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Abstract. With the evolution of Web technology and its worldwide use by regular people, there is now data about
not only such people but also their relations. Database research has evolved as well to tackle the myriad of problems
that arrive with such volumes of data. Here, we contribute to such a trend by proposing a new algorithm (STACY)
to automatically classify tie strength (an intrinsic property of relationships) considering time. We show that each
class has singular and different behavior, and analyze them over co-authorship networks. Also, STACY identifies strong
relationships that persist more than the ones classified by a state of the art algorithm. Finally, we derive a computational
model from STACY that is able to automatically identify relationships classes with low computational cost.

Categories and Subject Descriptors: Information Systems [World Wide Web]: Social Networks

Keywords: Social Networks, Tie Strength, Co-authorship Networks

1. INTRODUCTION

With the evolution of Web technology and its worldwide use by regular people (as opposed to its initial
crowd composed of scientists only), we now have actual, physical data not only about such people but
also about their relationships. For the first time, database researchers can gathered and analyze such
data and help to understand the relationships as well. Such analyses are commonly performed over
Social Networks (SN), which are complex structures that describe individuals and their relationships
in any social context. Formally, they can be mapped to graphs where nodes (vertices) represent the
individuals, and edges connect pairs of individuals who share a relationship. Then, properties can be
extracted from the graph as well as metrics can be applied to nodes/edges to better understand the
individuals’ social behavior [Barabási 2016].

There are two ways of building a SN. One is to collect data from online social platforms, such as
Facebook, Twitter or GitHub [Bigonha et al. 2012; Brandão and Moro 2017]. The other is to build it
from data that can implicitly express relationships, such as a movie database (e.g., [Viana et al. 2016])
or a digital library (e.g., [Brandão and Moro 2015]). Here, we consider the second type and build
academic social networks, for researchers and their academic relations. Nonetheless, our contributions
are context-independent and could be easily applied to other networks.

Having the SN, the next step is to analyze it. Among possible properties, one central aspect of
more complex analysis is the strength of the ties, as pairs of individuals have stronger or weaker
connections depending on the degree of relationship. Such degree (or tie strength) may be defined
from Granovetter’s theory: ties are weak when they serve as bridges in the network by connecting
users from different groups, and strong when they link individuals in the same group (community)
[Granovetter 1973]. The analysis of tie strength has different purposes depending on the context.

In the academic context, studying the strength of co-authorship ties may reveal new insights about
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the dynamics of research collaborations, and any application based on co-authorship patterns may
benefit. For instance, new strength metrics could help works on measuring research productivity [Chan
et al. 2016], ranking researchers [Freire and Figueiredo 2011], name disambiguation [Levin and Heuser
2010], and recommending collaborations [Lopes et al. 2010]. Also, properly measuring co-authorship
ties may help to identify which collaborations are more influent. Aggregating the time dimension to
such analysis takes it to the next level, allowing to study team formation dynamics for example.

Measuring the strength of ties in a properly way is a relevant problem and this work tackles it.
Indeed, the main goal of this article is to automatically classify such strength. Then, such goal can
be divided in three research questions: (i) How to properly measure the strength of ties?; (ii) What
are the characteristics of the ties according to their strength?; and (iii) How are the dynamism of
the ties over time?. To characterize tie strength, we build up on an existing algorithm (RECAST –
Random rElationship ClASsifier sTrategy by [Vaz de Melo et al. 2015]) that returns four classes of
tie strength over mobile networks. Specifically, we double improve such algorithm by: speeding up
its performance (with fast-RECAST) and perfecting its classification (with STACY). We also amplify
the definition of tie strength, as we view it as the likelihood of its (re) appearance in the future. We
estimate such likelihood by using three SN edge features related to tie strength (edge persistence,
neighborhood overlap and co-authorship count). Overall, our new algorithm called Strength of Ties
Automatic-Classifier over the Years works over dynamic networks and uses social network features
to classify the strength of ties in eight classes (strong, bridge+, bridge, transient, periodic, bursty,
weak and random). These algorithms are compared according to the behavior of the classes that they
identify. Such analysis helps to validate the algorithms and their results. Note that this article is an
extended version of [Brandão et al. 2017a].

After discussing related work in Section 2, we describe the temporal SN models and the original
algorithm (RECAST) in Section 3. Then, our contributions are presented as follows. Section 4
presents a definition of tie strength, the new version of the algorithm RECAST (fast-RECAST), and
our new algorithm (STACY) to measure the strength of ties in large dynamic SN. Section 5 evaluates
STACY classes, details experimental results, and describes our new computational model derived from
STACY to directly classify tie strength. Finally, Section 6 concludes this article.

2. RELATED WORK

The strength of relationships can be calculated by considering topological and/or semantic properties
of the social networks [Castilho et al. 2017; Huang et al. 2018]. The topological properties capture
the structural features of the graph that constitutes the social network [Zaki and Meira Jr 2014]. For
example, Brandão and Moro [2015] and Wang et al. [2017] use neighborhood overlap (or Jaccard’s
coefficient) to measure the strength of relationships in networks, Levin and Heuser [2010] consider
the number of paths of a specific size to calculate tie strength between authors in order to do name
disambiguation, and Huang et al. [2018] use the number of interactions between two users to measure
the strength of friendship. On the other hand, semantic properties capture non-structural features of
nodes and edges in social networks. For example, Gilbert and Karahalios [2009] define relationships
on Facebook by considering the history of interactions. Finally, combining both types of properties is
also possible. For example, Zignani et al. [2016] consider graph topological and temporal properties
to predict the strength of relationships.

An important semantic property is the temporal aspect. Even with so much research on SNs, the
combination of the strength of relationships and temporal aspects has not yet been widely explored.
For example, Shi et al. [2018] consider the duration of calls between contacts in order to understand
calling behavior and its implications on marketing decisions. In addition, Karsai et al. [2014] use tie
strength to characterize the impact of heterogeneous and time-varying interactions on rumor propa-
gation. They consider the temporal evolution of the strength of the ties, but do not propose a new
way of measuring this property using the temporal aspect. On the other hand, Kostakos [2009] and
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Nicosia et al. [2013] propose a set of properties of graphs that consider the temporal aspect in its
calculation. Such studies show that many of these properties need to be calculated differently from
static networks. Hence, we propose a new algorithm that combine existing topological properties and
the temporal aspect to measure the strength of ties. The main difference regarding the existing ones
is that STACY identifies eight relationship classes, providing a finer granularity for a richer analysis.

Another problem is to define and distinguish strong/weak ties in temporal networks. For instance,
Karsai et al. [2014] consider both amount and time of the interactions to define the tie strength,
and Huang et al. [2018] consider as weak a relationship that decreases the number of interactions
in the present when compared to the past; otherwise, the relationship is strong. Then, strong ties
are repeated and frequent interactions among pairs of individuals, whereas weak ties occur only
occasionally. Laurent et al. [2015] define strong ties as frequent interactions that connect nodes intra-
communities and model the network structure locally; whereas weak ties are infrequent interactions
situated inter-communities and maintain the network structure globally connected. Differently, Nicosia
et al. [2013] define two nodes i and j as strongly connected if they are in a non symmetric relation (i
is temporally connected to j, but not vice-versa); whereas they are weakly connected if in a symmetric
relation (both i is temporally connected to j, and j is temporally connected to i).

In this work, we consider the concept of strong and weak ties for temporal SNs based on Karsai
et al. [2014]’s idea, i.e., a strong tie persists over time, and a weak tie occurs sporadically. However,
Karsai et al. [2014] characterized the strength of ties based on a single time window of the network.
Here we experimentally verify if the time window is a factor for characterizing the strength of tie by
analyzing the persistence and transformation of ties over time. We show that, in fact, the strength of
ties is very sensitive to the time window used to compute it.

3. RELATED AND FUNDAMENTAL CONCEPTS

In this section, we first describe the temporal social networks models and then the original RECAST.

Temporal Social Networks Models. Instead of proposing a new model for temporal SN, we
borrow the ideas from Vaz de Melo et al. [2015], who have modeled it for studying mobile networks.
First, we associate a start time and a duration to each relationship. Then, a temporal social network
is modeled as a graph Gk(Vk, Ek) in which time is discretized into steps of duration δ, and k is the time
step in which an encounter occurs. Here, given that our evaluation is over co-authorship networks,
we consider a duration of δ = 1 year, as this is the common granularity for publications (not month
or day). Nonetheless, our definitions are general enough to allow a finer or a coarse granularity.

Given a graph G = (V, E), V = {v1, ..., vn} is the set of vertices, and E = {e1, ..., em} is the set of
edges that represent interactions between vertices. A time-varying representation of the co-authorship
SNs can be defined by a temporal accumulation graph Gt(Vt, Et) in G that is the aggregation of
interactions in each k discrete time steps until t. Thus, all vertices interact until the t-th time step
for a given value of Vt. All edges in the set Et represent interactions between vertices (vi, vj) during
each k time step until t. Since Gt accumulates all co-authorships from the datasets and evolves over
time, such aggregate graph contains social and sporadic encounters (relationships). Also, according to
[Vaz de Melo et al. 2015], a random version GRt of the temporal aggregated graph Gt is necessary to
identify the social patterns. To do that, the random graph must have similar social network topological
features as the Gt graph, namely the same number of nodes, edges, and the same empirical degree
distribution. The only difference, then, is how the nodes are connected among themselves.

The Original RECAST. Following the model description, we overview its original implementation
algorithm, RECAST [Vaz de Melo et al. 2015], which was applied in Dynamic Complex Wireless
Networks (DCWN). One contribution of our work is to modify it to measure the strength of ties
in large temporal SNs. We chose RECAST because it is the only one that assigns different classes
to the tie strength in temporal networks. According to Vaz de Melo et al. [2015], any system is

Journal of Information and Data Management, Vol. 9, No. 1, June 2018.



STACY: Strength of Ties Automatic-Classifier over the Years · 55

susceptible to random events and irrational decisions called semi-rational decisions. Nevertheless,
conscious decisions still govern most of the interactions. Indeed, SNs that model real interactions
have edges created from semi-rational decisions (i.e., such edges tend to be regular and repeat over
time), whereas random networks have edges with the same probability of connecting any two nodes.
Specifically, a random network GR is built with the same number of nodes, edges and empirical
degree distribution of its social counterpart G. RECAST considers such concept of social and random
networks, and implements the described temporal network model by building both Gt and GRt . Two
algorithms are necessary to generate GRt from Gt: RND and T-RND. Given a graph G(V, E), RND(G)
returns a random graph Gt(VR, ER) with the same number of nodes, number of edges and degree
distribution as G. Then, the only difference between G and GR is the connection among nodes, which
is the focus of our study. Therefore, RND assigns an edge between nodes i and j with probability
pi,j = (di × dj)/

∑|V |
k=1 dk, in which the degree distribution is D = (d1, d2, ..., dn) of G with n nodes.

The second algorithm T-RND is an extension of RND and generates random graphs for temporal
networks Gt. Thus, T-RND(G1 ∪ G2 ∪ ... ∪ Gt) receives a set of consecutive event graphs Gt and
returns a random temporal graph GRt . Such algorithm builds GRt by running RND in each event graph
Gt and then accumulating it as GRt = RND(G1) ∪ RND(G2) ∪ ... ∪ RND(Gt).

RECAST considers two SN features to identify social relationships: edge persistence maps the
regularity of relationships pert(i, j) = 1

t

∑t
k=1[(i, j) ∈ Ek]([(i, j) ∈ Ek], where pert(i, j) is 1 if there is an

edge (i, j) in Ek at time k (0 otherwise) and complementary cumulative distribution function (CCDF)
F per(i,j)(x) = P [pert(i, j) > x]; and topological overlap (a.k.a. neighborhood overlap) represents
the individuals similarity tot(i, j) = |k|(i,k)∈Et∩k|(j,k)∈Et|

|k|(i,k)∈Et∪k|(j,k)∈Et| and the CCDF F to(i,j)(x) = P [tot(i, j) >

x]. Furthermore, RECAST has a single parameter prnd to distinguish social (friends, bridges and
acquaintances) from random values of the SN features. Thus, Vaz de Melo at al. [2015] identify the
feature value x that represents a threshold, such that feature values greater than x happen with a
probability lower than prnd in GRt . Also, for small values of prnd, feature values higher than x are
very improbable to occur in a random network, happening mostly due to social relationships. Also,
the parameter prnd can be interpreted as the expected classification error percentage.

4. MEASURING TIE STRENGTH

We now revisit the concept of tie strength (Section 4.1) and propose fast-RECAST, an extended
RECAST with multiprocessing modules to classify ties (Section 4.2). Then, we propose STACY,
which uses three properties (instead of two) to classify tie strength (Section 4.3). By presenting such
algorithms, this section also helps to answer the research question “How to properly measure the
strength of ties?”.

4.1 Reviewing the Concept of the Strength of Ties

Given a temporal graph Gk(Vk, Ek), where k is the time step in which a co-authorship occurs, a tie
(i, j) is likely to be strong if it is present in Gk for most values of k. In vice-versa, the tie (i, j) is
likely to be weak if it is present in Gk for just a few values of k. Simply put, strong ties are likely
to persist over time, and weak ties probably occur sporadically. Another characteristic of a strong tie
(i, j) is that probably i and j have many neighbors in common. As previously discussed, nodes that
have many neighbors in common are more likely to persist over time.

Given these two features, we group ties into the four classes defined by fast-RECAST, namely strong
(friends), weak (acquaintances), bridges and random. Each class gives a level of tie strength: strong
are ties that persist over time and share many neighbors; weak do not persist over time, but share
many neighbors; bridges persist over time but share at most a few neighbors; and random do not
persist over time and share at most a few neighbors. Hence, using these four classes, we investigate
if the strength of ties are likely to transform over time. With such analysis, we are able to go deeper
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Algorithm 1 Multiprocessing RECAST (fast-RECAST): a parallelized code to classify edges of Gt
as random or social – strong, weak or bridge.
Require: prnd ≥ 0
1: return class(i, j) ∀(i, j) ∈ UtEt
2: Construct GRt and set RND(G1), ...,RND(Gt) using T-RND with pool.map_async
3: Get F to(x) and F per(x) from GRt using pandas dataframe
4: Get xto|F to(xto) and xper|F per(xper) = prnd with pool.apply_async
5: for all edges(i, j) ∈ Et do
6: if per(i, j) > xper and to(i, j) > xto then
7: class(i, j)←− Strong
8: else if per(i, j) > xper and to(i, j) ≤ xto then
9: class(i, j)←− Bridges

10: else if per(i, j) ≤ xper and to(i, j) > xto then
11: class(i, j)←−Weak
12: else
13: class(i, j)←− Random

into temporal social networks and answer questions such as: are strong ties more likely to remain
strong in the future? Are weak ties more likely to become strong ties or to become random?

4.2 Multiprocessing RECAST

The construction ofGRt using T-RND increases the complexity of RECAST toO(t×(|Vt|+|ERt |)). Then,
we propose to apply a multiprocessing Pool module from Python (a module based on communicating
processes for writing concurrent programs1) in such step of RECAST in order to reduce its complexity.
We call this novelty, multiprocessing algorithm as fast-RECAST.

The idea is that more than one random event graph GRt is built at a time in a multi-core computer.
Thus, the new computational cost is O( tp × (|Vt|+ |ERt |)), where p is the number of processes. After
building GRt , the complexity of the classification is O(|ERt | × |Vt|), in which O(|Vt|) is the cost of
computing the two SN features of an edge. We also add a multiprocessing Pool module from Python
to call the functions to compute the edge persistence and topological overlap from the aggregated
graphs. Both features are computed in parallel and asynchronously.

Algorithm 1 summarizes the code for fast-RECAST2 with multiprocessing Pool module (lines 2 and
4) and an optimization in the memory use by applying pandas dataframe from python to store the
graphs before processing them (line 3). Also, to make it more general, we rename the social edges
from friends to strong ties and acquaintances to weak ties. Finally, Brandão et al. [2017] present the
performance improvement of fast-RECAST regarding RECAST.

4.3 STACY - Our New Algorithm

Now, we propose a new algorithm to automatically classify tie strength called as STACY - Strength
of Ties Automatic-Classifier over the Years. STACY improves fast-RECAST by adding a significant
property: the edge weight (in our example, the number of publications a pair of researchers co-
authored in a given year). To create random graphs GRt with random edge weights, we use the same
algorithm to distribute the edges degree proposed by [Miller and Hagberg 2011]. However, instead of
assigning edge weight as 1 for all edges, we randomly sample a (co-authorship) count from the weighted
temporal graph provided as input of STACY. Thus, a weight is assigned to an edge between nodes i

1Multiprocessing with python: http://docs.python.org/2/library/multiprocessing.html
2Source code available in http://homepages.dcc.ufmg.br/~mirella/projs/apoena/datasets.html

Journal of Information and Data Management, Vol. 9, No. 1, June 2018.



STACY: Strength of Ties Automatic-Classifier over the Years · 57

Table I: STACY relationship classes.

Class Edge persistence Neighborhood overlap Co-authorship count
Class1 - strong social social social
Class2 - bridge+ social random social
Class3 - transient random social social
Class4 - periodic social social random
Class5 - bursty random random social
Class6 - bridge social random random
Class7 - weak random social random
Class8 - random random random random

Algorithm 2 STACY: a parallelized code to classify weighted edges of GWt as eight different tie
strength classes.
Input: Weighted temporal aggregated graph - GWt
Require: prnd ≥ 0

1: return class(i, j) ∀(i, j) ∈ UtEt

2: Construct GR,W
t and set RND(GW

1 ), ...,RND(GW
t ) using T-RND with pool.map_async

3: Get F to(x) and F per(x) and F coAcount(x) from GR,W
t using pandas dataframe

4: Get xto|F to(xto) and xper|F per(xper) and xcoAcount|F coAcount(xcoAcount) = prnd with pool.apply_async
5: for all edges(i, j) ∈ Et do
6: ClassifyEdges(per, to, coAcount) //Performed according to Table I

and j with probability pij = (wi×wj)/
∑|V |
k=1 wk for a weight distribution Dw = (w1, w2, ..., wn) of G

with n nodes [Chung and Lu 2002; Miller and Hagberg 2011].

Our new algorithm classifies the edges in eight different classes: seven social and one random, as
described in Table I. A social network property with value equal to “social” indicates an almost
zero probability of this value be produced randomly. For instance, considering the property edge
persistent, if it has a value high than one that has a high probability of being present in the random
graph, then the edge with such edge persistence is classified as social. Likewise, a social network
property value is denominated “random” if there is a high probability of this value be produced
randomly. Note that class1 defines the strongest ties since all properties are social, whereas class8
represents a completely random relationship. Moreover, class2 and class6 denote bridges, i.e., edges
that persist over time, but have a small number of common neighbors; class2 represents bridges with
a high count, and class6 with a small one. Also, class3 denotes a relationship that is strong (high
neighborhood overlap and count), but only for a particular period of time; we call it transient. On the
other hand, class4 represents a periodic relationship since it persists over time and has a high number
of common neighbors, but small count. Moreover, class5 defines a relationship with high count, but
does not persist and does not share many neighbors. This relationship tends to be isolated in the
social network. Finally, class7 represents a weak tie, because it does not persist over time and has
small count.

As RECAST, the unique parameter of STACY is prnd (better explained in Section 3), which deter-
mines when a social network property value is social or random. In addition, we have analyzed the
results for different values of prnd, and the smallest ones provide the best results, such as prnd = 0
or prnd = 0.01. Algorithm 2 presents how ties are classified in STACY. Note that STACY is also
parallelized as fast-RECAST.

5. EXPERIMENTS AND RESULTS

We now analyze the dynamism of tie strength. We first present the datasets to build the social networks
based on digital libraries from distinct areas of knowledge – Computer Science, Medicine and Physics
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Table II: Datasets and their basic statistics and information.

Dataset Number of nodes Number of edges Period
DBLP Articles 837,583 2,935,590 2000 to 2015
DBLP Inproceedings 945,297 3,760,247 2000 to 2015
PubMed 443,784 5,550,294 2000 to 2016
APS 180,718 821,870 2000 to 2013

(Section 5.1). Then, we apply fast-RECAST and STACY in the full temporal co-authorship SNs to
characterize their tie strength (Section 5.3). We also divide the SNs in two time windows to analyze the
ties’ dynamism over the years using two different strategies: link persistence and link transformation.
Finally, we derive a computational model from STACY (Section 5.4).

5.1 Data Description

We consider three publication datasets: DBLP, PubMed and APS, as collected in September 2015,
April 2016 and March 2016, respectively. DBLP is a digital library that stores Computer Science
publications. We collect publications and divide them in two datasets: DBLP Inproceedings and
DBLP Articles. Pubmed is a US national library of the Medicine National Institute of Health that
comprises biomedical publications. We consider publications from the top-20 journals classified by h-
index. APS (American Physical Society) is an organization for diffusing and advancing the knowledge
of Physics. It provides a sample dataset with its journal publications.

Considering these datasets, we build four co-authorship SNs whose main statistics are in Table II.
Moreover, Figure 1 presents the distribution of pairs of researchers as counted yearly for each dataset.
Note that the y-axis represents the frequency in log10. For example, in Figure 1a, the number 5 in the
x-axis and the corresponding number 104 in the y-axis indicate that the amount of 104 (in log10 scale)
pairs of researchers have 5 publications in common considering all years in DBLP Articles dataset.
The majority of co-authors have a small quantity of publications in a year, and PubMed has the
largest number of co-authors in a single publication (a total of 140).

5.2 Characterizing STACY Classes

Before executing fast-RECAST and STACY, we have to set a value to the parameter prnd. Vaz
de Melo et al. [2015] vary prnd through four orders of magnitude and observe that the number of
edges per class keeps in the same magnitude. Therefore, such algorithm does not need an accurate
definition of the parameter to consistently classify the edges. Here, we run fast-RECAST and STACY
for prnd = 0.01 and prnd = 0; as we obtain similar results, we show only those for prnd = 0. In
summary, when prnd = 0, a given value v of edge persistence (or topological overlap or co-authorship
count) is considered social (or not random) when there are no edges in the random graphs with edge
persistence (or topological overlap or co-authorship count) greater than or equal to v.

In this section, we characterize the eight classes of STACY according to the number of researchers’
publications. Thus, Figure 2 presents (in box plots) the number of publications of pairs of researchers
for each STACY class. In each box plot, the central rectangle spans the first to the third quartiles and
shows the outliers of the distribution. Note that strong, bridge+, transient and bursty classes have
pairs of researchers with more number of publications. This is trivial, because these classes have in
common the value “social” to co-authorship count. However, an interesting result is that the strong
class (value “social” for the three features) has more ties with high number of publications than the
others in the four datasets. The second class that has ties with more publications is transient.

Then, Figure 3 shows the structure of APS co-authorship social networks in each STACY class.
We do not show the topology for other networks due the lack of space. These visualizations allow to
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Fig. 1: Distribution of quantity of publications by pairs of researchers as counted yearly.

understand the networks’ structure regarding their nodes and edges for each class. For generating the
visualizations, we use force directed layout [Guerra-Gomez et al. 2016]. Also, Figure 4 presents the
combination of the four classes with value “social” to the co-authorship count feature. Here, there are
few relationships with significant amount of publications and their researchers are not well connected.
Also, STACY allows to combine relationships with different properties in only one visualization.

5.3 Comparing fast-RECAST and STACY

RECAST was originally used to classify users’ wireless interaction in mobile networks [Vaz de Melo et
al. 2015]. The patterns and features of such networks are different from co-authorship social networks.
Hence, our goal is to verify whether such algorithm identifies the kind of the relationships (social or
random) between co-authors. We also do the same verification for STACY.

Classification Analyses. Here, we answer the research question “What are the characteristics of
the ties according to their strength?”. Figure 5 presents the classification of the co-authorships in each
class generated by fast-RECAST for the four co-authorship SNs. In DBLP Articles, PubMed and APS,
most co-authorships are classified as weak ties, i.e., edges with small (or random) topological overlap
and edge persistence. Also, more co-authorships are classified as strong ties than as bridge ties. The
exception is DBLP Inproceedings, in which most edges are assigned to the random class and more co-
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Fig. 2: The quantity of publications by pairs of researchers in each class detected by STACY.

authorships are classified as bridges than as strong ties. These results can be explained the datasets
contain publications in journals; whereas DBLP Inproceedings has publications from conferences.
As discussed in recent studies (such as [Montolio et al. 2013; Silva et al. 2014]), Computer Science
has a very peculiar behavior when publishing in journals and conferences. Usually, conferences are
for innovative ideas and journals for archival purposes. Hence, journal coauthor networks generally
include authors who have already published together, then presenting stronger ties.

Moreover, Figure 6 shows how STACY classifies the co-authorship ties in eight different classes for
each social network. As fast-RECAST, in all networks, most ties are classified as class7 (weak) and
class8 (random). Also, many ties are classified as class4 (periodic) and class6 (bridge). The high
quantity of ties in class4 reveals that researchers tend to publish together with small frequency in a
year with colleagues from the same community (e.g., team, department, laboratory, etc). Also, the
large amount of ties in class6 indicates that most bridges tend to have a small co-authorship count in
each time. Note that less ties are classified as class1, class2, class3 and class5. These four classes have
in common the value “social” to the social network property co-authorship count (the other classes
have a “random” value). This shows that co-authorship count is an important feature to measure
tie strength since it helps to better differentiate the classes. These results are perceived in the four
co-authorship social networks.
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(a) APS - Strong (b) APS - Bridge+ (c) APS - Transient (d) APS - Periodic

(e) APS - Bursty (f) APS - Bridge (g) APS - Weak (h) APS - Random

Fig. 3: Social network for each relationship class from PubMed and APS dataset. The size of the
nodes varies according to the number of publications of the researchers.

Fig. 4: APS - the merge of strong, bridge+, transient and bursty classes.

Table III: fast-RECAST: 80% represents the past (2000-2012 to DBLP, 2000-2013 to PubMed and 2000-2010 to APS)
and 20% is the present (2013-2015 to DBLP, 2014-2016 to PubMed and 2011-2013 to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 80% 20% 80% 20% 80% 20% 80% 20%

Strong 75,128 16,083
(0.21)

136,159 19,608
(0.14)

91,143 19,555
(0.21)

45,020 30,046
(0.67)

Bridge 133,071 28,090
(0.21)

368,177 55,327
(0.15)

50,903 11,239
(0.22)

50,464 31,767
(0.63)

Weak 767,143 28,683
(0.04)

750,837 16,244
(0.02)

1,790,986 67,752
(0.04)

201,978 102,108
(0.51)

Random 931,796 76,298
(0.08)

1,340,167 69,661
(0.05)

1,021,710 63,986
(0.06)

249,711 128,479
(0.51)

Link Persistence Analysis. Now, our goal is to investigate whether ties characterized with a
given level of tie strength are likely to persist in the future. Then, to answer the research question
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Fig. 5: Amount of pairs of authors in each class generated by fast-RECAST: weak, strong, bridge and
random. Common behavior: the four SNs have a large number of weak and random ties.

“How are the dynamism of the ties over time?”. In a social context, persistence is interpreted as the
continuation of a relationship even with the progress of time, geographic distance, or occupational
mobility [Adams 1967]. Here, we analyze co-authorship ties persistence over time.

To do so, we divide the networks into two time windows, which from now on we call past and future3.
We apply fast-RECAST and STACY in the past and then, verify if the edges of each class (strong,
bridge, weak and random) continue to be in that same class in the future. We split the social networks
into two time windows and in two ways. First, we split the networks into a time window comprising
80% of the initial timestamp (past) and a time window comprising 20% of the final timestamp (future).
Second, we divide the networks into time windows of 70% (past) and 30% (future). Tables III and
IV present the results over the 80% and 20% partition for fast-RECAST and STACY, respectively.

3One may see the present as the timestamp between these two time windows
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(a) DBLP Articles (b) DBLP Inproceedings

(c) PubMed (d) APS

Fig. 6: Amount of pairs of authors in each class generated by STACY: class1 to class8. Common
behavior: most ties are in classes that co-authorship count has “random” value.

The values in the 80% column are the absolute number of edges from the 80% of the publications’
years attributed to each class. The values in the 20% column are the number of edges from the past
that are also in the future (proportions between parentheses). Answering the question “are strong ties
more likely to remain strong in the future?” specified in Section 4.1, we observe that strong ties and
bridges tend to persist over the years more than weak and random ties. Same conclusions apply to
the 70%-30% split.

Considering fast-RECAST, we emphasize the differences in the results of the APS network in the
80%-20% and 70%-30% partitions. In the first partitioning, the proportion of strong and bridge ties
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Table IV: STACY: 80% represents the past (2000-2012 to DBLP, 2000-2013 to PubMed and 2000-2010
to APS) and 20% is the present (2013-2015 to DBLP, 2014-2016 to PubMed and 2011-2013 to APS).

Edge DBLP Articles DBLP Inproceedings PubMed APS
type 80% 20% 80% 20% 80% 20% 80% 20%

Class1 1,238 485
(0.39)

2,562 674
(0.26)

6,003 2,230
(0.37)

93 17
(0.18)

Class2 886 368
(0.41)

2,498 573
(0.23)

1,113 305
(0.27)

8 2
(0.25)

Class3 0 0 0 0 37,157 2,771
(0.07)

120 95
(0.79)

Class4 1,070,400 64,249
(0.06)

1,149,339 53,445
(0.05)

175,179 34,215
(0.2)

58,663 12,122
(0.21)

Class5 0 0 0 0 12,862 1,372
(0.1)

4 3
(0.75)

Class6 834,614 84,052
(0.1)

1,440,941 106,148
(0.07)

45,419 8,718
(0.19)

36,720 6,840
(0.19)

Class7 0 0 0 0 2,042,114 76,552
(0.04)

256,564 13,908
(0.05)

Class8 0 0 0 0 634,895 36,369
(0.05)

195,001 15,573
(0.08)

from the past to the present is very high, whereas in the second partitioning such proportion is lower.
This result may indicate that the co-authorship social network from APS changes more through the
years than the other networks. Another possibility is that physics researchers do not change very
much the level of co-authorship with their collaborators over time, and this is a pattern of more recent
researchers (note that 80% of data consider more recent co-authorships than 70%). We leave for future
work further analyses of such possibilities.

Now, regarding STACY, we observe that strong ties tend to persist more than the others in DBLP
Articles, DBLP Inproceedings and PubMed in both partitions. Also, STACY better classifies strong
ties that persist over time than fast-RECAST: an increase of 0.18 for DBLP Articles, 0.12 for DBLP
Inproceedings and for 0.16 PubMed in the 80%-20% partition. For the 70%-30% partition, growth is
even better 0.22 for DBLP Articles, 0.16 for DBLP Inproceedings and for 0.22 PubMed. The exception
is APS, in which most ties in class3 (transient) and class5 (bursty) tend to persist over time. This
is an unexpected result since both classes have “random” value for edge persistence. Analyzing the
main cause for this result, we note that co-authorships in such classes occur from 2009 to 2013, i.e.,
in the last years of the partitions (the 80% includes 2009 and 2010, and the 70% includes 2009).
Thus, the edge persistence value is small, because the co-authorships occur in the years of the 30%
(future). Additionally, no ties are classified as class3, class5, class7 and class8 in DBLP Articles and
DBLP Inproceedings in both partitions. This reveals that in such networks transient, bursty, weak
and random co-authorships are recent relationships, because they are found in the full version of these
SNs (as shown by Figure 6). Also, weak and random ties are the ones that less persist over time in
PubMed and APS.

Link Transformation Analysis. We now evaluate the amount of ties from a class in the past that
continues in the same class (or changes) in the future. Here, we also complement the answer to the
research question “How are the dynamism of the ties over time?”. To avoid any kind of bias in the
process of classifying the edges, here we divide the temporal co-authorship SNs into two time windows
of 50% of the timestamp. We apply fast-RECAST and STACY in both parts and then we analyze the
link transformation through the classes. Table V shows the results for fast-RECAST and Table VI for
STACY. The values in each column represent the amount and the proportion (between parentheses)
of ties from the past that persist or change class in the future. For instance, the first values 43,711 and
0.11 in Table V(a) are the number and the proportion, respectively, of strong links in the past that
are still strong in the present. In the following, we answer the question “are weak ties more likely to
become strong ties or to become random?” by considering the results of fast-RECAST and STACY.
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Table V: Link transformation for fast-RECAST: (a) DBLP Articles, (b) DBLP Inproceedings, (c) PubMed, (d) APS.

(a) Strong Bridge Weak Random Disappear
Strong 43,711 (0.11) 27,134 (0.07) 0 0 312,765 (0.82)
Bridge 14,650 (0.04) 13,874 (0.035) 0 0 361,041 (0.925)
Weak 0 0 0 0 0
Random 0 0 0 0 0

(b) Strong Bridge Weak Random Disappear
Strong 34,761 (0.08) 26,411 (0.06) 0 0 351,935 (0.86)
Bridge 13,601 (0.02) 16,298 (0.024) 0 0 659,608 (0.96)
Weak 0 0 0 0 0
Random 0 0 0 0 0

(c) Strong Bridge Weak Random Disappear
Strong 349 (0.02) 387 (0.02) 3,267 (0.16) 2,664 (0.13) 17,044 (0.67)
Bridge 66 (0.01) 97 (0.01) 659 (0.07) 667 (0.07) 8,643 (0.84)
Weak 10,532 (0.02) 10,425 (0.02) 94,800 (0.18) 73,039 (0.13) 346,559 (0.65)
Random 1,476 (0.01) 1,792 (0.01) 13,105 (0.06) 11,941 (0.05) 195,803 (0.87)

(d) Strong Bridge Weak Random Disappear
Strong 836 (0.03) 571 (0.02) 2,219 (0.09) 1,691 (0.06) 19,625 (0.8)
Bridge 450 (0.02) 421 (0.02) 918 (0.04) 910 (0.04) 19,173 (0.88)
Weak 4,013 (0.03) 2,071 (0.02) 14,185 (0.11) 7,154 (0.06) 99,844 (0.78)
Random 1,561 (0.013) 1,158 (0.01) 4,072 (0.03) 3,625 (0.03) 107,452 (0.92)

Table VI: Link transformation for STACY: (a) DBLP Articles, (b) DBLP Inproceedings, (c) PubMed, (d) APS.

(a) Strong Bridge+ Transient Periodic Bursty Bridge Weak Random Disappear
Strong 0 1 (0.002) 0 54 (0.09) 0 19 (0.03) 0 0 549 (0.88)
Bridge+ 0 0 0 8 (0.03) 0 9 (0.03) 0 0 238 (0.93)
Transient 0 0 0 0 0 0 0 0 0
Periodic 58 (1e-04) 7 (1.39e-05) 0 59,823 (0.12) 0 19,568 (0.04) 0 0 423,247 (0.84)
Bursty 0 0 0 0 0 0 0 0 0
Bridge 24 (8.9e-05) 4 (1.5e-05) 0 13,465 (0.05) 0 6,329 (0.02) 0 0 249,772 (0.92)
Weak 0 0 0 0 0 0 0 0 0
Random 0 0 0 0 0 0 0 0 0

(b) Strong Bridge+ Transient Periodic Bursty Bridge Weak Random Disappear
Strong 0 0 0 28 (0.06) 0 21 (0.05) 0 0 387 (0.88)
Bridge+ 0 0 0 21 (0.03) 0 7 (0.01) 0 0 596 (0.96)
Transient 0 0 0 0 0 0 0 0 0
Periodic 28 (6.79e-05) 5 (1.2e-05) 0 44,665 (0.1) 0 16,425 (0.04) 0 0 351,548 (0.85)
Bursty 0 0 0 0 0 0 0 0 0
Bridge 26 (3.8e-05) 6 (8.7e-06) 0 19,148 (0.03) 0 10,691 (0.02) 0 0 659,012 (0.95)
Weak 0 0 0 0 0 0 0 0 0
Random 0 0 0 0 0 0 0 0 0

(c) Strong Bridge+ Transient Periodic Bursty Bridge Weak Random Disappear
Transient 0 0 0 91 (0.14) 0 74 (0.12) 0 0 478 (0.74)
Bridge+ 0 0 0 4 (0.05) 0 3 (0.03) 0 0 75 (0.91)
Transient 0 0 0 344 (0.19) 0 106 (0.06) 0 0 1348 (0.74)
Periodic 0 1 (4.1e-05) 0 4,780 (0.2) 0 2,440 (0.1) 0 0 17,192 (0.7)
Bursty 0 0 0 27 (0.05) 0 18 (0.03) 0 0 494 (0.9)
Bridge 0 0 0 473 (0.09) 0 290 (0.05) 0 0 4,675 (0.86)
Weak 35 (5.7e-05) 7 (1.1e-05) 0 137,563 (0.22) 0 62,939 (0.1) 0 0 416,963 (0.67)
Random 1 (7.2e-06) 0 0 10,216 (0.07) 0 5,854 (0.04) 0 0 123,557 (0.88)

(d) Strong Bridge+ Transient Periodic Bursty Bridge Weak Random Disappear
Strong 0 0 0 0 0 2 (0.3) 0 0 5 (0.7)
Bridge+ 0 0 0 0 0 0 0 0 3 (1.0)
Transient 0 0 0 0 0 0 0 0 0
Periodic 0 0 0 836 (0.03) 0 569 (0.02) 2,219 (0.09) 1,691 (0.07) 19,620 (0.8)
Bursty 0 0 0 0 0 0 1 (1.0) 0 0
Bridge 0 0 0 450 (0.02) 0 421 (0.02) 918 (0.04) 910 (0.04) 19,170 (0.9)
Weak 11 (1e-04) 2 (1e-05) 0 4,002 (0.03) 0 2,069 (0.02) 14,185 (0.11) 7,154 (0.06) 99,844 (0.8)
Random 4 (3e-05) 2 (1e-05) 0 1,557 (0.01) 1 (8e-06) 1,156 (0.01) 4,071 (0.03) 3,624 (0.03) 107,452 (0.9)

Analyzing fast-RECAST results, surprisingly, we cannot see ties classified as weak and random for
DBLP in Tables V(a) and V(b). This indicates that the features (edge persistence and topological
overlap) of these SN have high (or social) values. Also, most past ties tend to disappear in the
present, especially bridges. This may be explained by the nature of co-authorships, as researchers
collaborate during a period towards a common goal and then, start to collaborate with others. This
also reinforces the theory that weak ties are the ones that connect different communities [Granovetter
1973], which is the case of the bridge edges. For Tables V(c) and V(d), we observe similar behavior
between PubMed and APS, and most ties tend to disappear, especially the bridges and random ties.
Disregarding disappeared links, most strong and weak ties become weak or random. Surprisingly, the
weak ties are those that remain the most in the same class, comparing to the others in both networks.

As for STACY, we also cannot see ties classified as weak (class7 ) and random (class8 ) in DBLP
in Tables VI(a) and VI(b). Thus, co-authorship count in these SNs also has large (or social) values.
Also, ties are not classified as transient (class3 ) in DBLP and APS (Table VI(d)), which reveals the
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Table VII: Range of values per class in DBLP Articles.

Class Range of values
Class1 [0.27; 0.8]

Class2 [0.04; 0.12]

Class3 [0.15; 0.52]

Class4 [0.06; 0.2]

Class5 [0.005; 0.05]

Class6 [0.008; 0.03]

Class7 [0.04; 0.13]

Class8 [0.003; 0.05]

Table VIII: Range of values per class in DBLP Inproc.

Class Range of values
Class1 [0.32; 0.9]

Class2 [0.06; 0.2]

Class3 [0.19; 0.6]

Class4 [0.06; 0.19]

Class5 [0.02; 0.08]

Class6 [0.008; 0.03]

Class7 [0.03; 0.13]

Class8 [0.003; 0.01]

Table IX: Range of values per class in PubMed.

Class Range of values
Class1 [0.26; 0.67]

Class2 [0.08; 0.15]

Class3 [0.16; 0.5]

Class4 [0.08; 0.19]

Class5 [0.04; 0.07]

Class6 [0.02; 0.04]

Class7 [0.04; 0.15]

Class8 [0.009; 0.02]

Table X: Range of values per class in APS.

Class Range of values
Class1 [0.66; 1.5]

Class2 [0.11; 0.26]

Class3 [0.29; 0.63]

Class4 [0.08; 0.25]

Class5 [0.015; 0.09]

Class6 [0.015; 0.04]

Class7 [0.04; 0.14]

Class8 [0.006; 0.018]

absence of these co-authorships in earlier periods in such networks. Both DBLP networks do not have
ties classified as bursty (class5 ), which indicates ties with high co-authorship count also share a large
number of neighbors in this networks in the period covered by the 50% of data (this is also confirmed
by the presence of ties in class3 ). Like fast-RECAST, most ties also tend to disappear when classified
by STACY. The difference is that using STACY, we note that ties from different classes tend to change
to class4 (periodic) and class6 (bridge) over time, specially, in DBLP and PubMed (Table VI).

5.4 Deriving a Computational Model from STACY – A New Direction

Here, our goal is to present a possible direction to extend our new algorithm. STACY classifies ties
in eight types by combining topological overlap (to(i,j)), edge persistence (per(i,j)) and co-authorship
count (coAcount(i,j)). From this combination, we derive a computational model formally defined as
temporal_tieness(i,j) = perα1

(i,j) × to
α2

(i,j) × coAcount
α3

(i,j), in which αk (k is 1, 2 or 3) determines the
weight that is given to each feature. In other words, when αk is high for one metric and not for the
other ones, it means that such metric is more import to define the strength than the others.

Considering α1 = 1, α2 = 1 and α3 = 1 by default, Tables VII to X present the range of values
for temporal_tieness in each class. This new metric is calculated for each pair of researchers by using
the values of the metrics computed by STACY. Note that we present these values only to show that
there is a pattern in the classes through different datasets. To avoid extreme values [Brandão et al.
2014], we get the first and third quartiles of temporal_tieness in each class to define the beginning
and end of the range of values. Note that class1 (strong ties) has the largest values and class8 has
the smallest ones in the four co-authorship social networks. Also, class3 has the second largest range
of values in all networks. Unfortunately, there are still some overlaps between range of values between
some classes, but it can be solved by better analyzing the values of the α parameter, which we leave
for future work.

These results indicate that temporal_tieness has a pattern of values for each class in co-authorship
social networks that have collaboration as an inherent characteristic. Although it is necessary to better
define the range of values for some classes, temporal_tieness is able of directly identifying strong, weak
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and random ties. Thus, this new computational model can be used to measure tie strength in SN
without using STACY, which has more computational cost. This is so, because if there is a pattern
in the range of values to determine the classes, then we are able to analyze the resulting value of the
combination of the metrics and identify which class better represent the strength of the relationship.

6. CONCLUSION

In this article, we characterized the strength of ties in temporal networks by measuring the persistence
and the transformation of ties over time. To do so, we built four temporal co-authorship SNs consid-
ering three real datasets. We also proposed fast-RECAST, a parallel and faster version of an existing
algorithm (RECAST) that classifies edges into four classes of relationship. Moreover, we proposed
STACY, a parallel and fast algorithm that classifies the ties into eight different classes. We charac-
terize each class according to the number of publications of the researchers. Regarding the results,
the link persistence analysis reveals that strong ties and bridges tend to persist over the years more
than weak and random ties. Overall, this supports our initial hypothesis that strong ties persist more
than the others. Furthermore, STACY was able of finding strong ties that persist more than those
found by fast-RECAST. The results of fast-RECAST also show a different pattern for co-authorship
social network from APS when the data is divided in 80% and 20%. In this experimental setting, the
proportion of strong and bridge ties from the past to the present is very high compared to other social
networks. The link transformation analysis by using fast-RECAST and STACY revealed that most
ties tend to disappear over time. This may occur due to the co-authorships nature, e.g., researchers
tend to publish with students during a period and when the students graduate, they finalize the pro-
cess of publishing together. Finally, by using STACY, we defined a new computational model called
temporal_tieness and a range of values for each class. Thus, tie strength can be computed with low
computational cost when compared to fast-RECAST and STACY.

As future work, we plan to apply STACY to other types of social networks, for example, in GitHub
that reveals developer interactions during the software development process. We also want to add
properties to STACY to differentiate recent relationships from the old while measuring tie strength.
Finally, we plan to improve the experimental evaluation in order to better show the advantages of our
new algorithm.
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