.87 ± 0.44 98.88 ± 0.44 98.88 ± 0.44 98.88 ± 0.44

SV of Model 3351 3153 3100 3087 3087 3086 3083
Drosophila melanogaster 98.42 ± 0.32 98.80 ± 0.36 98.78 ± 0.36 97.69 ± 0.37 97.68 ± 0.36 98.80 ± 0.36 98.80 ± 0.36

SV of Model 2635 2565 2525 2535 2533 2537 2537
Arabidopsis thaliana 99.66 ± 0.17 99.66 ± 0.16 99.66 ± 0.19 99.63 ± 0.20 99.64 ± 0.18 99.63 ± 0.20 99.63 ± 0.20

SV of Model 1779 1680 1615 1629 1634 1632 1634
Caenorhabditis elegans 97.81 ± 0.42 97.72 ± 0.29 97.68 ± 0.27 97.69 ± 0.28 97.68 ± 0.26 97.65 ± 0.26 97.81 ± 0.26

SV of Model 2932 2747 2682 2668 2685 2678 3643
ALL-ORG 97.74 ± 0.13 97.76 ± 0.15 97.81 ± 0.33 97.73 ± 0.12 97.72 ± 0.16 97.72 ± 0.12 97.72 ± 0.13

SV of Model 6964 6591 6432 6372 6317 6311 6305

Sensitivity
no SubsetsOrganism

1 2 4 8 16 32 64
Rattus norvegicus 99.33 ± 2.00 99.33 ± 2.00 99.33 ± 2.00 99.33 ± 2.00 99.33 ± 2.00 99.33 ± 2.00 99.33 ± 2.00
Mus musculus 99.23 ± 1.88 99.23 ± 1.88 99.23 ± 1.88 99.23 ± 1.88 99.23 ± 1.88 99.23 ± 1.88 99.23 ± 1.88
Homo sapiens 99.42 ± 0.36 99.41 ± 0.36 99.38 ± 0.32 99.40 ± 0.35 99.39 ± 0.35 99.40 ± 0.35 99.41 ± 0.37
Drosophila melanogaster 99.24 ± 0.24 99.24 ± 0.20 99.25 ± 0.19 99.26 ± 0.20 99.25 ± 0.19 99.24 ± 0.18 99.24 ± 0.20
Arabidopsis thaliana 99.79 ± 0.09 99.78 ± 0.09 99.79 ± 0.11 99.78 ± 0.08 99.76 ± 0.08 99.77 ± 0.08 99.77 ± 0.08
Caenorhabditis elegans 99.06 ± 0.28 98.47 ± 0.37 98.43 ± 0.35 98.45 ± 0.38 98.46 ± 0.11 98.42 ± 0.31 99.06 ± 0.28
ALL-ORG 98.96 ± 0.11 98.84 ± 0.10 98.70 ± 0.14 98.66 ± 0.13 98.64 ± 0.14 98.60 ± 0.15 98.62 ± 0.19

F-Measure
no SubsetsOrganism

1 2 4 8 16 32 64
Rattus norvegicus 97.14 ± 4.75 97.14 ± 4.75 97.14 ± 4.75 97.14 ± 4.75 97.14 ± 4.75 97.14 ± 4.75 97.14 ± 4.75
Mus musculus 98.43 ± 0.22 98.43 ± 0.22 98.43 ± 0.22 98.43 ± 0.22 98.43 ± 0.22 98.43 ± 0.22 98.43 ± 0.22
Homo sapiens 99.13 ± 0.35 99.13 ± 0.35 99.13 ± 0.33 99.13 ± 0.34 99.13 ± 0.34 99.13 ± 0.35 99.14 ± 0.11
Drosophila melanogaster 98.99 ± 0.23 99.02 ± 0.23 99.02 ± 0.25 99.03 ± 0.25 99.02 ± 0.24 99.02 ± 0.24 99.02 ± 0.24
Arabidopsis thaliana 99.72 ± 0.10 99.72 ± 0.08 99.73 ± 0.10 99.72 ± 0.10 99.70 ± 0.11 99.71 ± 0.11 99.71 ± 0.11
Caenorhabditis elegans 98.43 ± 0.22 98.08 ± 0.17 98.05 ± 0.15 98.07 ± 0.18 98.07 ± 0.17 98.04 ± 0.11 98.43 ± 0.22
ALL-ORG 98.45 ± 0.31 98.30 ± 0.09 98.20 ± 0.09 98.19 ± 0.09 98.18 ± 0.17 98.09 ± 0.11 98.17 ± 0.13

(a) Cascade SVM Performance - Small Data-
sets

(b) Cascade SVM Performance - Large Datasets

Fig. 5. Training Time (s) versus Number of Subsets.

number of training vectors decreases, the representativeness in the dataset is lost. In this way, more
support vectors are required for the classification model. This particular case the issue can be avoided,
if the training set maintains its representativeness (by collecting more examples for the considered
organism).

In Fig. 5 the computational time spent12 is displayed for model training of each organism. Fig. 5
(a) illustrates the performance of the structure for organisms with few molecules (Rattus norvegicus
and Mus musculus), while Fig. 5 (b) shows the performance of the structure of the other organisms.

12Experiments run on a Pentium Core i7, 32GB of RAM, using Windows 10 64 bits.
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(a) Rattus norvegicus (b) Mus musculus (c) Homo sapiens

(d) Drosophila melanogaster (e) Arabidopsis thaliana (f) Caenorhabditis elegans

(g) ALL-ORG

Fig. 6. Improvement of the model in the cascade structure.

It is observed in Fig. 5 (a) that the cascade structure did not perform well, because the organisms
have few molecules, and the cost of executing the cascade structure becomes more expensive than the
benefit provided by it. This increases the time required to train the models.

On the other hand, in Fig. 5 (b) we observe an opposite behaviour for datasets with many molecules.
For these organisms, when the number of divisions (subsets) is increased, the computational time
begins to reduce, because the problem is divided into smaller problems; which represents fewer records
to be analyzed and consequently reduces the training time of the model. This is because the SVM
reaches quadratic scales in relation to the size of the data set, as discussed previously.

The maximum reduction in training time is achieved when the Cascade SVM is with 8 subsets in
the first layer, and consequently 8 SVMs being trained in parallel. In addition, this is due to the
fact that the processor has only 8 physical cores and the modelling with 16, 32 or 64 threads presents
competition for physical cores with continuous context exchanges. When the number of inputs is
increased to 16, 32 and 64, the processing time begins to grow slightly, since the cost to manage the
cascade algorithm begins to be greater than the efficiency provided by the CSVM structure.

It is observed that for the ALL-ORG, with more than 100,000 sequences, as for the other organisms
with approximately 20,000 sequences presented in Fig. 5 (b), the expected behavior of the Cas-
cade structure was maintained, there is a reduction in computational time spent to train the models
gradually, so that it stabilizes approximately when using 8 SVM’s in the first layer.

To better understand the behavior of Cascade SVM, we extracted the models layer-by-layer of the
experiments with 8 subsets, being 8 models of the first layer, 4 models of the second, 2 of the third
and 1 of the last layer. After that, each model was validated with the same validation dataset, and
the results were averaged from layer to layer. Fig. 6 presents these results.

As can be observed in Fig. 6, the image is divided by organisms and presents the evolution of
the model layer-by-layer (blue line) until it converges to a global optimum (orange line). In these
experiments, the F-measure metric was used to evaluate the model. It turns out that for some
organisms, the line of evolution exceeded or did not reach the global optimum line. However, it
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(a) Training Time (s) - Arabidopsis thaliana (b) F-measure - Arabidopsis thaliana

Fig. 7. Relation between the number of divisions of the dataset and the time spent in processing, considering different
sizes of datasets for the Arabidopsis thaliana organism.

is observed that, as the layers of the structure advance, the respective models evolve, providing a
refinement of the model in search of the global optimum.

As discussed previously, for the datasets of Rattus norvegicus and Mus musculus, the Cascade SVM
strategy is not recommended since, with the number of sequences analyzed, the conventional SVM
performed better; unlike the other analyzed organisms, in which the cascade strategy proved effective.
From this behavior, the following question was raised: what is the amount of sequences necessary for
the Cascade SVM strategy to perform as expected? According to the experiments carried out, our
answer to this question is that it is relative, because firstly that depends on the representativeness of
the sequences being analyzed, and secondly on the quantity.

To better analyze the previous question, experiments were carried out with the Arabidopsis thaliana
organism, because it has the largest number of sequences among the organisms studied. The expe-
riment consists of reducing the number of organism sequences by 50% and then 25% of the original
number, and subjecting them to the Cascade SVM with 1 (conventional), 2, 4, 8, 16, 32 and 64 entries
in the first layer. Fig. 7 (a) graphically displays the training time for each experiment and Fig. 7 (b)
shows the F-measure metric.

It is observed that, as the number of sequences analyzed reduced, the graph changes its behavior.
When we are using 100% of the dataset (blue line), approximately 20,000 sequences, the reduction of
training time is evident, showing that the Cascade SVM has the expected behavior. In the experiments
where 50% (orange line) of the dataset was used, the reduction was no longer as significant. On the
contrary, there is a slight increase in time from 8 divisions of the database. When only 25% (green
line) of the dataset was used (5,000 sequences) it is noted that there was no difference in using the
Cascade SVM or the Conventional SVM, the time was almost linear, with a slight growth from 8
divisions. This shows us that, at least for the Arabidopsis thaliana organism, applying Cascade SVM
to a dataset with less than 5,000 sequences is not recommended.

6. CONCLUSIONS AND FUTURE WORK

In this study, we sought to investigate the behavior of the Cascade SVM strategy for the prediction
problem of protein translation initiation sites. The results indicate that the impacts provided by the
cascade structure are mainly related to the reduction of training time and the number of support
vectors of the model. The cascade method when it reaches the maximum number of physical cores
of the computational structure used (8 cores in our computational experiments) with 8 subsets in the
first layer yielded results with the shortest training time, reaching a reduction of 88%, as observed for
the organism Caenorhabditis elegans and 90% for ALL-ORG. In addition, there was a 9% reduction
in the total number of support vectors of the model.

If we compare the evaluation metrics of the conventional approach with the cascade approach, it is
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noticeable that their values have been roughly the same, regardless of the number of variations tested.
Thus, we concluded that the classifier trained with the cascade method, in relation to the evaluation
metrics, is equivalent to the conventional classifier; but it can be simpler because it can reach fewer
support vectors. The reduction in training time occurred similarly for all organisms studied, even
when the management cost of the cascade structure began to be more expensive than the reduction
provided by the cascade structure, which happens when the number of parallel SVM exceeds the
number of physical cores of the structure.

When investigating which of the considered organisms the Cascade SVM is ideal, we are faced with
the results expressed in Fig. 5 (a), which shows that the performance of the cascade strategy for
organisms with fewer sequences was not as good. For these organisms, conventional SVM is the most
recommended. In this same line of thought / Related to this, we also observed that the Cascade SVM
fails to provide a reduction in training time in the cases of organisms whose sequence numbers were
less than 5,000 (for the Arabidopsis thaliana organism). For those cases, there was no significant gain
in performance when using the Cascade SVM or the conventional SVM. Therefore it is recommended
to use the conventional SVM, as it avoids implementation issues.

Although the data volume of the organisms studied does not seem large enough to use the hierar-
chical approach. It can be seen in Fig. 5 (b) that the behavior of the CSVM was the same for the
large datasets, both for the organisms and for the dataset ALL-ORG, which in turn is approximately
five times greater than the organism with the highest number of sequences.

In all experiments there was a reduction of approximately 90% of the computational time spent
for training the models, for the data set ALL-ORG which spent approximately 6 hours (conventional
SVM), reduced to approximately 25 minutes. This demonstrates that one can explore the potential
of the CSM to deal with larger bases and of greater dimensionality, being a good strategy to reduce
the computational time of the SVM.

Through understanding the behavior of the cascade strategy, we opened possibilities for the ap-
plication of this strategy in transductive learning, which we believe will be of great value, since
semi-supervised learning demands a significant computational consumption in its execution.

As future works to further this understanding, we suggest the investigation of Cascade SVM in
other contexts of Bioinformatics, such as protein function prediction, in which the model generation
time is usually high.
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