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Abstract. A DBMS optimizer module takes its decisions by modeling the query costs upon the distribution of the
data space. Cost modeling of similarity queries, however, requires the representation of distances’ rather than data
distributions. Therefore, the finding of a suitable representation (or synopsis) for the distance distribution has a major
impact in the optimization of similarity searches. In this study, we evaluate the quality of estimates drawn from five
synopses of distinct paradigms regarding two common query criteria. Moreover, we embed the synopses into a new
parametric cost model, called Stockpile, for the cost estimation of similarity queries on metric trees. The model uses
the synopses estimation for calculating the probability of traversing a metric tree node, which defines the expected
number of both disk accesses (I/O costs) and distance calculations (CPU costs). We performed an extensive set of
experiments on real-world data sources regarding the estimates of each synopsis (and its parametric variations) by
using paired ranking tests. In global terms, three synopses have outperformed their competitors regarding selectivity
estimation, whereas two of them have also surpassed the others in the prediction of both I/O and CPU costs with
respect to Stockpile model predictions. Additionally, results also indicate the choice of the most suitable synopsis may
depend on characteristics of the distance distribution.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

Keywords: Similarity searching, cost model, synopsis, distance distribution

1. INTRODUCTION

Similarity searching is a core paradigm for many modern computer applications, such as content-based
retrieval, classification, clustering, and data visualization [Zezula et al. 2010]. Commonly, two of the
most requested similarity operations are the range and neighborhood searches. An example of range
query is (Q1) “List the bottles in the wine cellar whose combination of fixed and volatile acidities
differs at most 4 mg/L to this Italian wine”, while a neighborhood query example is (Q2) “Find the 3
closest cabs to this restaurant”. Both range and neighborhood queries can be modeled upon a metric
space, where the elements (bottles and cabs, in the aforementioned examples) are represented as points
and the (dis)similarity between each pair of points is evaluated by a distance function.

Formally, a metric space is a pair M “ xS, δy, where S is the domain of the points and δ is
a distance function that complies with the properties of symmetry, non-negativity, and triangular
inequality [Hetland 2009]. Accordingly, given a data source S Ď S, a query element sq P S and a
threshold ξ P R`, a range query Rq retrieves all elements in S within the closed ball centered at sq
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with radius ξ such that RqpS, sq, ξq “ tsi P S | δpsi, sqq ď ξu. Range queries can be seen as a subset
of relational-based queries in which range is constrained by multiple attributes. On the other hand, a
neighborhood (k-NN) query returns a quantity k P N of elements whose distance to the query element
sq are the smallest. In an equivalent way, a k-NN query can be seen as a variation of the range query,
i.e., a range search with a defined radius ξ such that |Rq| “ k [Tasan and Ozsoyoglu 2004].

Although sequential search can be used as the standard access method for solving both range and
neighborhood queries, several indexing strategies (in the format of metric access methods) have been
proposed to speed up similarity searching [Chen et al. 2017]. In particular, tree-based methods stand
out as the most suitable strategies for the indexing of very large data sources as they organize the
search space into a hierarchical and balanced fashion. Tree-based structures, such as M-Tree and
Slim-Tree [Zezula et al. 2010], focus on minimizing both distance calculations (through the clustering
of the elements) and disk accesses (by using paging principles). In practice, the performance of these
indexes also depends on the query conditions. For instance, Slim-Tree can perform better than M-Tree
for a given query element in a k-NN search, whereas M-Tree can outperform Slim-Tree regarding other
query elements for the same search criterion. Therefore, given a similarity query and one or more
indexes, a database query optimizer must decide which access method will be employed to execute
the search. Such a query optimizer’ decision is made upon a representation (or synopsis) of the data
source distance distribution that meets the query conditions [Ioannidis 2003; Zezula et al. 2010].

Many challenges arise from handling distance distributions as they are related to both data sources
and distance functions. For instance, several distributions can be built for the same data source if it is
compared by different distance functions [Cha 2007]. Moreover, distance distributions can be gathered
regarding two distinct semantics, i.e., as the (pairwise) distances between every pair of elements within
the data source [Pestov 2012] or as the distances of every element to a given viewpoint (pivot) [Ciaccia
et al. 1999]. Synopses are short representations of such distributions and, therefore, fall under the
categories of pairwise synopses or pivot-based synopses. A manifold of synopses designed for specific
problems of similarity searching optimization is found in the literature, more concrete goals being
selectivity, radius, I/O costs, and CPU costs estimation [Aly et al. 2015]. Although all these problems
certainly depend on the handling of distance distributions, to the best of our knowledge no comparison
between the synopses predictions has been conducted so far [Cormode et al. 2012; Chen et al. 2015].

In fact, most of the research effort has addressed selectivity estimation for range queries [Tao
et al. 2004; Aly et al. 2015] regarding multidimensional spaces. Such approaches are mainly based
on biasing the distance distribution, such as the uniform assumption, the fractal behavior, or the
standard distribution assumption [Clauset et al. 2009]. Another group of studies has tackled the
problem of optimizing the execution of k-NN algorithms by using synopses estimates [Tasan and
Ozsoyoglu 2004; Vieira et al. 2007]. The idea is to reduce k-NN to range queries by using estimated
coverage radii so that the k-NN queries can be efficiently solved by a branch-and-bound algorithm.
The synopses designed for optimizing k-NN queries are mainly histograms and most of them also
follow a biased assumption, in which query elements are more likely posed in high-density areas of
the search space [Zezula et al. 2010]. A few models have been proposed for the estimation of both
I/O and CPU costs regarding similarity searching. The landmark model in Ciaccia et al. [1998]
proposes using histograms on pairwise distance distributions for the evaluation of the probability of
traversing a metric-tree node, whereas the models in Tao et al. [2004] use pairwise histograms for
cost estimation on spatial indexes. The main drawback of such models is they disregard the ‘locality’
of each query, i.e., they rely on a single synopsis (derived from the pairwise distribution) without
properly considering the query element. The study in Tasan and Ozsoyoglu [2004] discusses I/O and
CPU costs from a broader perspective by defining a parametric probabilistic model for emulating the
behavior of metric indexes, in which the probability density function (p.d.f.) can be biased towards
either a known distribution assumption or multiple histogram-based representations.

In this study, we aim at evaluating the quality of estimates drawn from synopses with distinct
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biases regarding both range and k-NN queries. To do so, we extended our previous approach in
Bedo et al. [2017] by designing a parametric version of Stockpile model, which complies with both
theoretical and experimental indications of reviewed models in such a way any synopsis-based p.d.f.
can be coupled to the new approach. Stockpile distinguishes itself from related models as it enables
the cost estimation of range and k-NN queries by using multiple pivot-based synopses. The overall
idea is a small set of pivot-based synopses are enough for the representation of density around a
given query element. Our model also supports the use of synopses from pairwise distance distribution
as probability density functions, but it is unable to estimate the local densities with such a setup.
Last, but not least, Stockpile cost prediction of k-NN queries is conducted by using radii estimates,
which are parameterized towards the synopsis-based probability density function. We experiment on
real-world data sources and compare five synopses of distinct paradigms in terms of their precision
for selectivity and radii estimation, as well their quality for I/O and CPU costs prediction by using
paired ranking tests. Accordingly, the contributions of this manuscript are as follows:

(1) We revisited discrete-valued and continuous synopses for pairwise/pivot-based distance distribu-
tions and discuss their implementation,

(2) Discrete-valued synopses outperformed continuous representation in the task of providing both
selectivity and radii estimation regarding the Stockpile cost model estimation rules, and

(3) Three synopses (CDH-PAIR, CDH-LINEAR, and V-OPT HIST) showed the best performance for I/O
cost estimation, whereas two synopses (CDH-PAIR and CDH-LINEAR) presented the best results for
CPU cost estimation.

The remainder of the article is organized as follows. Section 2 summarizes related work. Section 3
introduces Stockpile and its parameters. Sections 4, 4.1, 4.2, and 4.3 show the results of experimental
evaluations, while Section 5 concludes the article.

2. PRELIMINARIES AND RELATED WORK

Distance distributions can be obtained from pairwise or pivot-based measurements. The pairwise
distance distribution (Definition 2.1) represents the frequencies of the distances between every pair of
elements from the data source. On the other hand, a pivot-based distance distribution (Definition 2.2)
represents the frequencies of the distances from all elements within the data source to a given pivot
element. Next, we present synopses for both distributions and discuss selectivity and radii estimation
strategies. Table I summarizes the notation employed in the remaining of the manuscript.

Definition 2.1 Pairwise Distance Distribution – T . Given a data source S and a distance func-
tion δ, T captures the distances from every si, sh P S. Distance value set contains the distinct
and sorted values of distances δpsi, shq between pairs of elements si, sh and is given by V “ tvpjq :
1 ď j ď mu, where m ď |S|2. Frequency freqpjq of vpjq is the number of distances in which
δpsi, shq “ vpjq and joint frequency cpjq of vpjq is the number of distances δpsi, shq ď vpjq. Therefore,
T “ txvp1q, freqp1qy, . . . , xvpmq, freqpmqyu, where vpmq P V is the largest distance between any pair of
elements si, sh P S. The joint pairwise distribution is given by T C “ txvp1q, cp1qy , . . . , xvpmq, cpmqyu.
T ` is the T extension by setting 0 as the frequency to any vpjq P R`zV.

Definition 2.2 Pivot-based distance distribution – Tp. Given a data source S, a distance function
δ, and a pivot p P P, Tp captures the distance from each si P S to p. Distance value set Vp contains
the distinct and sorted values of δpsi, pq, i.e., Vp “ tvppjq : 1 ď j ă mp, mp ď |S|}, where vppmpq

is the largest distance between any si to p. Frequency freqppjq is the number of elements of S whose
distance δpsi, pq “ vppjq. Accordingly, Tp “ txvpp1q, freqpp1qy, . . . , xvppmpq, freqppmpqyu. T `p is the Tp
extension by setting 0 as the frequency to any vppjq P R`zVp.

Journal of Information and Data Management, Vol. 9, No. 1, June 2018.



Beyond Hit-or-Miss: A Comparative Study of Synopses for Similarity Searching ¨ 39

Table I. Summary of symbols.
Symbol Definition Symbol Definition
S Data domain S Ď S A given data source
k Number of retrieved neighbors ξ Radius of a range query
P Ă S A set of pivots p P P A selected pivot
Tp A pivot-based distribution T The pairwise distribution
φppxq Linear function of a CDH CDH A Compact-Distance Histogram
fpxq Any synopsis p.d.f. D Distance exponent
F̄ pxq A normalized F pxq F pxq A cumulative p.d.f.
|Nj | Number of entries in a node M A metric tree

2.1 Representation of distance distributions

Techniques for representing distance distributions can be grouped into two classes, namely continuous-
valued and discrete-valued synopses.

(1) Continuous-valued synopses – Most of the reviewed approaches rely on known distributions, as
Uniform, Fractal, or Standard distributions [Cormode et al. 2012]. Such functions are particularly
suitable when certain distance conditions within the data source are met.

(2) Discrete-valued synopses – These synopses are usually built as histograms [Ioannidis 2003]. His-
tograms provide more details of the distribution in comparison to continuous-valued synopses, as
they enable the partitioning of the values and/or frequencies according to a number of parameters.
Such parameters can be set towards an available budget of memory.

Continuous-valued synopses

A Normal synopsis NpµpT q, σpT qq provides a very short representation of the original distance
distribution by requiring the storage of only two parameters: mean µpT q and standard deviation σpT q.
Normality hypothesis tests, such as the Kolmogorov–Smirnov test [Clauset et al. 2009], can be used to
determine whether or not T is well approximated by NpµpT q, σpT qq. Such a synopsis is appropriate
for data sources embedded in high dimensional spaces, where distances tend to concentrate by the ratio
σpT q{µpT q whenever Lp functions are used for measuring distances [Pestov 2012]. Figure 1 presents
the pairwise distribution and Normal approximation for a synthetic data source of 1, 000 elements and
increasing number of independent and identically distributed (i.i.d.) dimensions in the r0, 1s interval.
Equation 1 presents the p.d.f. for the Normal synopsis for any distance x to be evaluated.

fpxq “
e
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px´µpT qq2
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Fig. 1. Pairwise distance distributions of a synthetic data source with i.i.d. attributes and their approximation by
normal standard distributions for increasing number of dimensions.
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On the other hand, the fractal assumption represents pairwise distributions within data sources with
self-similarity properties, i.e., the distribution within small portions are similar to the distribution
of the whole data according to an exponent scaling. Although several approaches can be used to
determine the fractal dimension [Clauset et al. 2009], a relevant approach is the approximation of
the joint pairwise distribution by the distance exponent [Vieira et al. 2007]. Accordingly, if the joint
pairwise distribution of a self-similar data source is scaled to a log-log plot, then its joint frequencies
can be approximated by a linear p.d.f. fpxq. In other words, given a data source S and its log-log
representation of T , fpxq is obtained by a linear method, e.g., least-squares1, as in Equation 2.

fpxq “ c1xD, (2)

where c1 is a constant of proportionality and slope D is the distance exponent that approximates the
distribution’s fractal dimension. Figure 2(a) shows both log-log plot and fpxq for the joint pairwise
distance distribution of a synthetic data source with 1, 000 elements that exhibit the self-similarity
behavior. A useful synopsis variation is presented in Figure 2(b), in which fpxq is shifted for the
interpolation of Point 0 and provide radii estimation (see Section 2.2).
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Fig. 2. Joint pairwise distance distribution of a synthetic data source with self-similar behavior approximated by fpxq.
(a) Least-squares approximation. (b) Shifted fpxq for the interpolation of Point 0.

Discrete-valued synopses

Histograms are discrete alternatives to continuous-valued synopses. The idea is both T and Tp
can be partitioned according to the maximum number of buckets that satisfy the DBMS optimizer
memory budget [Shekelyan et al. 2017]. Essentially, histograms differ from each other by their partition
constraints that define how buckets are formed. For instance, classic equi-histograms target the
summarization of equal parameters, e.g., the constraint on an equal interval of distance values generate
Equi-Width histograms, while the restriction on an equal interval of frequencies induces Equi-Depth
histograms. Also, objective functions to be optimized can play the role of histogram partitioning
constraints. For instance, the minimization of the variance of frequencies for each bucket of a histogram
generates V-Optimal histograms, which are still state-of-the-art synopses of minimal error for query
optimizers that handle fixed-memory budgets [Ioannidis 2003; Cormode et al. 2012]. Figure 3(b)
presents an example of a V-Optimal limited by a fixed-memory budget of six buckets on the pivot-
based distance distribution of Figure 3(a).

Aimed at avoiding the uniform distribution of frequencies, a Compact-Distance Histogram [Bedo
et al. 2018] represents fpxq as a piecewise linear function. Therefore, the frequency within a bucket bi
is calculated according to a linear function φpxq “ αbi ¨ x` βbi . The partition constraint of a CDH is
defined in such a way the absolute differences between the frequencies of φpxq and that of the distance
distribution is minimal. As a result, CDH enables the representation of the original distribution as both
discrete-valued and continuous-valued functions. Notice, p.d.f.’s can be straightforwardly drawn from

1Although the natural logarithm is often employed, the fitting method does not depend on the logarithm base.
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(a) (b) (c)

Fig. 3. Histogram partitioning of a pivot-based distance histogram. (a) Original distance distribution. (b) V-Optimal
histogram limited by 06 buckets. (c) CDH histograms limited by 04, 05, and 06 buckets.

histograms as the frequency of the bucket that contains distance value x. In particular, fpxq “ φpxq for
the bucket bi that includes distance x. CDH construction follows the interactive routine of V-Optimal
histograms, as the approximation error decreases in terms of the number of buckets. However, the
CDH approximation error tends to be smaller than in comparison to V-Optimal for the same number
of buckets. Figure 3(c) presents CDH’s for the distribution Tp in Figure 3(a).

2.2 Cost models for metric trees

Metric trees are indexing strategies that rely on balanced data source partitioning [Zezula et al. 2010].
The basic methods of this category, M-Trees, Slim-Trees, and PM-Trees, are dynamic and overlapping
structures that hierarchically organize the elements within metric spaces into closed balls, which are
stored as nodes and noted N [Traina et al. 2002]. Basically, M-Trees use two types of nodes, namely
directory and leaf nodes. Directory nodes store a set of balls, whereas leaf nodes store the indexed
elements themselves. Accordingly, a leaf node includes a set of elements and their distances to the
parent of the leaf node. A directory node includes rooted subtrees, the covering radius, and the
distance of rooting elements to the parents. Figure 4(a–b) shows examples of M-Tree and Slim-Tree.
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Fig. 4. Examples of metric tree structures by using the L2 distance. (a) Overlapping M-Tree. (b) Slim-Tree with
minimized node overlapping. (c) Two-level binary VP-Tree. (d) Leaves of a binary MDF-Tree.

Analogously, static metric trees, as VP-Trees and MDF-Trees, rely on the balanced and disjoint data
source partitioning. Directory nodes of static trees include a pivot element, a covering radius, and two
pointers to the subtrees. Leaves include a pivot, both minimum ξÓ and maximum ξÒ coverage radii,
and data elements. For VP-Trees, the minimum radius of left leaf nodes is zero, while the maximum
is the median of distances between the elements and the pivot. Likewise, the minimum radius of right
leaf nodes is the median, whereas the maximum is the longest distance between leaf elements and the
pivot. In MDF-Trees, the minimum radius is zero, while the maximum is the largest distance between
leaf elements and the pivot. Figure 4(c–d) shows VP-Tree and MDF-Tree partitioning examples.

Both dynamic and static metric trees rely on the ball partitioning principle, where each node can be
seen as a closed ball with a rooting pivot and coverage radii. Therefore, parametric estimations can
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be drawn from any metric tree just by adjusting the interval of distances to the ball coverage radii.

Cost estimation of range queries

A widely employed baseline cost model for metric trees is the approach in [Ciaccia et al. 1998]. Their
proposal assumes the cost of range queries can be estimated by a biased model, which implies the
distances between the query element and the points in S are supposed to follow a pairwise distance
distribution. The distribution itself is approximated by one Equi-Width histogram that provides
the frequency approximation within the buckets as the p.d.f. fpxq. Therefore, given a range query
RqpS, sq, ξq, the probability of scanning a node rooted by si with radius ξi of a M-Tree-like method
M that indexes S is expressed as in Equation 3. The number of scanned nodes in tree M is estimated
by the sum of the probability of accessing each node as in Equation 4. Likewise, the number of
comparisons between sq and the elements in M is the sum of the weighted probabilities of accessing
each node, where the weight is the number of entries in the node, as in Equation 5.

Probtδpsq, siq ď ξ ` ξiu «

ż ξ`ξÒsi
“ξ`ξi

ξÓsi“0

fpxqdx
L

ż vpmq

0

fpxqdx “ F̄ pξ ` ξiq, (3)

nodes_scannedCiacciapM, sq, ξq «
ÿ

NiPM

F̄ pξ ` ξiq (4)

distances_calculatedCiacciapM, sq, ξq «
ÿ

NiPM

|Ni| ¨ F̄ pξ ` ξiq (5)

Cost estimation of k-NN queries

Cost modeling of k-NN queries requires one additional step in comparison to range searches: the
estimation of the query radius. The baseline model in Ciaccia et al. [1998] proposes the use of F̄ pxq
as part of a binomial probability function so that an estimated radius ξ for a k-NN query can be
drawn from T . The drawback of such approach is the resulting p.d.f. is not analytical and depends on
an expensive numeric procedure. Alternatively, the approach in Vieira et al. [2007] proposes the use
of the distance exponent for radius estimation. Other models also rely on radii estimation by using
synopses on the joint pairwise distribution. For instance, the study in Tao et al. [2004] extends the
binomial approach of Ciaccia et al. [1998] for a fast k-NN cost estimation in low dimensional spaces,
whereas the proposal of Lu et al. [2014] estimates the query costs by combining S to other domains.

These reviewed models, however, are biased towards the adoption of a single synopsis on the pairwise
distribution. The study in Tasan and Ozsoyoglu [2004] comes up with a suggestion for avoiding such a
bias in the task of predicting the k-NN radii. Basically, the authors propose using multiple histograms,
so that no inference on the type of the distance distribution itself is required. The authors argue if a
single synopsis on T is available, then radius ξ1 of a k-NN query can be straightforwardly estimated
by the inverse of Equation 6.

k “

ż ξ1

0

fpxqdpxq (6)

Nevertheless, the authors also add the unique representation of the pairwise distribution can be
replaced by synopses on pivot-based distance distributions. Such an observation is similar to the
“Homogeneity of Viewpoints” property [Ciaccia et al. 1998; Ciaccia et al. 1999], but authors in Tasan
and Ozsoyoglu [2004] suggest keeping the pivot-based distances instead of replacing them by the
pairwise distribution. Therefore, given a k-NN query, a set of pivots P, and a set of pivot-based
synopses, Equation 6 can be rewritten as Equation 7.
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k “
ÿ

p P P
Probppq ¨

ż ξ1

0

fppxqdx (7)

where
ř

p P P Prob(p) is the binary probability of pivots p having the same distance distribution of
the query element in the neighborhood search, i.e., weighting of individual estimations.

The approach in Tasan and Ozsoyoglu [2004] removes many biases from previous models, but still
have practical setbacks. First, predictions drawn from histograms vary according to their partition
constraints and the best setting for a histogram to represent distance distributions is yet to be found.
Second, a suitable p.d.f. must be defined for the calculation of Prob(p) as it is not always possible
to set P “ S due to memory constraints. An initial discussion on the finding of a suitable p.d.f. is
carried out in the model of Ciaccia et al. [1999], where authors claim expensive empirical assessments
can be used for adjusting the parameters of an exponential function to be used as Prob(p).

Alternatives for cost models based on weighted p.d.f.s are the use of pre-computed distance sampling
approaches [Cormode et al. 2012]. Although such approaches report good quality cost estimation, they
are designed for specific pivot-based indexes so that estimation rules are tightly coupled to either index
design or searching algorithms. For instance, the model in Chen et al. [2015] extends the model of
Ciaccia et al. [1998] for SPB`-Trees, whereas the method in Aly et al. [2015] assumes neighborhood
costs to be stable, i.e., costs of executing a k-NN query with larger k is the same of executing a query
with a smaller k, provided the incremental searching procedure is employed.

In this manuscript, we pick up from open arguments and indications in Ciaccia et al. [1998] and
Tasan and Ozsoyoglu [2004] for the finding of an asymptotic cost model that is isolated and detached
of specific indexes’ designs. Additionally, we also take into account memory constraints so that
continuous and discrete synopses can be seamlessly integrated into our parametric cost model.

3. THE STOCKPILE COST MODEL

In this section, we discuss a parametric cost model for predicting selectivity, I/O and CPU costs for
any range or k-NN query to be executed by a metric tree. The model itself relies on two previously
computed data structures, namely, (i) a set of synopses and (ii) meta-statistics (e.g., the coverage of
nodes) about the metric tree. Such structures are typically kept in main memory as a pile of resources
(and hence the name Stockpile for the model) to be evaluated on-the-fly according to user-posed
queries, which requires the model structures to be parameterized by space constraints. Histograms
are especially suitable for this scenario, as they enable the constraint on the number of buckets, but
continuous-valued synopses can also be used on Stockpile, as they scarcely violate space constraints.

If a synopsis on the pairwise distribution is employed for the representation of the p.d.f. fpxq, then
Stockpile estimation disregards the query element and provides global estimates as in the rules of
Equations 4, 5, and 6. On the other hand, if pivot-based synopses are employed for representing p.d.f.’s
fppxq, then Stockpile also takes into account the query element by assuming pivots closer to query
points are more likely to resemble the distance distributions of the query elements. Such a premise is
particularly fair whenever the density of distances around the pivot is uniformly distributed according
to fppxq. As it is not always the case, Stockpile can be set to use a pairwise distance distribution
for estimating the relevance of each pivot prediction. Therefore, the Stockpile parameters are:

(1) distance distributions, which can set as either pairwise or pivot-based,
(2) synopses on the selected distributions, which must comply with space constraints, and
(3) weighting of pivot-based predictions, which can be obtained as either linear combination or the

probability measure drawn from the pairwise distance distribution.
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3.1 Weighting of pivot-based predictions

Combining multiple predictions from pivot-based synopsis depends on finding the probability of pivots
p having the same distance distribution of the query element of the search. Therefore, if the density is
uniformly distributed around a pivot, then the weighting of each pivot contributions can be achieved
by using a linear combination of the distances between them to the query element. Formally, let sq
be a query element and P be a set of pivots, the probability Probppq of sq resembling the distribution
fppxq is proportional to δpsq, pq so that Probppq “ dpsq, pq{C2, where dpsq, pq “ C1 ´ δpsq, pq. Both
values C1 and C2 vary according to each query element sq and are given by C1 “

ř

pPP δpsq, pq and
C2 “

ř

pPP dpsq, pq, respectively. Under this assumption, the joint probability of the query element
resembling the pivots in P is given by Equation 8.

ÿ

pPP
Probppq “

dpsq, p1q

C2
`
dpsq, p2q

C2
` ¨ ¨ ¨ `

dpsq, p|P|q

C2
“
C1p|P| ´ 1q

C1p|P| ´ 1q
“ 1 (8)

Removing the uniform assumption on the density distribution requires the use of a second synopsis
for determining the relevance of each pivot contribution. A generic strategy for weighting such con-
tributions is using a synopsis on the pairwise distance distribution to represent the distance between
the query element and the pivots in terms of a global p.d.f.. Therefore, having a synopsis on the
joint pairwise distribution as F pxq, the probability Probppq of sq resembling the distribution fppxq is
proportional to F pδpsq, pqq so that Probppq “ dpsq, pq{C3, where C3 “

ř

pPP F pdpsq, pqq. In this case,
the joint probability of the query element resembling the pivots in P is given by Equation 9.

ÿ

pPP
Probppq “

F pdpsq, p1qq

C3
`
F pdpsq, p2qq

C3
` ¨ ¨ ¨ `

F
`

dpsq, p|P|q
˘

C3
“

ř

pPP F pdpsq, pqq
ř

pPP F pdpsq, pqq
“ 1 (9)

3.2 Costs estimation of range queries

Let a range query RqpS, sq, ξq to be executed in a metric tree M. All leaf nodes in M that intercept
closed query ball defined by xsq, ξy must be evaluated because their elements are potentially inside the
query ball. Root nodes to these leaf nodes must be evaluated as well. Therefore, the local probability
of accessing a node Nj regarding a given pivot p is modeled upon the covering radius of the node pξjq
and the range query radius pξq as expressed by Equation 10.

Probpnode is accessedq “ Probtδpsq, pq ď ξj ` ξu

« F̄ppξj ` ξq “

ż ξj`ξ

0

fppxqdx

ż vppmpq

0

fppxqdx

(10)

Local probability is set to 1 whenever ξj ` ξ ą vppmpq. The overall probability of accessing a node
of M is given by each pivot p P P and the joining of Equations 8/9 and 10 into Equation 11. Likewise,
Stockpile combines Equations 8/9 and 11 into Equation 12 for the estimation of distance calculations
of range queries.

nodes_scannedStockpilepM, sq, ξq «
ÿ

NjPM

ÿ

pPP
Probppq ¨ F̄ppξ ` ξjq (11)
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distances_calculatedStockpilepM, sq, ξq «
ÿ

NjPM

|Nj | ¨

˜

ÿ

pPP
Probppq ¨ F̄ppξ ` ξjq

¸

(12)

The intuition in Equation 12 considers the number of distance calculations is proportional to the
probability of accessing each node, where |Nj | is either the number of pivots (in the case of directory
nodes) or the number of elements (in the case of leaf nodes).

3.3 Cost estimation of k-NN queries

Stockpile models the execution of k-NN searches by setting query radius ξ as the distance between
the query element and its kth neighbor, which reduces k-NN to range queries. Formally, given a
k-NNpS, sq, kq query and a p.d.f. fppxq related to pivot p, Stockpile calculates the distance between
sq and its kth neighbor as the threshold ξ1p according to the inverse of Equation 13.

k “
|S|

şvppmpq

0
fppxqdx

¨

ż ξ1p

0

fppxqdx (13)

where term p|S|q{p
şvppmpq

0
fppxqdxq is the uniform distribution of the synopsis approximation error.

Thereafter, Stockpile combines the probability of selecting the pivot in Equations 8/9 to Equation 13
in such a way k-NN pS, sq, kq is reduced to a range query whose radius depends on P. The number
of scanned nodes regarding a k-NN query is given by Equation 14, whereas the number of distance
calculations is estimated as in Equation 15.

nodes_scannedStockpilepM, sq, kq «
ÿ

NjPM

ÿ

pPP
Probppq ¨

¨

˚

˚

˚

˚

˝

k

|S|
`

ż ξ1p`ξj

ξ1p

fppxqdx

ż vppmpq

0

fppxqdx

˛

‹

‹

‹

‹

‚

(14)

dist_calcStockpilepM, sq, kq «
ÿ

NjPM

|Nj | ¨

»

—

—

—

—

–

ÿ

pPP
Probppq ¨

¨

˚

˚

˚

˚

˝

k

|S|
`

ż ξ1p`ξj

ξ1p

fppxqdx

ż vppmpq

0

fppxqdx

˛

‹

‹

‹

‹

‚

fi

ffi

ffi

ffi

ffi

fl

(15)

3.4 Selectivity estimation

Stockpile provides a final estimation regarding the selectivity of range queries. The number of
retrieved elements in range searches depends on the distances summarized by the p.d.f. fppxq for
every pivot in P. Formally, given a range query RqpS, sq, ξq, Stockpile predicts the number of
retrieved elements according to the Equation 16.

|RqpS, sq, ξq| «

˜

ÿ

pPP
Probppq ¨ F̄ppξq

¸

¨ |S| (16)

The intuition in Equation 16 is the number of retrieved elements is related to the proportion of the
area of p.d.f. related to each pivot, which is combined according to Probppq and scaled by cardinality.

Journal of Information and Data Management, Vol. 9, No. 1, June 2018.



46 ¨ M. V. N. Bedo et. al.

4. EXPERIMENTS

This section reports on the evaluation of the quality of Stockpile estimation for similarity searching
optimization. Table II describes the group of representative real-world data sources employed in
the experiments. We select data sources with varying cardinality (Card.), low-to-medium embedded
dimensionality (Dim.), and intrinsic dimensionality (rDs), whose content represent spatial (CITIES
and OCCUP), business (CARD and WINE), image (MAGIC and NASA), and biology (CASP) patterns and
characteristics. Accordingly, we experimented on Stockpile for comparing the predictions draw from
several types of continuous and discrete-valued synopses on the same cost model. All methods were
implemented by using the Arboretum library2, the g++ compiler and the KUbuntu 17.01 OS on an
Intel Core i7 2.67 GHz, 6 GB of RAM and HDD SATA III 7200 RPM.

Aiming at designing a common testbed for the synopses, we bounded Stockpile parameters to
available memory and equally set budget per histogram to 256 buckets, the number of pivots to 5, and
pivot criterion to maximum variance. As a result, we evaluated 5 Stockpile variations, as follows:

—Distance exponent (DIST-EXP), which employs a fractal-based continuous-valued synopsis. Such
a Stockpile setting coadunates with the revised approach in Vieira et al. [2007];

—Normal distribution (NORMAL), which uses a Normal approximation of the pairwise distance
distribution. This approximation is suitable for pairwise distributions that present the distance
concentration phenomenon [Pestov 2012];

—V-Optimal Histogram (V-OPT HIST), which employs a discrete-valued V-Optimal histogram for
the pairwise distribution representation. Such a Stockpile setting resembles the baseline model of
Ciaccia et al. [1998], but it relies on a minimal error histogram;

—Linear combination of local histograms (CDH-LINEAR), which uses pivot-based CDH synopses.
The rationale for weighting the estimates is the linear combination of dissimilarities between the
query element and the pivots. Such a Stockpile variation extends the baseline model of Ciaccia
et al. [1998] by following the indications of Tasan and Ozsoyoglu [2004], and without being tightly
coupled to a specific index as in Aly et al. [2015] and Chen et al. [2015]; and

—The pairwise weighting of local histograms (CDH-PAIR), which employs pivot-based CDH syn-
opses and one additional pairwise CDH for the weighting of individual estimates. Such a Stockpile
setting extends the previous linear combination-based of CDH’s in Bedo et al. [2017].

4.1 Stockpile radii estimation

In the first experiment, we employed Stockpile parametric radius estimation so that estimates from
DIST-EXP, NORMAL, and V-OPT HIST were calculated as in Equation 6, whereas CDH-LINEAR and
CDH-PAIR as in Equation 13. We took 10% of random instances of each data source to emulate
query elements and queried the remaining 90% of data. The neighborhood queries were defined for
values of k ranging from 50 to 500 in steps of 50. We also calculated the absolute differences of
the radii provided by the synopses to the true k-NN query radius (obtained after the k-NN query
execution) and normalize that differences by the maximum pairwise distance within the queried el-
ements, i.e., Error %“ |estimated_radius´true_radius|

maximum_distance . Figure 5 shows the medians of Error % reached
by each Stockpile parameterization. In overall, discrete synopses, i.e., histograms, outperformed
continuous-based synopses distance exponent and Normal distribution for most of data sources and
the wider values of k. Both DIST-EXP and NORMAL settings presented extreme behaviors, i.e., they
achieved the best predictions for some cases (e.g., DIST-EXP and OCCUP data sources), but reached the
worst estimations in others (e.g., DIST-EXP and WINE data sources). Such results indicate continuous

2Available at: bitbucket.org/gbdi/arboretum
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Table II. data sources employed in the experiments.
Name Card. Dim. rDs δ Available at:
ALOI 110,250 13 8 Canberra aloi.science.uva.nl
CARD 30,000 23 5 L1 archive.ics.uci.edu/ml/data sources/default+of+

credit+card+clients
CASP 45,730 09 4 Bray-Curtis archive.ics.uci.edu/ml/data sources/Physicochemical

+Properties+of+Protein+Tertiary+Structure
CITIES 5,507 02 2 L1 www.ibge.gov.br
HTRU 17,898 08 6 Canberra archive.ics.uci.edu/ml/data sources/HTRU2

LETTER 20,000 16 9 L2 archive.ics.uci.edu/ml/data
sources/letter+recognition

MAGIC 19,020 10 4 L2 archive.ics.uci.edu/ml/data
sources/magic+gamma+telescope

NASA 40,700 20 6 Canberra dimacs.rutgers.edu/Challenges/Sixth/participants
OCCUP 20,560 05 3 Canberra archive.ics.uci.edu/ml/data

sources/Occupancy+Detection+
WINE 6,497 11 6 Bray-Curtis archive.ics.uci.edu/ml/machine-learning-databases/wine

-quality/

synopses are suitable for hardened distributions, whereas discrete synopses are more flexible in cap-
turing distribution nuisances. Moreover, histograms reached a stable behavior for Error % in every k
value in all but CARD and OCCUP scenarios, i.e., similar error ratio regardless of query parameters.
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Fig. 5. Differences in the radii estimation for the five evaluated Stockpile parameterizations.
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We performed a statistical evaluation for determining if significant differences between the predic-
tions could be found. Accordingly, we applied the Friedman ranking test [Demsar 2006] to check the
differences among the predictions of 316,140 searches (31,614 query elements and 10 search param-
eters). By using a significance level of 0.1, we obtained a p-value of 2.1 ¨ 10´15 and, consequently,
we rejected the hypothesis that differences among the approaches are due to random sampling and
concluded at least one of them differs from the others. After the rejection of the Friedman’s null
hypothesis, we performed a post-test for determining the strategies whose predictions are significantly
different. We applied the Nemenyi post-test [Garcia and Herrera 2008], which essentially uses a rank-
ing strategy to determine the p-values for each pair of settings. In the post-test, the lower the p-value,
the more significant the difference between the pair of compared Stockpile parameterizations. Fig-
ure 6 shows the grayscale heat map (column versus line) based on the Nemenyi p-values regarding the
evaluated parameterizations. Table cells in lighter background present lower p-values. Additionally,
the heat map also divides the Nemenyi p-values into four classes: (i) 99% confidence or higher –
highlighted with a double underline, (ii) 95% to 99% confidence – single underline, (iii) 90% to 95%
confidence – bold text, and (iv) lower than 90% confidence – non-bold text.
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Fig. 6. Grayscale heat maps of Nemenyi p-values. Double underline indicates column beats line within more than 99%
confidence. Single underline indicates 95% to 99% confidence. Bold text indicates 90% to 95% confidence. Non-bold
values indicate no significant difference was found.

According to the heat map in Figure 6(a), discrete synopses V-OPT HIST, CDH-LINEAR and CDH-PAIR
were more suitable than continuous-based approaches DIST-EXP and NORMAL for radii estimation.
Moreover, CDH-PAIR was also significantly better than CDH-LINEAR, which indicates using the pairwise
distance distribution for the weighting of contributions of each pivot is more suitable than using the
linear combination of their estimates.

4.2 Stockpile selectivity estimation

In this experiment, we also took 10% of random elements for selectivity evaluation and queried on the
remaining 90% of data. We requested the five Stockpile parameterizations for providing selectivity
estimates of range query and compare their outputs to the real number of returned elements in terms
of absolute differences, i.e., we measured Error %“ |estimated_of_elements´number_of_returned_elements|

queried_data_cardinality .
Figure 7 shows the medians of Error % calculated for selectivity estimations from Stockpile param-
eterizations regarding queries whose radii vary from 5% to 20% of the data source maximum pairwise
distance. Graphs roughly present discrete synopses were more suitable than continuous-based distance
representations, whereas overall Error % tends to decrease when radii coverage increases in most cases.
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Fig. 7. Differences in the selectivity estimation for the five evaluated Stockpile parameterizations.

We applied the Friedman ranking test by using all predictions and every queried element and radius
for the finding of the most suitable Stockpile settings. A p-value of 5.5 ¨ 10´9 was obtained for a
significance level of 0.1 and, consequently, we were able to reject the Friedman’s null hypothesis. Next,
we resort to the Nemenyi post-test for the comparison of the p-values regarding every pair of Stockpile
settings. Figure 6(b) presents the grayscale heat map based on the Nemenyi p-values by using the
same rationale of the heat map of Figure 6(b). Predictions drawn from Stockpile with CDH-PAIR
outperformed Stockpile with V-OPT HIST estimations for a 0.1 confidence level, whereas synopsis
CDH-PAIR outperformed DIST-EXP and NORMAL within 0.05 confidence level. Likewise, Stockpile with
both V-OPT HIST and CDH-LINEAR outperformed DIST-EXP and NORMAL by significant levels.

Again, synopses based on histograms reached the lowest Error % (as in the case of radii prediction),
whereas CDH-PAIR also outperformed V-OPT HIST regarding selectivity estimation. Although his-
tograms were more stable than continuous-valued synopses, Error % of Normal-based setting dropped
for ranges closer to the mean of the pairwise distribution, e.g., CARD, CASP, MAGIC, and OCCUP. Last,
but not least, results show selectivity predictions tend to converge as range increases (CARD, CASP,
CITIES, LETTER, MAGIC, and OCCUP), which is a different behavior of that observed for radii estimation
regarding increasing values of k and, consequently, larger neighborhood distances.

4.3 Stockpile I/O and CPU cost estimation

In our last experiment, we compared the Stockpile parameterizations in the task of providing I/O
and CPU cost estimation. In this comparison, we indexed the queried elements and consider the
number of scanned nodes as the I/O costs and the number of distance calculations as the CPU costs.
We used 10% random sampling of elements for the querying of the remaining 90% of elements indexed
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on Slim-Trees by using the default Arboretum parameters. Figure 8 summarizes the comparison
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Fig. 8. Differences in the prediction of distance calculation for the five evaluated Stockpile parameterizations.

between the medians of predictions regarding distance calculations of range queries with radii vary-
ing from 5% to 20% of the maximum pairwise distance of the indexed elements. Estimates from
DIST-EXP, NORMAL, and V-OPT HIST were calculated following Equations 4 and 5, whereas estimates
from CDH-LINEAR and CDH-PAIR were calculated as in Equations 11 and 12. Error % was calculated
as |estimated_CPU_cost´true_CPU_cost|

queried_data_cardinality . We omitted the plots of medians for I/O costs as they were
similar to that in Figure 8. In overall, results indicate histograms were more suitable than continuous-
based synopses. Again, we applied the Friedman’s ranking test to determine if the predictions were
significantly different. For a significance level of 0.1, we obtained p-values of 5.9¨10´13 and 1.9¨10´9 re-
garding I/O and CPU costs. Accordingly, we applied the Nemenyi post-test in both cases. The results
for I/O cost estimation, as shown in Figure 8(c), indicate Stockpile with CDH-PAIR outperformed
all competitors within significant levels. As for CPU costs, as shown in Figure 8(c), Stockpile with
CDH-PAIR also outperformed all competitors, but CDH-LINEAR was more suitable than V-OPT HIST. As
in the case of selectivity estimation, Error % ratio of Normal-based setting drops for ranges closer to
the mean of the pairwise distributions, whereas Error % of all synopsis predictions seem to converge
in most of the scenarios as the distances’ range increases.

We highlight, unlike the competitors, estimates drawn from Stockpile with CDH-PAIR were among
the most suitable in the four experimented scenarios: radii, selectivity, I/O and CPU costs estimation.
For instance, CDH-LINEAR and V-OPT HIST were also suitable for specific tasks, as radii estimation, but
they failed in I/O and CPU prediction. Therefore, results show Stockpile with CDH-PAIR provided
the best predictions for the estimation of similarity searching costs.
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5. CONCLUSIONS

Cost modeling of similarity searches requires a proper handling of distance distributions. In this study,
we discussed several distribution representations as probability density functions, called synopses, and
estimation rules to be drawn from them. We also presented the Stockpile cost model that relies
on pivot-based synopses for estimating query radii, selectivity, I/O and CPU costs. We performed
an extensive set of experiments on real-world data sources and three Stockpile settings (V-OPT
HIST, CDH-LINEAR, CDH-PAIR) have outperformed their competitors in radii and selectivity estimation,
whereas one of them (CDH-PAIR) has also surpassed the others in the prediction of I/O and CPU costs.
An extension to the isolated and parametric Stockpile cost model would be the design of a model
for weighting and combining predictions from different cost models tightly coupled to specific metric
indexes, which we will investigate as future work.
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