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Abstract. The proliferation of devices with positioning capability has allowed new possibilities for studies and
applications in the context of urban mobility. However, the process of analyzing raw trajectories poses several challenges.

In this work, we investigate one of the main tasks in this process of trajectory analysis: detecting stops from GPS

trajectories. Stops can reveal interesting behavior aspects of a moving object such as its daily routine, bottlenecks
in traffic jams, or visiting times of touristic places. Although there are some efforts in this direction, most current

methods ignore the presence of noise segments, which typically occur many times in trajectories. In this sense, we

present a method that exploits gaps in time and space to identify episodes of movement, stop, and periods where some
classification is inconclusive, which we define as noise. In addition, our method does not rely on contextual information

as opposed to some current solutions, which make our proposal also suitable for trajectories recorded in free space.

We compare our method to the state of the art highlighting its advantages in terms of manipulating noise, supporting
spatial filtering and being independent of external resources. Moreover, we conduct an experimental evaluation using a

large-scale bus dataset to show the effectiveness of our method in a real application scenario.

Categories and Subject Descriptors: H.2 [H.2.8 Database Applications]: Spatial databases and GIS; G [G.3 Prob-

ability and Statistics]: Time series analysis

Keywords: outlier labeling, stop-move identification, trajectory analysis

1. INTRODUCTION

The ubiquitous presence of trajectory data is constantly growing in our digital lives and we are
constantly producing it in many ways. Structuring trajectories into periods of stops and moves has
been proved to be a fundamental task [Spaccapietra et al. 2008] in trajectory analysis. In fact,
different criteria can be used to segment trajectories [Buchin et al. 2011; Alewijnse et al. 2014],
expanding the possibilities of structuring moving object traces beyond the stop-move model. Viewing
trajectories as sequences of moves and stops can be the first step towards a more complex model
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for trajectory analysis. Such segmentation is also important for building high-level abstractions for
trajectory modelling [Nogueira et al. 2018].

Trajectories are continuous events in real life. However, they must be treated as discrete events to
be recorded. Different sampling rates and optimizations can be used in this process that may hinder
the ability of stop detection algorithms to correctly detect the different parts of a trajectory.

Detecting occurrence and absence of movement is a fundamental segmentation task that has been
vastly explored in the literature [Alvares et al. 2007; Palma et al. 2008; Yan et al. 2010; Rocha
et al. 2010; de Graaff et al. 2016]. Applications that deal with real-world data also have to deal
with noisy measurements that, in some cases, make it impossible to determine the actual state of the
moving object. Although some related studies have considered the presence of noise in trajectories,
they usually handle this by previously smoothing or by using additional metadata that is not always
available.

The characteristics of a recorded trajectory can vary broadly according to a range of factors such
as sensor’s physical components, sampling rate, post-processing algorithms and environmental condi-
tions. These factors may yield trajectories with different quality levels even for traces captured by the
same device. Therefore, this facet of spatiotemporal data research disfavor the possibility of proposing
a universal method for detecting stops and moves, as well as trajectory segmentation methods based
on other criteria such as speed or direction.

In this context, a method for stop detection should consider how data is recorded and stored in
order to lead to good results. Thus, it is necessary to make some assumptions about collected data
before proposing a solution to the problem of trajectory segmentation.

We observe that relevant methods for identifying stops rely on the assumption that trajectories are
sampled at regular time intervals. This assumption allows the application of clustering algorithms to
identify points near each other and, then, classify groups of points as stops according to some temporal
and spatial thresholds. However, this assumption may not hold due to a variety of reasons, such as
periods of GPS failure, noisy measurements, different sampling strategies, preprocessing procedures,
among other factors.

Andrienko et al. [2008] defined how a trajectory can be observed according to various sampling
strategies as follows: time-based, when positions are recorded at regular time intervals; change-based,
when positions are recorded only when the object moves; location-based, when the location is collected
only if the object approaches a specific location, e.g., near a sensor; event-based, when the moving
object performs a specific action, e.g., making a call; and various combinations of these methods.
While most of the state-of-the-art methods of stop detection deal mainly with the time-based recording
strategy, it should be noted that some applications may store trajectories following any combination of
the above types. In addition, applications may make modifications to the captured data to eliminate
redundant information. In this scenario, algorithms that rely on clustering points are most likely to
fail.

In this article, we describe a way of creating episodes based on the detection of stops and moves
during a single trajectory. The main assumption of our method is that, for a given trajectory, points
may not be sampled at the same frequency along the whole path. This may happen, for instance,
in applications that apply a post-processing filter that discards points that are close to previously
recorded locations or in applications that stops recording points when the object is not moving. In
addition, we consider that some trajectory characteristics, namely the distance, the duration and the
log of speed between consecutive points, follow an approximately normal distribution when the object
is moving.

Based on these assumptions, that were empirically observed in applications and datasets, the pro-
posed method tries to identify episodes where specific combinations of abnormal values are present.
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Trajectories recorded following other strategies, e.g., time-based, can also be used with our method if
redundant points points are removed based on some minimum radius criteria. It is worth to notice
that this should not produce any systematic bias in the results of the method.

Another important difference in our method is that the notion of stop in other studies is usually
related to the identification of Regions of Interest, allowing the classification of a point as a stop even
when there is some movement. In our case, we aim at identifying locations where an actual stop
happened. Moreover, our proposal does not need external data (e.g., polygons of adjacent geographic
features) nor additional sensor data (e.g., GPS accuracy information). These characteristics of our
proposal can be appealing for applications that deal with trajectories recorded in free space, e.g.,
when there are no streets or buildings nearby.

In comparison with the work of Nogueira et al. [2017], this article extends its contributions by
detailing the statistical method employed by our approach, and presents an additional experiment
with a large-scale bus database that shows the effectiveness of the method supported by features
extracted from the OpenStreetMap (OSM) database.

The remainder of this article is organized as follows: Section 2 presents the relevant work devoted
to detecting stops in trajectories. Section 3 describes characteristics of the dataset considered in
this study. Section 4 explains the Outlier Labeling Rule, which is the base of our method. Section 5
details our contribution, the MSN (Move-Stop-Noise) algorithm, which is compared to other important
methods in Section 6. Moreover, the solution is quantitatively evaluated with OSM data. Finally,
Section 7 encloses our conclusions and perspectives of future work.

2. RELATED WORK

We can observe that many state-of-the-art stop detection methods rely on some assumptions about
the gathered data and, in some cases, on additional external data as well. The SMoT method [Alvares
et al. 2007] classifies as stops the trajectory points that intersect “candidate stops”, i.e., a previously
defined set of polygons, each one associated with a minimum time duration. A major weakness of this
approach is the need for manually selecting candidate stop polygons as well as minimal time durations
needed to consider each region as a stop. Establishing a hard threshold on the duration of a stop may
cause the algorithm to miss important stops that have a time duration close to but not higher than
some threshold.

The SMoT method was later extended by the SMoT+ algorithm [Moreno et al. 2014]. SMoT+ is
able to identify stops in different levels of granularity (e.g., a shop inside a mall located in a town).
SMoT+ presents the same drawbacks of SMoT as their parameters are very similar. The concept of
Interesting Sites (IS) is similar to SMoT’s candidate stops. Moreover, there is an additional parameter
representing a hierarchy of containments among the sites.

The PIE algorithm [de Graaff et al. 2016] uses the underlying geography of polygons, and considers
reductions in speed, changes in direction and the accuracy of each GPS point. Whereas speed and
direction can be easily computed from trajectory points, the availability of accuracy data, while very
important to assess signal quality, is not commonly stored by most applications. This factor imposes
an important obstacle to use this method with trajectories captured by third-party applications.

Palma et al. [2008] proposed the CB-SMoT algorithm, which considers that a moving object’s speed
decreases significantly when an interesting place is being visited (therefore, it is a stop). Moreover,
CB-SMoT assumes that the recording device keeps storing points even when the object is not moving,
thus stops are characterized as regions with a greater spatial density of points. Moreno et al. [2010]
reused both SMoT and CB-SMoT to identify stops and infer the behavior of moving objects.

Yan et al. [2010] proposed a model and the corresponding computing platform to process trajec-
tories at different levels of abstraction. In the first layer of their computing platform, trajectories
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are smoothed and outliers are identified by using velocity thresholds according to a given domain
knowledge (e.g., car, human and bicycle). In the Trajectory Structure Layer, the identification of
stops is done by determining a speed threshold based on the type of the moving object and a function
that takes into account the moving object’s average speed and the average speed of other moving
objects. For calculating the latter, the space is divided into a grid and an average speed is associated
to each cell. Differently from our proposal, the authors have used the non-robust average speed mea-
sure, which may difficult a correct identification of stops if there is a large range of speeds in a single
trajectory. Despite the fact that there was an effort to dynamically set speed thresholds, this was not
done to the stop duration, which is still defined as an absolute metric value (e.g., 15 minutes).

Nogueira et al. [2014] proposed a statistical method for detecting candidate stops. Its only parameter
is a minimum speed for a point to be considered as a stop. However, they did not consider noisy
trajectory segments nor used robust statistical measures as they have relied on the standard deviation
from the mean, a metric that can be easily broken by large outliers. These weaknesses are addressed
in this work.

It is important to highlight that general-purpose trajectory segmentation methods can also be em-
ployed to identify specific types of episodes. Soares Júnior et al. [2015] proposed GRASP-UTS, an
unsupervised approach to segment trajectories with the goal of minimizing the distortion, i.e., hav-
ing the most homogeneous segments, and maximizing compression, i.e., having the least number of
segments. While the primary purpose of GRASP-UTS is not to detect stops and moves, it is com-
pared to CB-SMoT with regards to purity, coverage, and the number of generated segments. More
recently, the same authors have proposed a novel semantic and semi-supervised trajectory segmen-
tation [Soares Júnior et al. 2018]. They fragment trajectories based on, among other features, some
information previously labeled by the users, considering semantic aspects in trajectory segmentation.
Whilst these approaches seem promising to segment trajectories following multiple criteria, we focus
on approaches conceived explicitly for move, stop, and noise identification in this work.

3. EXPLORATORY DATA ANALYSIS

A useful task when analyzing a dataset is verifying the correlation strength among its variables.
Usually, the output of this analysis highlights the relationships among variables that tend to better
explain the dataset variability. In this study, we have used the Spearman correlation because it is
more resistant to outliers as it diminishes the importance of extreme scores by first ranking the two
variables and then correlating the ranks instead of the actual values [Myers and Well 2003].

Figure 1 shows an illustrative trajectory that was recorded in a controlled manner in order to have
two stops of a few seconds and two periods of noise that have been simulated by turning off the
smartphone’s GPS for a few seconds.

For each pair of sequential points in the trajectory of Figure 1, we have calculated its speed, distance
and duration. We can observe some interesting characteristics based on previous knowledge about
this particular trajectory. The trajectory starts with distances of about 10 meters between points,
durations of 5 to 7 seconds, and a fairly constant speed until there is a peak of 42 seconds in the
duration between points in the dataset. At the same time, we can observe that the speed drops to
a value near to zero while the distance remains unchanged. This characterizes a stop taking into
consideration the characteristics of this dataset. Some seconds later, another peak in duration is
noticeable at the same time of a peak in the distance between points that are not followed by a
decrease in speed. This characterizes a period of noise. In the remaining of the trajectory, we can
notice another stop and another noise period with these same characteristics.

Table I shows the mean Spearman correlation among movement attributes of 2226 trajectories,
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Fig. 1. Example of a trajectory and its speed, distance, and duration time series

which were collected from MapMyFitness1 applications, a widely used set of mobile applications for
tracking sports activities. Walking and running activities were selected. These trajectories range
from 2 to 42 kilometers, are located in Grenoble (France) and Barcelona (Spain), and have been
recorded with Android smartphones. Duration, distance and speed between each pair of points of
each trajectory were computed. From this data, we can observe that the pairing between speed and
duration is the one that presents the strongest correlation. In this case, a strong negative correlation
indicates that when the values of the duration increase, the values of speed tend to decrease and
vice-versa, which is what one can expect given the previously explained assumptions about the data.

Table I. Median of Spearman correlations among attributes of 2226 trajectories

duration distance speed acceleration

duration 1 – – –
distance 0.16 1 – –

speed -0.86 0.29 1 –

acceleration 0.34 −0.03 −0.36 1

From this exploratory data analysis, we can conclude that there is a negative correlation between
speed values and duration that characterizes a stop. For the noisy cases, there is no pair of variables
that helps the classification. Thus, we make use of the assumption that points are recorded at near
constant distance intervals most of the time.

4. OUTLIER LABELING RULE

Based on the exploratory data study, we can approach the classification of moves, stops and noise as
an outlier detection problem. To identify outliers in time series, we use the modified z-score [Iglewicz
and Hoaglin 1993]. The usage of this method is motivated by the poor performance of other popular
measures like the standard deviation and the mean in the presence of outliers.

An indicator of the robustness of a statistic measure is its breakdown point, i.e., the maximum
proportion of outlier data points that can be added to a dataset before the measure gives a wrong
result. The mean has a breakdown point of 0% because if just one value of a given series is set to

1www.mapmyfitness.com

Journal of Information and Data Management, Vol. 9, No. 3, December 2018.



A Statistical Method for Detecting Move, Stop, and Noise: A Case Study with Bus Trajectories · 219

infinity, its mean goes to infinity. On the other hand, the median has a high breakdown point because
the median value of a series is only affected if more than 50% of the data is contaminated with outliers.

Another estimator that is easily modified in the presence of outliers is the standard deviation, as it
takes into consideration the squared distance from the mean for each value. According to Huber and
Ronchetti [2009], the most useful ancillary estimate of scale is the MAD (see Equation 1), which is
the median of absolute distances from a series’ median. The constant scale factor 1.4826 makes the
MAD unbiased at the normal distribution [Rousseeuw and Hubert 2011].

MAD = 1.4826×median(|Yi − Ỹ |) (1)

Besides its superiority, the MAD is not yet largely used in some fields as discussed in [Leys et al.
2013], who recommend using “the median plus or minus 2.5 times the MAD method for outlier
detection”. In our work, we use the modified z-score, which also uses the MAD and is based on the
z-score (see Equation 2), which uses the non-robust statistics mean (Ȳ ) and standard deviation (s).

Zi =
Yi − Ȳ
s

(2)

Iglewicz and Hoaglin [1993] recommend using the modified z-score shown in Equation 3 where
each element of a series is subtracted from the median (x̃), multiplied by a factor to make the MAD
consistent at the normal distribution (0.6745). As a recommendation from the authors, points having
modified z-scores with an absolute value greater than 3.5 have a high probability of being outliers
[NIST/SEMATECH 2012]. Another advantage of using the MAD statistic is the fact that it is also
adequate for application in populations that do not fit perfectly a Gaussian distribution [Gorard 2005],
which is the case for real-world GPS track datasets.

Mi =
0.6745(xi − x̃)

MAD
(3)

As an example of the advantage of using MAD, consider the following set without any outlier x =
{6.27, 6.34, 6.25, 6.31, 6.28} with mean x̄ = 6.29, median x̃ = 6.28, and standard deviation σx = 0.03.
Now, considering the introduction of an outlier, the set becomes x′ = {6.27, 6.34, 6.25, 63.1, 6.28} with
mean x̄′ = 17.64, median x̃′ = 6.28, and standard deviation σx′ = 22.72.

We can compute the ordinary z-scores for the two sets as defined in Equation 2 and get Zx = {−0.6,
1.58, −1.2, 0.63, −0.31} and Zx′ = {−0.5, −0.5, −0.5, 1.99, −0.5}. Notice that using the popular
threshold of 2.5 to label a value as an outlier it would not be possible to identify the outlier introduced
in x′. Both sets have the same MAD = 0.04 and if we compute the absolute distance (AD) from the
median, we get the following results: ADx = {0.01, 0.06, 0.03, 0.03, 0} and ADx′ = {0.01, 0.06, 0.03,
56.8, 0}. Finally, applying Equation 3 to both sets yields: Mx = {−0.22, 1.34, −0.67, 0.67, 0} and
Mx′ = {−0.22, 1.34, −0.67, 1277, 0}. In this case, the outlier in the second set highly exceeds the
recommended threshold of 3.5.

5. THE MSN ALGORITHM

Our statistical method for stop, move, and noise (MSN) detection builds upon the previously explained
theoretical background.

Considering a trajectory τ = {(s1, t1), (s2, t2), ...(sn, tn)}, where each position si = (lat , lon) is a
pair of latitude and longitude coordinates, and each time instant ti is represented by a timestamp.
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For each pair of points {(si, ti), (si+1, ti+1)}, we compute its distance, duration, speed, and turning
angle. Then, we store these values in their respective time series Sτ , Tτ , Vτ , Aτ . For Aτ , a turning
angle consists on the angle formed by three neighboring points.

From the above time series, we can formulate an algorithm to determine which instants of the
trajectory are likely to be stops, moves or undefined states, considered as noise in this work (see
Algorithm 1). The algorithm’s inputs are the initial calculated time series besides the thresholds εs,
εt, and εv representing the modified z-score limits for distance, duration, and speed. Additionally,
a minimum turning angle parameter (θ) can be used to improve the noise detection following the
intuition that it is improbable for a moving object to take successive turns with small angles, and a
random uniform jitter (ρ) to avoid the MAD breakdown point. The ρ parameter defines the lower and
upper boundaries of an interval from where some value will be randomly selected and added to the
duration value of each point. It should be set to a low value (e.g., 0.5) to change the original values
minimally.

As the trajectory sampling rate is assumed to be nearly constant while the object is moving and
locations are not recorded while the object is stopped, the problem can be summarized as searching
for outliers into time series as they are expected to have relevant gaps in time that characterize periods
of stop or noise. These gaps in time coincide with decreases in speed for the cases of stops as can be
observed by the negative correlation between these two variables (Table I).

To better explain the MSN algorithm, we consider the example of a trajectory depicted in Figure 1
with the following parameters: εs = εv = 3.5, εt = 5.0, θ = 45. It is important to notice that we have
used the recommended threshold of 3.5 for both distance (εs) and speed (εv) parameters. However,
for the duration threshold (εt), we have achieved better results when we increased it to 5.0 as some
slow walking segments were being misclassified as stops.

The first part of MSN identifies potential noisy points. This classification, shown in Lines 2–8,
identifies points with relatively long distances. In the example (Figure 5), three points are identified
in this case. They have distances of about 17, 28, and 55 meters, while the median distance of all
pairs of sequential trajectory points is 11 meters.

(a) (b)

Fig. 2. The density plot of distances in (a) and the three trajectory points with long distances in (b)

The second step of noise classification consists in verifying the turning angles (Lines 9-15). We
account for the fact that a single sharp angle in a trajectory may represent a movement of “turning
back”, while two consecutive sharp angles is less likely to happen and can be considered as a potential
noisy segment. This case is not present in this example as there is no group of points as vertices of
angles of less than 45 degrees.
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Algorithm 1 Move-Stop-Noise classification algorithm

1: procedure MoveStopNoise(Sτ , Tτ , Vτ , Aτ , εs, εt, εv, θ, ρ)
2: distance outliers ← [ ]
3: Ms ← ModifiedZScore(Sτ ,MADs, s̃) . Equation 3
4: for i← 0 to length(Ms) do:
5: if Ms[i] > εs then . Identifying long distances
6: Append i to distance outliers
7: end if
8: end for
9: direction outliers ← [ ]

10: for i← 0 to length(Aτ ) do:
11: if Aτ [i] < θ and Aτ [i+ 1] < θ then . Identifying sharp turning angles
12: Append i and i+ 1 to direction outliers
13: i++
14: end if
15: end for
16: noise indexes ← distance outliers + direction outliers
17: clean indexes ← τ − τ [noise indexes]
18: τ ← τ [clean indexes] . Removing noisy points
19: Tτ ← Tτ + ρ . Adding a random uniform jitter
20: duration outliers ← [ ]
21: Mt ← ModifiedZScore(Tτ ,MADt, t̃)
22: for i← 0 to length(Mt) do:
23: if Mt[i] > εt then . Identifying long durations
24: Append i to duration outliers
25: end if
26: end for
27: Vτ ← lnVτ . Natural log of speed
28: speed outliers ← [ ]
29: Mv ← ModifiedZScore(Vτ ,MADv, ṽ)
30: for i← 0 to length(Mv) do:
31: if Mv[i] < −εv then . Identifying slow speeds
32: Append i to speed outliers
33: end if
34: end for
35: stop indexes ← duration outliers

⋂
speed outliers

36: move indexes ← clean indexes − stop indexes
37: return move indexes, stop indexes, noise indexes
38: end procedure

Once a potential noise is identified, the second part of our method consists in labeling potential
stops, but before that, the noise points are removed for the further analysis.

Lines 19–26 contain the code designed to identify long duration gaps. We have observed that the
time series between points may contain repeated values in more than 50% of the data. In these
cases, the MAD is equal to zero (Equation 1), which causes a division by zero in the modified z-score
(Equation 3). To avoid this, we add a small amount of random uniform jitter to the duration series
(Line 19). The value to be added is randomly selected from the interval [−ρ, ρ). As a default, ρ is set to
0.5. For instance, the time series {4, 5, 5, 6, 6} may be slightly changed to {4.02, 5.19, 4.97, 6.37, 5.97},
which is enough to avoid the MAD being set to zero and does not have an impact on the determination
of stops as a half-second change can be considered as negligible in our context.
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Then, the modified z-score is applied to find duration gaps. However, we have set the modified
z-score threshold to 5 to avoid false positives. Figure 3 shows the distribution of durations for the
example. Two long durations with 40 and 42 seconds are identified, while the median duration for
the trajectory is 5 seconds.

Fig. 3. Distribution plot of a slightly “jittered” duration between points with two outliers

The complement of stop identification (Lines 27–34) concerns the analysis of speed time series. The
Outlier Labeling Rule, presented in Section 4, should be applied to approximately normally distributed
datasets. However, for the trajectories considered in this work, speed data has demonstrated to be
positively skewed in general. To normalize the speed data, the natural logarithm was applied to
restore symmetry. Figure 4 shows the importance of this transformation to find slow speed outliers.
In Figure 4(b), it is possible to see that two points have speeds relatively slower (0.23m/s and 0.29m/s)
while the median speed value for the sample trajectory is 2.1m/s.

(a) Original speed (b) Natural logarithm transformation

Fig. 4. Difference of speed data before and after natural logarithmic transformation. The outlier threshold is shown in
(b)

Successive points with speeds lower than the specified threshold εv are special cases because they
can be classified either as stops or moves. In the first case, considering these points as stops, brings
the risk of classifying a long period of slow movement as a stop, which would make the spatial extent
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of the stop greater than normal. On the other hand, due to the accuracy of GPS acquired positions,
the sequence may actually represent a period where the object was stationary. A possible approach for
these cases could involve analyzing more variables. For instance, one could define a threshold to the
number of contiguous points with low speed where sequences having more points than the threshold
are considered as moves. We left this task as a future work.

Finally, we classify points that present both slow speed and long durations as stops. Figure 5 shows
these two variables with their respective thresholds. Figure 6 shows all points with their classification
as either move, stop, or noise. According to our algorithm, points located at the lower right corner in
Figure 6(a) are stops.

Fig. 5. Modified z-scores of speed and duration with their thresholds. Points classified as noise have been removed in
this figure

(a) (b)

Fig. 6. Final classification of the MSN algorithm for the example trajectory. (a) Outliers identified as noise and stops.
Normal points are considered as periods of movement. (b) The outliers marked in the trajectory geometry
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6. EVALUATION

In this section, we evaluate MSN in two perspectives. First, we focus on qualitatively analyzing the
performance of the MSN algorithm over other stop classification methods. Second, we conduct a set
of experiments to evaluate the accuracy of the MSN algorithm in a real application scenario.

6.1 Qualitative Evaluation

Due to the assumptions about trajectory sampling strategies, it is difficult to make a comparison with
the related work by running all algorithms with the same set of trajectories. In this evaluation, we
focus on analyzing the theoretical performance of other stop classification methods and highlight the
main differences from our work.

Table II shows a general comparison of the main algorithms for stop detection in the literature.
As advantages of our method, we can point out the independence of external data, the usage of
characteristics that can be completely extracted from the trajectory points, the robustness of statistic
methods involved, and the handling of noise.

Table II. Comparison of stop detection algorithms

Parameters
Noise
Handling

Spatial Filter
Support

External Data
Independence

SMoT
[Alvares et al. 2007]

Polygons, minimum stop duration
for each polygon

No No No

CB-SMoT
[Palma et al. 2008]

Polygons, area, minimum stop
duration

No No No

DB-SMoT
[Rocha et al. 2010]

Minimum direction change (degrees),
minimum duration (hours),
maximum tolerance (number of points)

No No Yes

Velocity-based
trajectory structure
[Yan et al. 2010]

Minimum stop duration,
object speed threshold coefficient,
cell speed threshold coefficient

No Yes No

CandidateStops
[Nogueira et al. 2014]

Minimum speed (m/s) No Yes Yes

SMoT+
[Moreno et al. 2014]

Polygons, minimum duration for each
polygon, sites hierarchy

No No No

PIE
[de Graaff et al. 2016]

Polygons,
maximum inaccuracy (meters),
minimum staypoint distance (meters),
minimum staypoint time (seconds),
minimum direction change (degrees),
maximum projection distance (meters)

Yes No No

MSN (this work)

Distance outlier threshold,
duration outlier threshold,
speed outlier threshold,
minimum direction change (degrees)

Yes Yes Yes

By not relying on the polygons of the underlying geography, our method is adequate to trajectories
that are not in a constrained space, being able to identify stops also in free space. In addition, apart
from the minimum turning angle in degrees, an important aspect of MSN is that the other threshold
parameters are not based on any metric quantities, e.g., distance in meters or duration in seconds.
Instead, the Outlier Labeling Rule allows the usage of more abstract thresholds.

A drawback of MSN is the fact that it relies on the comparison of data points relative to the rest
of the dataset. Therefore, to identify a significant time gap correctly, it is necessary to the majority
of other time gaps to have a relatively short duration, which is not surprising because we base our
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method on outlier detection for approximately normally distributed data. However, if the trajectory
contains a large number of noise episodes and, therefore, large time gaps, the method may fail in
recognizing stops. A possible strategy to mitigate this consists in running MSN once and analyzing
the retrieved noise episodes. Then, one could apply some preprocessing procedure (e.g., interpolation)
to smooth out the noisy segments [Celes et al. 2017] and rerun the algorithm. In this process, it is
also possible to conclude that the quantity of erroneous data makes further analysis unfeasible.

The MSN method can be implemented in O(n+m) considering a raw trajectory with n points before
noise removal and m points after the noise identification step. In the worst case, n = m (no points
are discarded in the noise classification phase). Thus, the algorithm’s complexity is O(2n) = O(n),
which continues to be linear. For the sake of clarity, we have not shown the most concise and efficient
implementation of MSN in Algorithm 1, but it could be easily refactored as a single for loop.

6.2 Quantitative Evaluation

In this evaluation, we present experiments with the Dublin Bus GPS sample data from Dublin City
Council2. The trajectories were collected from Nov 6, 2012 to Nov 30, 2012 and gather data from
buses that run the lines of Dublin’s public transport. In this dataset, trajectories can be isolated by
grouping pairs of vehicle journeys and lines, totaling 251,006 traces.

Despite the huge volume of trajectory data, we observed that some traces had features that would
difficult the application of our method. Therefore, some preprocessing and filtering steps were neces-
sary to select a subset that matched some quality criteria.

Some of the trajectories had points recorded at exactly the same position. This goes against MSN’s
assumption of spatial filtering, i.e., points are only recorded if the moving object is distant by a given
amount of space from its last recorded position. To correct this, we dropped points recorded at the
same location while keeping only the first one as a first preprocessing step.

Second, we computed the standard deviation of the distance between points for each trajectory.
This measure gives an estimation of how sparse or concentrated the points are, and allowed us to
filter trajectories that had a better distribution of points along the entire route. Three criteria were
used to select the sample data for the experiments: (i) the standard deviation of the distance between
points should be less or equal to 60 meters; (ii) the trajectories should have at least 80 points; and
(iii) the duration of travels should be 200 minutes of less.

After the preprocessing step, we performed a characterization to describe the features of the Dublin
Bus GPS sample data. The data used in this work consists of 1,574 trajectories from different buses
from Dublin’s public transport that were select according to the preprocessing criteria explained above.

Figure 7 shows the main aspects in terms of spatial and temporal features of that sample data.
The length of the selected trajectories, depicted in Figure 7(a), varies from a few meters to about
26 kilometers. Approximately 75% of the selected trajectories have a length smaller than 15km, as
expected in bus mobility scenarios. Some trajectories have a length greater than 15km representing
some bus lines crossing the city. Naturally, the duration of the displacement of each trajectory is
related to its length, as can be seen in Figure 7(b), where we can observe that most of the trajectories
have between 25 and 75 minutes of duration. Moreover, we observe the time between two consecutive
points in each trajectory. Figure 7(c) shows that approximately 75% of the selected trajectories have
average time between two consecutive points smaller than 26 seconds, as observed in the whole dataset.

Once the sample trajectories were selected, we run the MSN algorithm with each one of them. Then,
for each detected stop, we queried the OSM database to verify which features were located around
the stop position. To consider the uncertainty inherent to GPS recordings, we considered a radius of

2https://data.gov.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
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Fig. 7. Characterization of the trajectories from Dublin Bus GPS sample data: (a) Size of the trajectories; (b) Duration

of the trajectories; (c) Average period between two adjacent GPS points

50 meters around the stops and retrieved only OSM features that held tags containing “highway” as
key3, which serves to describe roads, streets, paths, and the features along them.

Next, we excluded highway features tagged with the following values as these are not related to
stops: street lamp, street cabinet, city junction, elevator, speed camera, and milestone.
It is worth noticing that far more values can be associated with the highway key in OSM. This
exclusion subset was created based on a manual analysis of the features near stops identified by MSN
in this specific sample dataset. The following tag values were considered as relevant in this work:
traffic signals, bus stop, crossing, stop, turning circle, mini roundabout, and give way.

Table III shows results of the experiment for the Dublin Bus sample dataset. When we compare
the values of stops detected by the MSN method (column msn stops) with the OSM stops (column
osm stops), we can see that the hit ratio is equal to 90%. In other words, it shows that 90% of stops
were detected near a OSM feature related to a stop. Possibly, the MSN method detected more stops
than the OSM features due to inherent factors of the mobility of urban buses such as driver behavior,
stops in places not previously defined, and so on. Moreover, 72% of these stops detected by the MSN
method are located next to bus stops and 48% of them are not far from traffic signals. It is also
important to notice that, for the second half of the dataset, the success ratio is over 92%, reaching
100% for at least 25% of the trajectories (75th percentile).

3https://wiki.openstreetmap.org/wiki/Key:highway
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Table III. Results for the Dublin Bus sample dataset

msn stops osm stops hit ratio bus stop signal stop bus hit ratio signal hit ratio

mean 10.67 9.66 0.90 7.74 5.19 0.72 0.48

std 4.95 4.66 0.13 3.95 2.89 0.17 0.19
min 1.00 0.00 0.00 0.00 0.00 0.00 0.00

25% 7.00 6.00 0.86 5.00 3.00 0.62 0.38
50% 10.00 9.00 0.92 7.00 5.00 0.75 0.50

75% 14.00 13.00 1.00 10.00 7.00 0.83 0.60
max 29.00 28.00 1.00 26.00 16.00 1.00 1.00

As a threat to the validity, it should be taken into consideration that some of the OSM bus stops
matched to the MSN stops may not be the ones of the corresponding bus lines where the buses are
supposed to stop. Due to the radius considered in the experiments, the matched features may be even
in different streets outside the bus line, e.g., in parallel streets or crossings. A possible solution to
this problem would consist in using GTFS (General Transit Feed Specification)4 information where
the actual stop locations and times could be considered as ground truth. For the sample dataset used
in this work, GTFS data for the corresponding period was not found.

7. CONCLUSION

In this work, we have proposed a new algorithm for detecting episodes of movement, stop, and noise
in trajectories called MSN and evaluated its efficiency with a large-scale real dataset. This method is
tailored for trajectories that have been sampled at irregular intervals of time or have been preprocessed
to eliminate redundant points at near locations. This particular characteristic present in some datasets
violates a basic assumption made by state-of-the-art methods, which rely on clustering nearby points,
and have motivated our work to fill this gap.

The MSN method has also been designed to be independent of external data (e.g., the underlying
geographic features), which render it as a viable option for trajectories recorded in free-space or lacking
contextual data. Moreover, the main parameters of MSN are expressed in no particular system of
measurement, i.e., there is no need for defining hard thresholds such as specifying that each stop has
to have a duration equal or greater than 10 seconds, for instance. Conversely, the parameters used
in our method are informed as absolute numbers as proposed by a robust outlier detection method
that can be adapted if needed by the application. This is an important aspect that our work offers to
advance the spatiotemporal analysis field in the area of stop detection methods.

As future work, we envision the application of other algorithms, notably supervised learning ones,
as the algorithm proposed in this article takes advantage only of statistical properties of individual
trajectories. Training data is important to apply a supervised approach that implies a manually
annotated trajectory dataset with known labels. Therefore, a tool to annotate trajectories with stops
and moves can be an interesting development. This may improve results by specializing the algorithms
for heterogeneous scenarios where different devices capture positional data using their own sampling
strategies and post-processing procedures. Moreover, a labeled dataset would be useful for evaluating
the efficiency and accuracy of MSN. For public transportation datasets, using GTFS data is another
way of achieving this improvement.

In addition, we believe that the MSN method plays a key role in several applications that explore
trajectories in the context of urban mobility. In this sense, we aim to extend the MSN method to
consider trajectories of several entities instead of individual trajectories. In this way, we can detect
situations that happen collectively such as congestion and collective mobility routines.

4https://developers.google.com/transit/gtfs
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