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Abstract. The Web provides huge volumes of data, which makes efficient data collecting and processing not easy
tasks. An example of such volumes is in software repositories, a type of Web storage platform for software and projects,
their developers and companies. In this work, we first present a systematic literature review over topics related to such
repositories. Then, we extract their data and enrich it by building a development network. Based on such a network, we
investigate tie strength metrics on their capability of defining new information through a correlation analysis. We also
use the metrics to rank pairs of developers by considering three different aggregate methods. Our experimental analysis
shows different results for each ranking method when considering all pairs of developers, which reveals the difficulty
of choosing the best way to rank pairs of developers. However, when considering the top 10 best ranked pairs, two
methods present similar results. Also, the combination of tie strength metrics with ranking aggregated methods allows
to identify important developers in the network and their collaboration strength.

Categories and Subject Descriptors: Information Systems [World Wide Web]: Social Networks

Keywords: Metrics, Social Networks, Web Data, Web Software Repositores

1. INTRODUCTION

Data are available everywhere on the Web, from social media and online networks to simple websites.
Most of such data are heterogeneous, diverse, and represent different entities from the real world and
their interactions. However, extracting relevant information from such volumes of data is not an easy
task. Overall, any method to extract and enrich such data in order to discover useful knowledge is
welcome and has potentially many real applications.

One specific scenario is software repositories, a type of Web storage platform for software and
projects, their developers and companies. The data available can be processed in order to not only
acquire technical information (about projects and software) but also study social relations (about
developers, teams, and their interactions). Furthermore, studying such relations allows to understand
social coding as well. Social Coding is a software development approach for collaborative work, which
instigates discussion and sharing of ideas and knowledge among developers [Dabbish et al. 2012].
This methodology has changed the way software is developed since geographically distant developers
can access collaborative platforms and participate in different projects remotely. Examples of Web
platforms that allow Social Coding include Google Code1 and GitHub2.

1Google Code: code.google.com
2GitHub: github.com
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Given the data extracted from developers and their projects, one way to enrich it and produce new
knowledge is through building social networks. These networks are usually modeled as graphs with
participants as nodes and their relationships as edges. For software collaboration, nodes represent
developers who can create/contribute/share software repositories and projects [Alves et al. 2016;
Batista et al. 2017b]. Then, such participants can be connected (through graph edges) by the projects
and repositories they have in common, as well as through other activities provided in the platform
such as adding comments and open/reply issues in the same repositories.

In this work, we analyze the properties of collaborative networks that can represent the strength of
the relationship between developers, prioritizing aspects related to the time of such paired contribution.
Specifically, our goal is to find semantic properties of the relationship between developers and analyze
their usage to determine the strength of developers’ relationship. We use the correlation between
topological and semantic metrics introduced in our previous works ([Alves et al. 2016] and [Batista
et al. 2017c]) to analyze information about tie strength. Such tie strength metrics represent a way to
extract relevant information from data, then allowing to acquire knowledge over developers and their
collaborations. Unlike Alves et al. [2016] and Batista et al. [2017c], here we analyze how topological
metrics change over time for an extended dataset that consider three programming languages classified
as more collaborative and three as less collaborative, with updated data till May 2017. Note that we
have previously considered a smaller set of languages in [Batista et al. 2017c].

Tie strength metrics may also serve to rank pairs of developers. Then, ranking in this context is
useful to, for example: (i) analyze team formation by providing evidence about the engagement of
individuals on a team [Hahn et al. 2006]; (ii) detect communities by grouping individuals with similar
strength or evaluate the quality of the community detection algorithm [Brandão and Moro 2017a];
and (iv) recommend experts to solve a bug by identifying developers working in similar projects [Yu
et al. 2016]. Indeed, we build rankings based on the collaboration strength by using three different
methods and present their results. Then, we compare our results with a ranking of developers from
GitHub3, which is based on their popularity in each programming language.

Overall, our contributions are summarized as follows.

—A systematic literature review over metrics, team formation, recommendation and ranking in the
context of the data available at software repositories (Section 2).

—A dataset accompanied by a network model, a set of metrics to compute the strength of collaboration
in repositories, and a ranking approach for pairs of developers (Section 3).

—Experimental analyses of the correlation between tie strength metrics, and evaluation of the ranking
approach (Section 4).

2. SYSTEMATIC LITERATURE REVIEW

Different Web tools allow people and organizations to collaborate towards specific goals. Then, col-
lecting and analyzing the data of such tools allows to understand the collaboration process per se.
Going one (or many) step forward, applying specific metrics and enriching such data opens countless
possibilities of acquiring useful knowledge. For example, building a collaboration graph (or profes-
sional social network) and applying tie strength metrics over it may reveal experts for ranking and
recommendation purposes [Brandão and Moro 2017a].

One type of such tools is software repositories, in which developers easily contribute to different
projects around the world. For example, GitHub4 is the largest one, with more than 71 million of
projects (November 2017)5 and over 23 million of developers. Another important software repository

3Git Awards: http://git-awards.com/users
4GitHub: https://github.com
5The world’s largest code platform: http://github.com/features
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is Google Code6, which has less projects/users than GitHub, but it is very relevant for the free software
community. Another example is SourceForge7, a predecessor of GitHub. There are also many other
open source alternatives to version control, a related problem to such repositories [Mockus 2009].

In such a context, there are studies that take distinct views over the data that can be extracted
from software repositories. Some of those are in the form of systematic literature review. Overall,
a systematic literature review aims to identify, evaluate and interpret the available studies that are
relevant to a particular research question, topic area or phenomenon of interest [Kitchenham 2004].
Examples of such reviews over the process of software engineering, the practices of software develop-
ment and the impact of systematic literature reviews include: [Brereton et al. 2007], [Cosentino et al.
2017], and [Kitchenham et al. 2009].

In this article, we complement such efforts by considering metrics, team formation, recommendation
and ranking algorithms. Metrics and ranking are also the focus of our work, whereas team formation
and recommendation are relevant, useful applications in the broader context of professional social
networks [Brandão and Moro 2017a]. Overall, following the systematic review methodology proposed
by [Kitchenham 2004], we have identified 2,755 documents and selected 92 publications based on the
exclusion/inclusion criteria, as described next.

2.1 Research Questions

The first step in any systematic review is usually to define the research questions; i.e., to specify the
goal of such review through objective questions. Here, we consider three questions, as follows.

—(RQ1) How do current studies over software repositories (and their data) tackle metrics, team
formation, recommendation and ranking? The goal is to understand themes and contexts explored
by current studies. Answering this question also allows to identify potential research directions.

—(RQ2) How are the statistics regarding affiliation of researchers and publication venues over such
topics? This analysis allows to understand the community formed over such topics.

—(RQ3) Which repositories such publications evaluate? Given the various possibilities, it is important
to verify if there are preferable repositories and in what extent.

2.2 Digital Libraries

The second step in a systematic review is to define the source of the studies to be evaluated. Given
the advance of digital libraries, current reviews usually focus on publications available in the Web,
and so do we. Therefore, we consider the following widely known digital libraries with vast range
of publications in Computer Science: ACM8, IEEE9, SPRINGER10 and ELSEVIER11. We do not
consider DBLP12, because most of its publications are already available in the aforementioned libraries
and its search capabilities are limited (again, when compared to the aforementioned ones).

2.3 Inclusion and Exclusion Criteria

Having defined the goal and digital libraries, the next step is to establish the criteria to include or
not a publication in the process. Our inclusion criterion is straightforward: articles and papers that

6Google Code: https://code.google.com
7SourceForge: https://sourceforge.net
8ACM Digital Library: https://dl.acm.org
9IEEE Xplore Digital Library: https://ieeexplore.ieee.org
10Springer Computer Science: https://www.springer.com/ComputerScience
11Computer Science – Elsevier: https://www.elsevier.com/physical-sciences/computer-science
12Computer Science Digital Library: http://dblp.uni-trier.de/search?q=acm
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propose metrics or tackle team formation, recommendation and ranking over software repositories,
or using their data. On the other hand, we identify four relevant exclusion criteria: (i) duplicate
publications that address the same study or results13; (ii) studies that do not use data collected from
software repositories; (iii) publications that do not report the name of the used software repository;
and (iv) lesser known publications on venues with disputable impact or with few citations (as given
by Google Scholar at the moment of collecting them).

2.4 Collecting Process

The collecting process was performed in September and October, 2017, and considers the following
steps. First, we define two sets of keywords related to software repositories (e.g., software repository
and source code) and to the review goal (i.e., metric, rank, recommend, team formation). Note the
first set does not consider the name of the software repositories, such as GitHub. This way, the result
is not biased and does not affect the response to RQ3. We also vary between words in singular and
plural, as some of the expressions are considered between quotes.

Second, we search over the digital libraries looking for the Cartesian product of the two sets. Figure 1
presents the amount of publications returned for each pair of keywords in each library. For instance,
there are 2,200 publications at the ACM Digital Library for “metric” and “open source software”. Note
that the keyword “team formation” does not obtain many results, which may indicate a gap in the
literature (or distinct denominations for such a topic). Also, searching for “ranking” retrieves the
second smallest number of publications for most situations, except when it is combined with “open
source software”. Therefore, there is still room for research on such topics.

Next, the results are sorted by relevance. Then, we select the publications by analyzing both title
and abstract, whether they potentially fulfill our objective. In total, 134 publications are selected
in this step. Figure 2 shows a histogram of the number of publications selected per year. The
quantity of published articles grew after 2008; which is also the year GitHub was released, and may
indicate the importance of this repository in the literature. Finally, the last step of the collecting
process is to read and evaluate all publications selected. At the end, we consider 55 publications as
relevant to our study. The statistics and bib entries of such publications are available for download
at http://bit.ly/proj-apoena.

2.5 Data Extraction

After collecting, we extract data (meta-data and content information) from the selected publications,
which facilitates their organization and analysis. Specifically, we consider the following data.

—Repository(ies) – the software repositories used as the dataset of the research, either in the con-
struction or in the validation of results;

—Publication authors;
—Author(s) affiliation (institution);
—Publication title;
—Year of publication – as software repositories are recent, we have not defined a time interval as a
criterion to start the analysis of the publications;

—Number of citations of the publication (as given by Google Scholar at the moment of collecting);
—Publication venue (journal or conference);
—Research focus (metrics, team formation, recommendation or ranking).

13Duplicate publications occur when multiple reports from the same study exist in different venues. In this case,
we include only the most complete version of the study (for example, the extended journal article from a previously
published conference paper).
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Fig. 1. Heatmap with the amount of returned publications
for each pair of keyword.

Fig. 2. Histogram with the number of selected publica-
tions per year.

2.6 Discussion on the Literature Review

We summarize our review findings by presenting the three best-evaluated publications on each topic
and then answering the research questions.

Metrics. Overall, current metrics evaluate certain aspects of different areas. For instance, Biazzini
and Baudry [2014] propose metrics to analyze projects whose code-base is distributed among several
forks on GitHub. The goal is to quantify the dispersion degree of contributions in a project with
many repositories. In the context of measuring the success or performance of projects, McDonald et
al. [2013] conduct a qualitative and exploratory research with leading developers of three successful
projects on GitHub and identify that employee growth, community engagement and visible activity
are more important metrics for success than the quality of the code itself. In turn, Bissyandé et
al. [2013] investigate different correlations of software development metrics in 100,000 open source
software projects from GitHub to answer research questions about “popularity”, “interoperability” and
“impact” of various programming languages.

Team formation. Such a concept appears in various scenarios, from training teams for new product
development to organizing social events. For example, Han et al. [2017] develop a solution that
considers communication cost and geographical proximity to perform team formation on GitHub.
Majunder et al. [2012] introduce and analyze algorithms that form teams socially close in GitHub.
Finally, Vasilescu et al. [2015] conduct an user research to understand how developers who collaborate
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Fig. 3. Amount of papers per topic. Fig. 4. Proportion of papers per topic.

on GitHub perceive teamwork and individual attributes (e.g. programming and social skills, overall
GitHub experience, reputation as programmer and educational level).

Recommendation. Likewise, there are different applications for recommendation systems, such as
e-commerce, social networks and Web search. For example, Guendouz et al. [2018] use collaborative-
filtering to recommend open source projects on GitHub. Specifically, the authors develop a prototype
that presents a list of repositories recommended for developers. Another common problem is the
recommendation of developers to fix bugs in collaborative networks. For instance, Anvik et al. [2006]
present a semi-automated approach to make easier to assign a bug to a developer with the appropriate
experience to solve it. Lastly, Wu et al. [2011] propose an approach to recommend developers for
bug-solving based on the K-Nearest-Neighbor search with bug similarity and skill ranking.

Ranking. The ranking systems use performance indicators associated with quality in order to clas-
sify entities from different domains. For instance, Wan et al. [2018] propose a generic probabilistic
expertise ranking model to effectively locate developers with specific coding skills. Also, Grechanik
et al. [2010] introduce an approach called “Exemplar” to identify and rank highly relevant software
projects by combining program analysis techniques with information retrieval. The Issue outper-
formed Sourceforge in terms of reporting higher levels of confidence and accuracy for retrieved Java
applications. Finally, Thung et al. [2013] identify influential developers and projects in the GitHub
network through the PageRank algorithm.

Research Questions. Next, we discuss the following aspects: most common topics (RQ1 ); insti-
tutions with most authors and common venues (RQ2 ); and software repositories (RQ3 ).

Overall, for RQ1, Figures 3 and 4 show the amount and proportion of papers per topic between 2006
and 2017. Overall, publications addressing recommendations are more common, with studies covering
recommendations of repositories, developers, reviewers and source code. Regarding metrics, rankings
and team formation, there is still a lot to explore and potentially define new research problems.

For RQ2, Table I presents the top 10 institutions with more publications. This table is particularly
interesting due to its variety of countries. Specifically, three institutions are from United States, three
from China, one from Japan, two from Brazil, and one from Poland. Regarding the venues in which
the papers are published, Table II shows most are from the Software Engineering area (due to lack of
space, we do not show those venues with only one paper published). The top venues are the Journal
of Information and Software Technology (Info. Sw. Tech), the International Conference on Software

Journal of Information and Data Management, Vol. 9, No. 1, June 2018.



Tie Strength Metrics to Rank Pairs of Developers from GitHub · 75

Table I. Top 10 institutions.
Institution Pub.
SMU, USA 6
UC, USA 6
Zheda U., China 6
Microsoft, USA 3
BUAA, China 3
NUDT, China 3
PJATK, Japan 3
UFAC, Brazil 3
UFF, Brazil 3
Wroclaw UT, Poland 3

Table II. Most common venues.
Source Cit. Pub.
ICSE 958 4
MSR 243 4
Info.Sw.Tech 41 4
ICSME 132 2
WCRE 107 2
CHASE 48 2
COMPSAC 44 2
CHI 41 2
CSI-SE 7 2
FSE 6 2
ASE 3 2
WI 1 2

Table III. Most used repositories.
Repository Cit. Pub.
GitHub 490 38
Bugzilla 1321 10
SourceForge 234 6
Gerrit 34 4
Savannah 36 1
Maven 4 1
CodeFlow 13 1
OpenHub 8 1

Engineering (ICSE), and the Mining Software Repositories workshop (MSR). Also, the most cited
publications are from the ICSE conference.

Table III presents the software repositories considered by the publications in our systematic review.
There are publications that consider more than one software repository. GitHub is the most studied
one, which could be because GitHub is the most used source code hosting platform. The second one
is Bugzilla14, which appears more on studies over the problem of bug assignment, i.e. the recommen-
dation of developers to solve problems in software. Moreover, the systematic review reveals that the
most cited publications are those that address GitHub and Bugzilla repositories.

Overall Discussion. One important contribution of this systematic review is the identification of
gaps in the research regarding metrics, team formation, recommendation and ranking over software
repositories and their data. Also, this review shows institutions and venues with more publications
in these four topics, which enable the easy identification of potential collaborations and publication
venues. Next, our methodology also considers GitHub, because it is the most popular social coding
platform, as presented in this review and confirmed by others [Cosentino et al. 2017].

3. METHODOLOGY

This section presents the dataset and the network model used for the analysis, and the definition of
the topological and semantic metrics to measure the strength of the relationships.

Data. The dataset is an expanded and updated version of GitSED (GitHub Socially Enhanced Dataset)
[Batista et al. 2017b]. Specifically, this new version compares to the original one in the following
aspects. First, the dataset is updated with data until May 2017. Second, it includes GitHub network
information for languages with higher and lower levels of collaboration [Rocha et al. 2016]: JavaScript,
Ruby and Python (high collaboration), and Assembly, Visual Basic and Pascal (low collaboration).
Considering these two different groups of collaboration allows to understand the difference between
them, specifically, about the tie strength and its ranking. Third, the original version considers the
start date of the collaboration between two developers as the most recent date between the first
commits of both developers in a repository, and the end date of collaboration as the last commit in
the repository by any developer. Now, the end of the collaboration has been changed to the earliest
date between the last commits of a pair of developers in the repository, which allows to limit the
relationship within the joint contribution time interval.

Network Model. The developer network is represented by a weighted graph G = (V, E): V is the set
of nodes (vertices) representing developers, and E is the set of non-directed edges that connect two
developers when they both have contributions to the same repository within the same time interval.

14Bug Repository: https://www.bugzilla.org/
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Table IV. Statistics for each language in the dataset

Language Number of
Repositories

Number of Nodes
(Developers)

Number of Edges
(Connections)

Density
(10−3)

JavaScript 6,767,297 854,255 2,571,154 0.007
Python 3,074,827 519,771 3,699,096 0.027
Ruby 2,536,133 279,281 33,979,590 0.871
Assembly 35,073 7,516 14,906 0.528
Visual Basic 33,275 5,602 7,205 0.459
Pascal 20,330 3,520 9,377 1.514

The initial and final developer collaboration dates in a repository are defined by the first and last
commit date in such a repository. Therefore, the relationship between developers exists only when
their time intervals overlap – following our original proposition on [Batista et al. 2017c]. The weight
of the edges corresponds to the values that can be calculated from the metrics proposed by Alves et
al. [2016] and Batista et al. [2017a] (presented later in this section).

Network Basic Statistics. Overall, Table IV shows the number of repositories and developers
present in the network for each of the programming languages considered, and the number of con-
nections (edges) in each network. Although the network for JavaScript has the largest number of
repositories and developers, such a network is not as dense as the other three most collaborative
languages. On the other hand, the network for Ruby has the smallest number of repositories and
developers between the first three languages, but it has the largest number of connections as well.

Topological and Semantic Properties. Table V summarizes the topological and semantic prop-
erties considered by metrics to evaluate the developers relationships (or ties, links). Such metrics
represent social aspects that can be used to analyze and interpret software engineering aspects, for ex-
ample, the test of software development hypothesis and the development of tools to improve practices
[Begel et al. 2010]. Specifically, the topological and semantic properties capture information about the
collaboration between developers which helps to understand the process of creating and developing
software (part of software engineering concerns).

Semantic Properties with Temporal Aspect. Table V also summarizes three semantic properties
that consider the temporal aspect of the relationships proposed by Batista et al. [2017b]. Local
Potential Contribution (LPC) and Global Potencial Contribution (GPC) calculate the contribution
time between a pair of developers in a given repository with local and global variations, respectively.

Our Proposal. Here, we propose an update on the definition of the end date of collaboration between
developers (from Oct 200715 to May 2017, as already discussed); then, the results for the respective
metrics change as well. Such an update is necessary because LPC calculation can be biased, especially
in short-lived repositories as exemplified in Table VI: the pair of developers A,B contributed for less
time than C,D, but has a higher value for the metric. To understand the time-based collaboration
force for all developer pairs, a global view of the whole network is necessary. Then, GPC considers
the maximum contribution time between all developer pairs as the denominator in order to normalize
the value of the calculated metric. For the previous example in Table VI, considering that the longest
contribution time of the network is 12 months, the results are divided by such a value. At the end, the
GPC metric allows to classify the potential force of contribution in relation to all possible contributions
within the network and, therefore, it should be especially used when analyzing the network evolution.

Topological Property with Semantic One. The combination of a topological property with a
semantic one allows to analyze a different perspective of tie strength, since it provides one value
that represents two distinct characteristics of the relationship. For example, combining a topological
property with the number of shared repositories or previous collaboration aggregate information that
may define new knowledge about the developers. Here, we use Tieness [Brandão and Moro 2017b],

15The first commit on GitHub was made in October 2007: https://github.com/about
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Table V. Given two nodes A and B, let N (A) and N (B) be the set of neighbors of A and B, w(A) and w(B) be the
weighted degree (a sum of the weight of each edge connected to the node), w(A,B) be the weight of the edge between
A and B, and R the set of shared repositories between A e B.

Topological Properties
Metric Definition and Interpretation

Neighborhood
Overlap (NO)

According to Easley and Kleinberg [2010], NO can be used to compute the strength of the links.
The higher the value of NO, the stronger the relationship. It measures the neighborhood similarity
for any two pair of nodes and is computed as: NO(A,B) =

|N(A)|∩|N(B)|
|N(A)|∪|N(B)|

Adamic-Adar Co-
efficient (AA)

Neighbors that are not shared with many others receive more weight. This metric in network
context is customized as: AA(A,B) =

∑
∀z∈|N(A)|∩|N(B)|

log|N(z)| .

Preferential At-
tachment (PA)

According to Barabási and Albert [1999], there is a linear relationship between the number of
neighbors of a node and the probability of attachment (i.e.,“the rich get richer”). The greater
the number of neighbors of a node, the higher the value of preferential attachment, defined as
PA(A,B) = |N (A)||N (B)|.

Semantic Properties – [Alves et al. 2016]
Metric Definition and Interpretation

Number of shared
repositories (SR)

This metric refers to the number of shared repositories between developers and is defined by the
cardinality of the set R (i.e., SR(A,B) = |R|)

Jointly developers
contribution to
shared reposito-
ries (JCSR)

Defined by: JCSR(A,B) =

∑
∀ri ∈ R

JCSR(A,B,ri)

|R| .Example: Let two repositories r1 and r2, r1 is
shared only by developers A and B, the joint contribution of the pair AB in r1 (JCSR(A,B,r1))
is 1. Then, r2 is shared by developers A, B and C, and the joint contribution of A and B in r2
(JCSR(A,B,r2)) is 0.66. Assuming A and B share only r1 e r2, the joint contribution to them
is the mean of the values for each repository: (JCSR(A,B)) = 0.83.

Jointly develop-
ers commits to
shared reposito-
ries (JCOSR)

Given that NC(A,r) and NC(B,r) are the total numbers of commits made by developers A and
B, respectively, in the repository r, and NC(r) is the total number of commits made in the

repository r independent of the developer, JCOSR(A,B) =
∑

∀ri ∈ R

(NC(A,ri)
+NC(B,ri)

)

NC(ri)
.

Semantic Properties with Temporal Aspect – [Batista et al. 2017b]
Metric Definition and Interpretation

Local Potential
Contribution
(LPC)

Considering T(A,B,r) as the time interval of contribution between developers in the repository r,
defined by the collaboration start and end dates (represented by the first and last commit in a
repository) and T (r) the whole time of repository r, this metric can be computed by LPC(A,B) =∑
∀ri ∈ R

T(A,B,ri)
T(ri)

|R| .
Global Potential
Contribution
(GPC)

Batista et al. [2017b] extended the LPC metric to a global version to compensate for the bias in

its computation, defined as GPC(A,B) =

∑
∀ri ∈ R

T(A,B,ri)

max∀(A′,B′)∈D, ri∈R
T (A′,B′,ri)

, where D is the set of

developers on the network.
Previous Collabo-
ration (PC)

It counts the previous collaborations between a pair of developers. Thus, at time t the metric

is defined by PC(A,B,t) =

∑
∀ri ∈ R

1
ND(ri,t)

|R| , where ND(r,t) is the number of developers that
contributed in the repository r at time t before the developer B start collaboration in r.
High values of the fraction 1/ND(r,t) indicate that A is more likely to work with B and vice
versa. For example, if there are only two people in a given repository, there is only one possibility
of collaboration; otherwise, the more people in one repository, more choice and less possibility
of collaboration with a particular developer. Thus, there is a greater possibility of establishing a
connection with a developer if the attention of the developer is not divided into many options.
Topological Property with Semantic One – [Brandão and Moro 2017b]

Metric Definition and Interpretation
Tieness (T) It combines a topological property with a given weight that represents semantic properties, de-

fined as T (A,B) =
|(N(A)∩N(B))+1|

|N(A)∪N(B)|−(A or B themselves)
∗ w(A,B). For any calculation of Tieness,

the new name is given by the prefix T_ and the name of the metric used as weight. For example,
considering SR as weight, Tieness is represented by T_SR.

a metric to tie strength that combines a modification in neighborhood overlap (topological property)
with a weight (semantic property), as defined in Table V.

Ranking Pairs of Developers. Usually, ranking methods are applied to GitHub to identify experts
[Wan et al. 2018], i.e. developers are ranked by some feature that relates to expertise. Here, we rank
pairs of developers to identify the strongest relationships, which can be applied to team formation
analysis, community detection and recommendation. We do so by combining different tie strength
metrics in order to generate one single ranking.
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Table VI. LPC and GPC examples for two pairs of developers.
Developer

Pair Repository Repository
Duration

Contribution
Time LPC

Dev A - Dev B R1 3 months 3 months 3/3 = 1,00
Dev C - Dev D R2 12 months 6 months 6/12 = 0,50
Developer

Pair
Contribution

Time
Longer Network

Contribution Time GPC

Dev A - Dev B 3 months 12 months 3/12 = 0,25
Dev C - Dev D 6 months 6/12 = 0,50

Overall, we consider the top 1,000 users at Git Awards16, excluding organizations. Then, we consider
three commonly used methods to aggregate the values of different metrics: CombSUM [Ganjisaffar
et al. 2011], Borda count [Emerson 2013] and Condorcet procedure [Young 1988]. Generally, these
aggregation methods help to determine the order of social preference in elections. None of them is
clearly optimal; thus, we use these three different aggregation methods and compare their results.

Specifically, the CombSUM aggregates the rankings by the summing values. The final ranking is
defined by descending order of the sum of the values obtained by each of the pairs in the metrics. On
the other hand, Borda Count aggregates the rankings by adding the positions of each pair in each
ranking, resulting in an added value. Then, this value is ordered incrementally, generating a unique
classification that considers all the metrics. In the last ordering, the pair that obtains the lowest added
value will be preferred in relation to the others. Finally, Condorcet Procedure consists of comparing
pairs from each ranking. If pair {A,B} has a better result than pair {B,C} in most rankings, pair
{A,B} gets 1 point. Note that there is no weight determined to the rankings, i.e. they all have the
same importance. In case of a tie, each pair receives 0.5 points. Then, pairs are sorted based on
their scores, resulting in a unique ranking. In order to apply these methods, we normalize the metrics
within the interval [0,1] to ensure there is no bias caused by the different distribution of values.

4. ANALYSIS AND RESULTS

In this section, we discuss the correlation analysis between the properties with temporal aspects and
the others. We present results only for the Spearman correlation coefficient, since we obtain similar
results for the Pearson correlation coefficient. Then, we apply the three ranking aggregation methods
to combine metrics to get a single value for the developers collaboration strength. Such an aggregated
value allows to rank and compare pairs of developers.

4.1 Metrics Correlation Analyses

Our analyses are separate into three topics: semantic properties with temporal aspects, combined
topological and semantic properties, and correlation with existing properties. For all analyses, we
chose two languages to present results, JavaScript and Assembly, because they are the languages with
the largest number of repositories in the most collaborative and least collaborative groups in the
dataset, respectively. The results are similar to other languages in the same group.

Analysis of semantic properties with temporal aspect. The GPC and LPC metrics have
similar calculation forms, but the normalization present in the GPC formula differentiates their results.
Figure 5 presents the Spearman correlation for the three metrics with temporal aspects. There is a
weak correlation between GPC and LPC. Nonetheless, GPC better represents the connection of the
developers pair over time when relating to all other pairs in the network, as presented in Section 3.
In addition, the PC metric does not strongly relate to any of the others, regardless of the correlation
coefficient. This behavior can be justified by the collaboration time interval. For LPC and GPC
metrics, two developers have the metric value related to the time of joint collaboration in the same

16Git Awards: https://git-awards.com/
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(a) JavaScript (b) Assembly

Fig. 5. Spearman correlation coefficient between new properties with temporal aspects: GPC, LPC, and PC.

(a) JavaScript (b) Assembly

Fig. 6. Spearman correlation coefficient between NO and Tieness (T_) weighted by all other proposed metrics.

repository. Meanwhile, PC gives importance to the number of repositories they already contributed
and the number of collaborators in such repositories. Therefore, the non-correlation between such
metrics can be justified by the values of the metrics associated to the edges that have a little time
intersection of contribution, but lots of shared repositories with a small number of contributors in the
past. The correlation results by Spearman and Pearson coefficients for those metrics are similar and
reflect a non correlation between PC and the other ones. Thus, PC generates distinct knowledge about
the pairs, making important to calculate it and consider it to measure the collaboration strength.

Combined Topological and Semantical Properties. Tieness is a metric that allows combining
topological and semantic metrics as weight. It was calculated for all proposed metrics in this study, and
their correlation is in Figure 6. For Spearman (and Pearson) correlation coefficients, all combinations
are highly correlated with each other and with NO. Thus, we can choose a value based on the meaning
of the metric on the network or on its computational cost.

Correlation Between All Properties. Considering all topological and semantic properties from
Table V and semantic properties with temporal aspects, Figure 7 presents the Spearman correlations.
There is no significant variation among the results for different programming languages. Nonetheless,
in all of them, topological metrics AA and PA are strongly correlated. Thus, we can consider only one
of them to measure the strength of the collaboration. Meanwhile, GPC and SR are weakly correlated
with others, because they bring different information about contribution time and the number of
shared repositories. Therefore, it is important to consider these two values in any study. Finally, PC,
JCSR and JCOS metrics are strongly correlated in all scenarios. Thus, it is possible to choose just
one to calculate and consider in a final analysis.

Summary of Results. Finally, considering all the metrics and their correlation, it is possible to
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(a) JavaScript (b) Assembly

Fig. 7. Spearman correlation coefficient between all metrics presented

combine them to measure tie strength. Note that is not necessary to use all the metrics together, they
can be applied individually in specific scenarios. Next, we indicate what metrics should be chosen
in specific comparisons: between GPC and LPC, the former should be chosen; between AA and PA,
any could be chosen; SR should be chosen; among PC, JCSR and JCOSR, anye could be chosen; and
Tieness combined with metrics as weight, any could be chosen.

4.2 Ranking Pairs of Developers

The strength of social coding collaboration can be measured in different ways with distinct goals
[Bartusiak et al 2016; Casalnuovo et al. 2015; Tsay et al. 2014]. Thus, it is important to identify
which aspects better represent such strength for a specific application. Here, we have different metrics
to compute collaboration among developers and they can be aggregated in order to become a single
value. Thus, pair of developers can be classified and ranked.

Specifically, the ranking considers all pairs of the 1,000 best-placed users from Git Awards in the
networks of each language. It also considers the following metrics from the previous analyses: PA (Pre-
ferred Attachment), PC (Previous Collaboration), SR (Number of Shared Repositories), GPC (Global
Potential Contribution), and T_JCOSR (Jointly Developers Commits to Shared Repositories).

Now, considering the ranking aggregation methods from Section 3, we note they are not correlated
with each other (now shown due space constraints). In other words, each aggregates the metric values
differently, giving importance to distinct factors. Their main difference is the “requirement level” in
relation to the set of metric values. Hence, for each aggregation, getting a good placement depends
on the developers pair having a high or medium value in all metrics, or having a great classification
on specific metrics regardless of others.

For example, the CombSUM sums the metric values to each pair and uses such result to rank
them. Thus, this method gives the same importance to each metric used in the model. Getting a
good placement in the final ranking requires to have high values for most metrics. This is the most
restrictive method because just one low value can negatively impact on the collaboration aggregated
value of the developer pair, decreasing their classification.

Meanwhile, Borda Count is not so restrictive as the CombSUM, but low metric values may
also decrease the pair’s classification. In this method, pairs with median values generally are better
classified. For example, when Borda Count is applied to the voting context, if a candidate is the
favorite of most electoral colleges (high metric values), but ignored by others (low metric values), such
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Table VII. Centrality metrics for the top-10 best ranked pairs of developers from JavaScript.
CombSUM Borda Count Condorcet

D1 D2 De CC PR D1 D2 De CC PR D1 D2 De CC PR
23 33 1.5 0.000 0.000 1 11 461.5 0.502 0.002 1 11 461.5 0.502 0.002
24 34 1.5 0.000 0.000 2 12 32.5 0.000 0.000 2 12 32.5 0.000 0.000
25 35 5.5 0.000 0.000 3 13 1148.5 0.004 0.005 3 13 1148.5 0.004 0.005
26 36 1433.5 0.007 0.005 4 14 91.0 0.509 0.000 21 22 114.0 0.024 0.000
27 37 2.5 0.000 0.000 5 15 43.5 0.220 0.000 4 14 91.0 0.509 0.000
28 38 1.5 0.000 0.000 6 16 31.0 0.175 0.000 5 15 43.5 0.220 0.000
29 39 2.0 0.000 0.000 7 17 473 0.253 0.002 7 17 473.0 0.253 0.002
30 40 1.5 0.000 0.000 8 18 245.5 0.264 0.001 6 16 31.0 0.175 0.000
31 41 1.5 0.000 0.000 9 19 161.5 0.506 0.001 9 19 161.5 0.506 0.001
32 42 1.5 0.000 0.000 10 20 910.5 0.336 0.003 8 18 245.5 0.264 0.001

Table VIII. Centrality metrics for the top-10 best ranked pairs of developers from Assembly.
CombSUM Borda Count Condorcet

D1 D2 De CC PR D1 D2 De CC PR D1 D2 De CC PR
73 83 1.5 0.000 0.001 51 58 11.0 0.587 0.002 68 70 1.0 0.000 0.001
74 84 2.0 1.000 0.001 52 59 50.0 0.000 0.026 51 58 11.0 0.587 0.002
75 85 1.5 0.000 0.001 53 60 13.0 0.000 0.026 52 59 50.0 0.000 0.026
76 86 1.5 0.000 0.001 54 61 16.0 0.006 0.007 52 71 50.0 0.000 0.026
77 87 1.5 0.000 0.001 53 62 13.0 0.000 0.007 51 63 11.0 0.587 0.002
78 88 1.5 0.000 0.001 51 63 11.0 0.587 0.002 53 60 13.0 0.000 0.007
79 89 1.5 0.000 0.001 55 64 4.5 0.000 0.003 54 61 16.0 0.006 0.007
80 90 1.5 0.000 0.001 56 65 3.0 0.833 0.001 53 62 13.0 0.000 0.007
81 91 2.0 0.000 0.002 57 66 1.5 0.000 0.001 69 72 3.0 0.000 0.002
82 92 1.5 0.000 0.001 51 67 13.5 0.515 0.003 55 64 4.5 0.000 0.003

candidate’s final placement is adversely affected [Morais and de Almeida 2012; Nurmi 1983]. Thus,
pairs poorly evaluated by some factor receive a lower rating than the others. Then, to get a high
aggregate value and a good placement, the pair cannot have very low values for any metrics used.

Regarding the ranking generated by Condorcet Procedure is more flexible than the others,
despite being more complex computationally. Here, pairs with very high metric values (highlights
in the evaluation by some of the metrics) can be well graded regardless of having low or zero values
at some other evaluation point. In this way, we want to characterize pairs with strong relationships
without necessarily requiring them to interact well with all the evaluated factors, since a pair with a
long time interval of joint collaboration (metric GPC) may have few shared repositories (metric SR),
but still have a strong relationship.

Indeed, we compare the results of each method with the ranking of the GitHub Award. However,
there is no consensus about the rankings generated by the three methods when considering the top
1,000 developers and no one is significantly similar to the GitHub Award. This result can be explained
because the ranking of GitHub Award is exclusively based on the number of stars from the users’
repositories. Such stars are attributed by users who want to track the progress of the repository or
discover similar projects in their news feed. Thus, the results show that the strength of collaboration
is not related to this classification criterion. However, considering the top 10 best-ranked pairs of
developers, there is a large similarity between the rankings of Borda count and Condorcet, as presented
in Tables VII and VIII for JavaScript and Assembly, respectively. This indicates that the aggregation
of tie strength metrics can be used to rank pairs of developers. Note the ranking of CombSUM is the
different one, which may indicate that only adding up the values of the metrics is not the best way to
rank pairs of developers.

Then, we analyze how developers involved in the best-ranked relationships are central in the net-
work. To do so, we compute the metrics: nodes degree (De), clustering coefficient (CC) and PageRank
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(PR). The results in Tables VII and VIII for JavaScript and Assembly, respectively, show that the
Borda Count and Condorcet Procedure methods rank better pairs of developers who are more central,
whereas CombSUM does not. Therefore, this reveals that developers who are hubs (an important node
with many connections, i.e. central node) in the network of GitHub tend to have a strong relation-
ship with their collaborators. It could be such developers are not central because they collaborate
sporadically with different developers and lots of repositories; however, they are central because they
intensively contribute to distinct repositories and thus collaborate with various developers.

5. CONCLUSION AND FUTURE WORK

The main contributions of this article are a systematic review over four distinct topics in the context
of software repositories, an enriched dataset, a correlation analysis between tie strength metrics, and
an analysis of ranking aggregation methods. The systematic review revealed that the topics team
formation and ranking need to be more investigated over software repositories. Also, the correlation
analysis allowed to reduce the number of tie strength metrics to be considered in an application from
thirteen to five; i.e., there are eight metrics that do not bring new information about the strength
of collaboration between developers. These five metrics were then considered in the three ranking
aggregation methods: CombSUM, Borda Count and Condorcet Procedure. In general, Borda Count
and Condorcet Procedure presented the best results to rank pairs of developers. All these results
showed that tie strength can be used in the task of ranking.

As future work, we plan to move forward on the study of metrics to build a computational model
for collaboration strength and to explore applications in specific contexts, such as team formation and
recommendation. Also, we plan to continue expanding the dataset with more programming languages
and collaboration metrics to support studies with different goals.
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