
Spatial Operations on Uncertain Positional Data

Welder B. Oliveira1, Sávio S. T. Oliveira2, Vagner J. S. Rodrigues2, Helton Saulo3, Kleber V. Cardoso1

1 Institute of Informatics, Universidade Federal do Goiás, Goiânia, GO, Brazil
weldermat@gmail.com, kleber@inf.ufg.br

2 GEOMAIS Serviços de Informática LTDA - ME, Goiânia, GO, Brazil
{savioteles, vsacramento}@gmail.com

3 Department of Statistics, Universidade de Brasília, Brasília, DF, Brazil
heltonsaulo@gmail.com

Abstract. Positional errors on spatial data affect spatial join accuracy in an unexpected and undesirable way. In
general, current probabilistic solutions barely achieve reasonable computational performance, unless they are employed
in special cases such as when the errors follow a Circular Normal distribution.In this article, we present a general
framework for spatial operations which is robust to positional imprecision in geographic coordinates. The framework is
designed to be general in terms of the positional error distribution and provides parametric options for users to control
efficiency and accuracy. Furthermore, we develop two new spatial join procedures: an adaptation of the Monte Carlo
method to be used as a probabilistic step and a probabilistic efficient alternative to Minimum Bounding Rectangles
(MBRs), which we call Confidence Rectangles.Empirical evidence suggests that our proposed methodologies significantly
outperform current solutions in at least one of the three dimensions: generalism, efficiency and accuracy. In the worst
case scenario, the proposed methodology is not significantly outperformed by any alternative solution in more than one
of the three dimensions. Moreover, the user has the power to choose via parameter specification which dimension will
be priorized instead of depending on the inherent advantages of each current solutions.

Categories and Subject Descriptors: J. [Computer Applications]: Miscellaneous; I.6 [Simulation and Modeling]:
Miscellaneous; G.3 [Probability and Statistics]: Miscellaneous

Keywords: Uncertainty in positional data, Spatial join, Skyline query, Pareto efficiency, Monte Carlo method

1. INTRODUCTION

Spatial data are subject to several forms of uncertainty. In special, two forms stand out: existential and
positional. The existential uncertainty is related to the confidence that the spatial object represented
in the data actually exists. This can occur when extracting objects of a satellite image with low
resolution or color definition. Therefore, a specific pixel may not be associated with a given object
with a 100% confidence [Dai et al. 2005]. On the other hand, the positional uncertainty refers to
the confidence in the object position. In this case, the dataset coordinates of the objects differ from
their real locations. This type of uncertainty is also called positional error, or simply error. The error
for a given object is defined as the distance between its actual coordinates and the coordinates that
represent it in the dataset. The distance used may be of various types, such as geodesic, Euclidean,
Manhattan, among others. The magnitude of the error is associated with the method used to produce
the data. In such scenarios, computational operations may lack precision and accuracy. Operations
like spatial joins - which look for intersections between two spatial objects - may return a false positive
or false negative due to object position error. That may lead managers, whose decisions rely on these
computational operations, to take wrong decisions.

Traditional spatial operations assume an absolute precision in the coordinates of the represented
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objects, despite the fact that spatial data from most diverse sources possess different error patterns
due to a number of factors. For example, [Hughes 2002] points out that the horizontal accuracy
(with 95% confidence interval – CI) of the GPS (Global Positioning System) with WAAS (Wide Area
Augmentation System) standard for the city of Los Angeles was 0.922 meters, while the vertical ac-
curacy for Miami was 1.373 meters. Geocoding is a less precise georeferencing procedure than the
GPS in which the geographical coordinates are obtained from addresses written in natural language.
Typically, geocoding presents errors of at least 100 meters in about 20% to 30% of cases, according
to [Faure et al. 2017]. In turn, methods based on satellite images can be affected, for example, by the
scale used when generating the data. Some methods have been proposed in the literature to deal with
both existential and positional uncertainty. [Pei et al. 2007] show how to compute a Skyline when
multiple instances of the same object is provided. [Openshaw 1989] proposed the use of the Monte
Carlo Method to estimate probabilities of intersection in spatial joins and [Ni et al. 2003] adapted the
steps of a traditional spatial join solution assuming that the errors in the coordinates follow a Circular
Normal distribution. However, the methodology discussed in [Pei et al. 2007] is only applicable if mul-
tiple instances of the objects are available, which usually is not the case; the Monte Carlo procedure
suggested in [Openshaw 1989] is computationally too expensive and [Ni et al. 2003] approach requires
errors to be Circular Normal. In this context, we propose a solution whose main contributions for the
area of uncertain spatial operations are:

(a) to be applicable for any error distribution (generality, by accepting the probabilistic distribu-
tion provided by the solution’s user);
(b) to be computationally practical (efficiency, as specified by the maximum number of Monte Carlo
simulations); and
(c) to control false positives (accuracy, as specified by a parameter p which is the cut probability for
assuming a match between two objects).

It is important to highlight that our contribution is not to provide a solution which satisfies (a)
or (b) or (c), for which the above-cited authors have provided a solution, but (a) and (b) and (c)
simultaneously. The solution user specifies its tolerance or requirements concerning each of these
three dimensions. Thus, the user can apply our solution framework even if she/he

(1) does not possess multiple instances of each object as required by [Pei et al. 2007];
(2) possesses a dataset that is too large to be processed by a traditional Monte Carlo approach in

reasonable time as in [Openshaw 1989];
(3) is not sure that the Circular Normal assumption for errors is reasonable as in [Ni et al. 2003];
(4) desires to control the balance between accuracy and efficiency in his/her applications (which the

cited correlated solutions do not provide). That is the novelty that this article brings to the area.

In order to deliver those contributions, this article presents a framework for building spatial opera-
tions based on our proposed Progressive Monte Carlo Method (PMCM). To ilustrate its applicability,
two operations - Spatial Skyline and Spatial Join are adapted with PMCM. PMCM helps mainly in
providing a parametrization for the efficiency and accuracy of the solution, i.e., the balance between
these two dimensions.

Empirical evidence provided by some tests (Section 4) points out that adopting the proposed frame-
work may decrease the computational processing time by 71% when compared with a standard Monte
Carlo approach. Furthermore, in the experiments the efficiency gain came with no loss in accuracy.
Even if in some practical scenarios the developer faces a significant loss in accuracy, she/he may over-
come that by adjusting the accuracy parameters. Tests performed in Section 4 showed that when that
is done, the processing time does not increase significantly. Thus, the accuracy-efficiency trade-off is
such that the solution still remains relatively efficient while accuracy standards significantly increase.
Finally, the developer has the benefit of having a solution that does not require a specific probability
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Fig. 1. Skyline Query: scenario 1. Fig. 2. Skyline Query: scenario 2.

Fig. 3. Skyline Query. Adapted from [de Oliveira et al. 2015].

distribution.

The rest of the article proceeds as follows. Section 2 presents the theoretical basis of the work and
the main correlated works. Section 3 presents the two proposals for spatial operations with imprecision
of spatial data: pSkyMCM (p-Skyline Monte Carlo Method) and PMCSJ (Progressive Monte Carlo
Spatial Join). Lemmas and theorems are presented to prove the efficacy of the solutions presented.
Section 4 presents and discusses the experimental results obtained. A conclusion section ends the
article.

2. BACKGROUND

This section presents the main concepts relating the developed solutions in this article, namely spatial
skyline and spatial joins. Furthermore, the literature in these two areas are discussed.

2.1 Skyline query

Skyline queries are one way to perform preference queries from a database by providing only the
ordering direction of the attribute values [Chomicki et al. 2013]. This query type returns the efficient
Pareto tuples of a dataset according to a number d of attributes and their ordering direction (max-
imization or minimization). Pareto efficiency is the property of objects that are not dominated by
any other in a certain dataset. On the condition of minimization, point pi dominates point pj if and
only if the coordinates of pi in any dimension are not larger than the corresponding coordinates in pj
[Papadias et al. 2003].

As an example, a classic illustrative problem would be: “find hotels that are cheap and close to
the beach”. Thus, there are two objectives to be achieved, which can be mutually exclusive, i.e., the
hotels closest to the beach may tend to be the most expensive. Naturally, if there is a hotel A that is
cheaper and closer to the beach than other hotel B, then A is preferable to B concerning these two
attributes.
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Figures 1 and 2 (adapted from [de Oliveira et al. 2015]) show a set of hotels in relation to the two
variables of interest: x-axis: “distance to the beach in meters”; y-axis: “daily price (R$)”. The solid
line represents the skyline S for the whole set of hotels concerning the two attributes. In Scenario 1,
a is the closest hotel to the beach and l the cheapest one. Thus, these two hotels belong to S, since,
by definition, they cannot be dominated by any other hotel. In addition to these two hotels, c also
belongs to S, as it is not dominated by any another in this data set. All others are dominated by
any of these three points. Therefore, as highlighted in Figure 1, S = {a, c, l}. However, a possible
inaccuracy in the data can impact the query and change the solution. Scenario 2, Figure 2, shows how
a position error of 150 meters from hotel e would include it in S. In this case, it makes sense to ask
what would be the probability of e being Pareto efficient in this set concerning the two dimensions
(or attributes). To deal with this sort of situations and incorporate the imprecision of attributes in
the query, the concept of the p-skyline is introduced.

Given a set of spatial data D (such as the example with 13 hotels), we define p-skyline in D as the
subset Sp ∈ D formed by the points for which the probability of not being dominated by any of the
other points of D is at least p. According to this definition and considering positional errors whose
modular values can assume any positive real value, we have S0 = D and S1 = φ, since any point
of D would have a probability of at least zero of belonging to S, just as no point would have 100%
probability of being in S.

Since its introduction in [Borzsony et al. 2001], the execution of skyline queries has received consid-
erable attention in the multidimensional database area. Several algorithms for obtaining skylines have
been proposed. [Tan et al. 2001] use auxiliary structures for progressive skyline execution, [Kossmann
et al. 2002] present a nearest neighbor algorithm, [Papadias et al. 2003] introduce the branch and
bound algorithm for skyline (BBS) and [Chomicki et al. 2003] and [Chomicki et al. 2005] propose the
sort-filter-skyline (SFS) algorithm, which acts by leveraging preordered lists, as well as an ordering
by linear elimination.

The concept of space in the skyline query was introduced by [Sharifzadeh and Shahabi 2006]. Given
a set of points P and a set of queries Q, at each point p ∈ P is derived a number of spatial attributes
corresponding to their distances to the query points. [You et al. 2013] propose the algorithm branch
and bound farthest search (BBFS), comparing and demonstrating its superiority over the threshold
farthest spatial skyline (TFSS). Efficient algorithms for TFSS using the Euclidean distance were
proposed by [Son et al. 2009; Lee et al. 2011]. [Son et al. 2014] developed an algorithm using the
Manhattan distance (also known as the taxi driver’s distance). This metric is closely related to the
real traveled distance between two points in a city than euclidean distance.

[Khalefa et al. 2008] present a solution for incomplete data, i.e., when there are missing data in some
of the dimensions considered in the query. The authors generalized the dominance criterion as follows.
Given any two points P and Q, which may have incomplete dimensions, point P dominates Q if the
following two conditions are valid: 1) There is at least one dimension i where both P [i] and Q[i] are
known, and P [i] < Q[i]; 2) For all other dimensions j, either P [j] or Q[j] are unknown or P [j] ≤ Q[j].
Here, the symbols < and ≤ denote the preferred sense of optimally, which may even be maximization.
The traditional definition for complete data becomes a particular case of that proposed by [Lofi et al.
2013], who address the problem of incomplete data from a different perspective. The authors propose
that the tuples with the greatest potential to degenerate the overall quality of the solution be shared
with collaborators in time to resolve the missing data problem. A new probabilistic skyline model
is proposed by [Ding et al. 2014], where an uncertain object may assume a skyline probability at a
certain point in time.

[Pei et al. 2007] calculate skylines for uncertain data. According to the authors, uncertainty means
that more than one instance is available for each attribute for the several objects under evaluation.
The authors cite, as an example, the performance data of NBA players. For each player, statistics
such as the number of assists and rebounds are considered. The higher the value reported in each of
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these statistics, the better the player. As the players’ performance varies from game to game, each of
them possesses different values for the same statistic. To solve the problem, an alternative mentioned
by the authors is to replace the several values of each attribute by their averages for each player.
In this way, an A player would present a single value for rebound, which would be the average of
their rebounds in the several games reported in the data set. Therefore, a traditional skyline solution
would be sufficient to solve the problem of setting the best players in the championship. However,
that would not allow the computation of probabilities that a given player is in fact among the best.
When considering all the instances of each attribute, [Pei et al. 2007] derive such probabilities and
introduce the concept of probabilistic skyline.

2.2 Spatial join

Before defining the spatial join, we introduce the concept of the join operation. Given two datasets
A and B, it is called a join in relation to an attribute x common to both sets, the subset of Cartesian
product (A×B) denoted by (A×B)x, containing all tuples (a, b) with a belonging to A and b belonging
to B, such that there is a match between a and b with respect to x. The rule used to define whether
there is a match between the two tuples is called the join predicate.

In many applications, the equality predicate is used, i.e., it is said that a and b match if a = b. For
example, a given query to a database may have a goal of returning a table with the names and phone
numbers of customers who are registered in a store, using two sets of data: A = {id, phone_numbers}
and B = {id, people_names}. In this case, a join of the tables by the id attribute meets the objective.

In the presence of spatial attributes, it is common to consider different predicates than those used
to evaluate matching between textual or numeric attributes. Examples of typical predicates applied
in join of spatial attributes are: the intersection and the property of being at a maximum of x meters
away. Join operations that apply spatial predicates are called spatial joins. The scope of the present
work is restricted to the predicate of the intersection. Figure 0?? shows five case in which there is
intersection in four of them: B, C, D, and E. Therefore, it is said that there is a match relating this
predicate in these cases.

When there is uncertainty in spatial data, both in relation to existence and to the position of the
objects, the concept of probabilistic spatial join (PSJ) is necessary. Probabilistic spatial join with cut
probability p for two datasets A and B and spatial attribute x is the subset of the Cartesian (AxB)
containing all tuples (a, b) with a ∈ A and b ∈ B, such that the match probability between a and b
concerning the spatial attribute x is at least equal to p.

Unlike the deterministic versions of the spatial join, where the verdict in predicate evaluation is
boolean, i.e., true or false, in the probabilistic version one can only achieve a specific confidence in
such a verdict. Thus, one cannot assure that the probability of the intersection is greater than or
equal to p, but that there exists a known confidence γ in that statement. Thus, assuming there is
a positional error in the coordinates of the polygons from Figure 4, one cannot decide with 100%
confidence if there is a match in any of the five cases presented. However, assuming that such errors
can be modeled with a probability distribution, it is reasonable to expect that the match probability
in scenario B is greater than in scenario A. A PSJ should be able to assess such probability and
return match only in cases where this exceeds the established p threshold.

The inherent probabilistic nature of a PSJ solution leads to both false positives and false negatives.
For example, taking p = 0.90, there will be a false negative when the true probability of intersection
is at least 90%, but PSJ does not return the match. Conversely, PSJ will incur a false positive when
returning the match for two spatial objects whose true intersection probability is less than 90%. In a
PSJ solution, accuracy can be measured as the proportion of correct assessments of the join predicate
for all pairs of geometries or for a sample of that set. In Section 4, the accuracy of our and concurrent
solutions are evaluated for pairs of geometries whose true probability of intersection is located at a
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Fig. 4. Polygon intersection cases.

radius R of p.

There are several methods for performing spatial join using or not indexed datasets. If no dataset
is indexed, a nested-loop join, [Mishra and Eich 1992], plane-sweep algorithm [Arge et al. 1998] and
[Jacox and Samet 2003], or spatial join based on partitioning, [Luo et al. 2002] and [Patel and DeWitt
2000], can be used. If only one dataset is indexed, then the spatial join can be performed using a nested
loop index, [Lo and Ravishankar 1994], which requires an index IA for the dataset A, in addition to a
loop for the dataset B and IA queries for each object. If both (A and B) are indexed with R-Trees,
[Guttman 1984], a synchronous path, [Brinkhoff et al. 1993] and [Huang et al. 2006] can be used to
perform the operation. This process recursively traverses the trees to the level of the leaves where the
objects are compared. However, these approaches do not deal with probabilistic spatial join.

Spatial join in data with existential uncertainty were explored by [Dai et al. 2005]. Moreover, [Ljosa
and Singh 2008] present an approach capable of handling both existential and positional uncertainty,
making use of a score function in which the two types of uncertainty are both taken into account.
[Openshaw 1989] propose using the MMC to calculate the probabilities of intersection of geometries
with positional uncertainty. We will call this solution Random Spatial Join (RSJ) and it will be
evaluated and compared to our approach in Section 4.

In the PSJ proposed by [Ni et al. 2003], the error is modeled using a Circular Normal distribution.
Due to some well-known specificities and properties of Normal distribution, the authors were able to
adapt the filtering and refinement steps to achieve optimal accuracy and efficiency. We will call this
spatial join approach Circular Normal Spatial Join (CNSJ) and we will discuss how this solution can
be compared to our approach in the Section 4.

As RSJ can handle errors from multiple probability density functions (PDFs) and CNSJ is designed
to work properly only with the Circular Normal distribution for the errors, then RSJ is more generalist
than CNSJ. As we are proposing a solution – PMCSJ – in which generality is one of the requirements,
CNSJ is not a direct competitor, but RSJ is. Therefore, PMCSJ will only be directly compared
against RSJ, also in the Section 4.

In this article we also present an adaptation of the Minimum Bounding Rectangle (MBR) used in
filtering steps in several spatial join algorithms. That is done by developing the concept of confidence
rectangle (CR). [Tu et al. 2012] proposed normalized cross correlation to create “motion bounding
box” to be applied in the context of detecting moving objects. [Arcaini et al. 2013] proposed a buffer
d - with length chosen by the solution’s user - to be added in the MBR corners. However, none of
these proposals are flexible to be applicable for different PDFs as the generality requirement of our
framework demands. In order to achieve that requirement, we made use of Chebyshev Inequality -
which holds for a large class of PDFs - when building the CR. In section 3, we mathematically prove
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the validity of CR to provide the required level of confidence for intersection evaluation.

3. PROPOSED SOLUTIONS

As previously described, the solutions presented in this work are designed to meet three requirements:
generality, accuracy and efficiency. In this section, we present the general framework of solutions for
robust spatial operations with uncertain coordinates, as well as the adaptations of the main heuristics
used in each of the developed operations, specifically. In the PMCSJ, the filtering step, common in
spatial join algorithms and important for reducing the number of exhaustive geometric calculations,
is adapted to the PSJ by introducing the concept of the CR, which is an extension of MBR built
to guarantee the required level of confidence when evaluating intersection probabilities. To meet the
generalism requirement, the Chebyshev Inequality is applied to its derivation, since this inequality is
true for a large family of PDFs - more specificaly any integrable random variable with finite expected
value µ and finite non-zero variance σ2. The details of its constrution is provided in Subsection 3.6.
In the refinement step, we propose an adaptation of the MCM, denoted by PMCM, which helps our
framework to keep user’s desired balance between accuracy and efficiency, since it does not run a
fixed number of simulations, but a sufficient number of batches of simulations. After running each
batch it stops to evaluate whether the decision concerning objects intersection can be made with the
statistical significance required by the user. Therefore, it avoids extra computational cost by runing
a large number of unecessary simulations - improving efficiency - and keeps accuracy in standards
controlled by the user. The parameter associated with accuracy is called gamma (γ) and represents
the confidence level for claiming a match between two spatial objects. As Monte Carlo simulations may
be performed with any probability distribution, it provides the generality we are persuing. Thus, its
inclusion benefits our framework in this particular requirement. However, as they are computationally
expensive, we introduce the PMCM to improve its efficiency allowing the control by users of the desired
level of confidence in the results (accuracy, as provided by γ).

In the pSkyMCM, the MCM is used to evaluate the probabilities of dominance for any PDF (gener-
ality) and the direct application of a lemma presented by [Pei et al. 2007] is used to save computation
(efficiency).

Subsection 3.1 discusses the general structure of solutions for spatial operations with imprecise
geographical coordinates. Subsection 3.2 shows how the positional errors are simulated and Subsec-
tion 3.3 presents the proposed adaptation to the MCM in order to efficiently and effectively deal with
the evaluation of probabilistic conditions. More specifically, the solution is able to decide the true
value of the condition q ≤ p, where p is a cutoff probability and q is a probability of success. In
Subsections 3.4 and 3.5, the PMCM algorithm is applied to develop pSkyMCM. In Subsection 3.6,
another contribution of our work is also presented, which increases the efficiency of spatial solutions
with uncertainty in the coordinates: the concept of CR, as well as a proposal for the development of
a CR applicable to the broad variety of probabilistic distributions for the positional errors.

3.1 General framework for robust spatial operations

Figure 5 presents our framework. It is composed of two stages: 1) PMCM and 2) probabilistic
adaptations (probabilistic heuristics) for each spatial operation. PMCM is applicable for all spatial
operations when evaluating a predicate. For example, in the case of spatial join, that predicate is “do
objects A and B intercept?”. In case of spatial skyline the predicate is “is object A not dominated by
any other object?”.

The need for using PMCM and not other procedures in competing solutions is to provide both a
competitive standard in terms of efficiency and accuracy - while also working with datasets which
exhibit the most unusual error patterns (generalist regarding error distribuion). The PMCM also
allows developers to set which dimension is more important, efficiency or accuracy.
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Fig. 5. General Framework Solution.

While each spatial operation has a specific predicate to be evaluated, it has also other specificities
which need to be adapted as well in order to turn the operation probabilistic. Here we call those
adaptations probabilistic heuristic. In the case of spatial join, it is the traditional filtering step
applied in most algorithms for that operation. In this article, the operation becomes probabilistic
with the introduction of the CR, where its formulation is consonant with the dimensions of generality,
efficiency and accuracy. A theorem is proved to demostrate its applicability to the filtering stage of a
probabilistic spatial join. Furthermore, empirical resuts in Section 4 indicate that it collaborates to the
efficiency and accuracy results achieved by our proposed spatial join. In the case of spatial skyline, we
use a lemma as probabilistic heuristic for that operation. With its use, some predicate evaluations are
avoided, saving processing time (efficiency). The combined application of these mechanisms allows our
solutions to reach satisfactory levels of generality, accuracy, and efficiency, as it will be demonstrated
by the theoretical and empirical results in this section and in the next one.

Standard MCM provides generality for spatial solutions, since it allows them to be performed by any
PDF associated with the errors in the coordinates. On the other hand, the MCM also considerably
increases the computational cost of the algorithms. Thus, it is imperative to create procedures to avoid
that the maximum cost associated with the MCM is reached. In this context, this article presents the
PMCM. Along with PMCM, for each spatial operation, some heuristics need to be applied to provide
efficiency for that particular computational task. In the case of the proposed PSJ, it is used the CR.
PMCM and CR are responsible for decreasing the total number of simulations to be performed by
our solutions and so save computation time.

3.2 Monte Carlo simulations

MCM refers to any method in statistical inference or numerical analysis that uses simulations, [Rizzo
2007]. They are known in the literature for their different contexts, such as obtaining estimates for
defined integrals, mean of a function, calculation of probabilities, among others.

In this article, the MCM is used in two contexts: 1) to estimate the intersection probabilities between
two geometries; 2) to estimate the dominance probability between two points. In order for the MCM
to be properly applied, the simulations must represent the studied phenomenon well. The procedure
applied to perform the simulations is described as follows. Each simulation consists of replacing a
point P = (x, y) of a geometry g with another coordinate Q that simulates its real position. After
that, Q is obtained from the displacement of P in the direction of a vector v generated with an angle
θ, such that θ ∼ Uniform(0, 2π), and with a norm r generated according to the PDF that models
the positional error.

Figure 6 illustrates the procedure used in the simulation. The choice of Uniform(0, 2π) ensures that
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Fig. 6. Positional error simulation.

the error is evenly distributed in all directions. To compute the displacement vector v, its components
vx and vy are obtained from the trigonometric relations: vx = r.cos(θ) and vy = r.sen(θ). Finally Q
is obtained with the equation Q = (x+vx, y+vy). This ensures that each point is shifted in a random
direction to another point whose distance from the original is given by the chosen PDF.

The Monte Carlo estimate q̂ of the probability of intersection q between two geometries - g and h -
is obtained by the simulation of n displacements in g and h by means of formula q = x

n , where x is the
number of simulations in which g and h intersect (that is an unbiased estimate for minimum variance
for q). From inference theory, we know that E(q̂) = q and V ar(q̂) = q

1−q . In addition, V ar(q) → 0
when n→ inf.

The estimate obtained is used to evaluate the condition: q ≤ p. If this condition is true, the spatial
join returns the match between the geometries involved. Otherwise, there is no match. However, since
q̂ is an estimate, there can be an error in the evaluation of this condition. The Central Limit Theorem
guarantees that when n tends to infinity, q̂ tends to q. Therefore, the assessment of the condition
may be as accurate as desired, by simply applying a sufficiently large number of simulations. Yet, this
number may be computationally impractical. The next subsection shows how the PMCM solves the
practical problem of finding a sufficient number of simulations so that the condition can be evaluated
accurately and in a computationally efficient way.

3.3 Monte Carlo method

The PMCM aims to set a procedure that applies the MCM in an accurate and efficient way. It consists
of carrying out just the right number of simulations to evaluate the condition of interest satisfying
the required accuracy constraint - in our case q ≤ p, with the required level of confidence.

After performing the simulations, we can obtain the estimate q̂ of the probability of intersection q
between two geometries a and b, a ∈ A, b ∈ B. By fixing a number n of simulations, we obtain the
margin of error ε for q̂, i.e., the maximum distance q̂ is from q with a confidence level γ. Therefore,
it is known that the probability that q belongs to the interval (q − ε, q + ε) is equal to γ. Therefore,
based on this confidence interval, one can adopt the following rule:

(1) If p < q̂ − ε, it is decided with confidence level γ that there is no match.
(2) If p ≤ q̂ + ε, it is decided with confidence level γ that there is a match.
(3) Otherwise, neither alternative is ensured with a level of confidence γ. Nevertheless, a decision can

be made based on the true value of (q ≤ p) with a confidence level less than γ.

For reasons of efficiency, the number of simulations should not be too high. However, due to the
accuracy constraint, it must not be too small either. For example, n = 50 may be sufficient to
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guarantee a computation time below a threshold acceptable to the user, but insufficient to ensure that
the match verdict is evaluated at the desired level of confidence. The reverse may also occur: n = 50
be more than necessary to ensure the desired accuracy, which would constitute a computation time
waste.

PMCM solves this problem by controlling the number of Monte Carlo simulations used to evaluate
if (q ≤ p). Instead of executing the maximum number allowed for the simulations for each pair of
candidates, PMCM executes a smaller number m < n in each step. Thus, if n = 1000, m can be 40,
for example. A single batch of m = 40 may be sufficient to decide with the desired confidence level
the true value of the condition (q ≤ p). In case that occurs, the procedure would save 960 simulations
without affecting the solution’s desired accuracy level. If not, a new batch of m = 40 would be
executed and the resulting 80 simulations (40 in the first lot plus 40 in the second) would be used
again to evaluate (q ≤ p). The procedure is repeated until either the condition can be evaluated with
the specified level of confidence or the limit for the number of simulations is reached. The PMCM
algorithm is presented below.

Algorithm 1: Progressive Monte Carlo method (PMCM).

Data: a e b – two geometries
p – cut probability
m – batch size
nmax – maximum number of simulations
Result: TRUE if the success proportion is greater than p, otherwise FALSE

1 Initialize the counter n with zero.
2 Shift the geometries a and b m times.
3 Update n in m units (n← n+m).
4 Compute the success proportion q̂ in the n simulations.
5 Compute the CI for q, i.e,

CI(q, γ) =

[
q̂ − tc

√
q̂(1− q̂)

n
, q̂ + tc

√
q̂(1− q̂)

n

]
,

where tc is the (1 + γ)/2 quantile of t-Student distribution with n− 1 degrees of freedom.
6 If p ∈ CI(q, γ) and n ≤ nmax, repeat steps 2-5.
7 If q̂ ≥ p return TRUE, else return FALSE.

PMCM executes batches of m simulations (line 2) whenever the maximum number of iterations is
not reached and the desired accuracy guarantees it is not achieved. At the end of each batch, the
CI for q with the confidence level γ is calculated using the formula for the confidence interval for a
proportion provided by the theory of statistical inference (line 5). If p ∈ CI(q, γ) (line 6), it is not
possible to decide with a confidence γ the true value of the condition q ≤ p. In this case, another batch
of simulations is needed to reduce the CI size (go to line 2). Otherwise, the CI is already sufficient
to decide the true value of the condition with the confidence level γ. Thus, the decision can be taken
with the accuracy required by the user without the need for further simulations, saving computation
time.

The CI presented in line 5 presents a margin of error E = tc

√
q̂(1−q̂)
n for the estimated success

rate, where tc is the (1 + γ)/n quantile of the t-Student distribution. Each time new simulations are
performed, the size of CI decreases - since the denominator n increases - to a point where it will be
small enough to decide the true value of the condition q ≤ p with confidence level γ or reach the
maximum number of iterations defined. The efficacy of the method in correctly assessing condition
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(q ≤ p) is related to the value of E. Once a confidence level γ has been set, the smaller E is the
greater the chance of the probability of cut p not belonging to the CI and, therefore, the greater the
chance the decision by the true value of the condition q ≤ p will be accurately assessed.

The computation time for the evaluation of condition q ≤ p for a given pair of geometries increases
linearly as a function of the number of simulations n, while the margin of error decreases proportionally
to
√
n. Therefore, the computational cost in evaluating the condition q ≤ p grows quadratically

relating the decrease factor k in which the margin of error is reduced. However, we emphasized that
the need of a relatively high value k is directly associated with a smaller difference between p and
q. In several practical scenarios, a difference low enough to requiring a too high value for k can be
ignored by the user.

3.4 Probabilities in the skyline

Let U = {A1, ..., Ar} be a collection of georeferenced objects and L = {L1, ..., Ld} be a collection of
reference points. We wish to obtain the subset Sp of U , such that for every Bi ∈ Sp the probability of
Bi not being dominated by any of the points of U is at least equal to p. This subsection shows how
to calculate the probability of a point Ai belonging to Sp, formally Pr(Ai ∈ Sp). We have

Pr(Ai ∈ Sp) = Pr

[ r⋃
i=1;i 6=j

(Ai ≺ Aj)c
]
, (1)

where

—the symbol “≺” denotes dominance, i.e., Ai ≺ Aj means that Ai is dominated by Aj .
—Aci represents the complement of Ai.

Assuming independence between events, one can write

Pr(Ai ∈ Sp) =
r⋃

i=1;i 6=j

(Ai ≺ Aj)c, (2)

in which Pr(Ai ≺ Aj) can be calculated by

Pr(Ai ≺ Aj) = Pr

[ d⋃
k=1

Aik ≺ Ajk
]
=

d⋃
k=1

Pr[Aik ≺ Ajk], (3)

assuming independence between the dimensions and with k = 1, ..., d going through each one of the
distances for the reference points. For a given k in particular, (Aik ≺ Ajk) is equivalent to (Ajk < Aik),
since optimization occurs in the sense of minimization points of reference. Finally, Pr(Ajk < Aik) is
evaluated using the MMC for a number m of simulations, according to Equation 4.

Pr(Ajk < Aik) = #(Ajk < Aik)/m. (4)

Lemma 1 below, presented and proven by [Pei et al. 2007], can be used to avoid high computational
costs involved in Equation (2), mainly due to simulations required in Equation (4).

Lemma 1. Let U = {A1, ..., Ar} be a collection of objects with imprecise coordinates and Sp the
p-skyline for the set U relative to any set of spatial attributes. If Ai dominates Aj , then Pr(Ai ∈
Sp) > Pr(Aj ∈ Sp).
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3.5 The pSkyMCM solution

The p-Skyline proposed in this work - pSkyMCM - uses in its algorithm the Lemma 1, Equations (1),
(2), and the Monte Carlo method performed on the PDF used to model positional errors. The
algorithm is presented in the following.

Algorithm 2: pSkyMCM

Data: S – a set of n georeferenced objects
R – a set of reference coordinates
p – cut probability
µ – mean error
σ – standard deviation of errors.
Result: Sp – a subset of S of the objects whose probabilities of being Pareto efficient

concerning the derived attributes from R is at least p

1 Compute the distance from each point to the reference coordinates, resulting in a matrix n× d,
where n is the number of points, d is the number of reference coordinates.

2 Initialize the arrays P and Q, which will, respectively, store the points already known to be
Pareto efficient and those already known to be not.

3 for each point i do
4 Verify if i belongs to either P or Q. If yes, increment i and repeat the verification. If not,

follow the next steps.
5 Compute the probability of i being dominated by j for each j = 1, ..., n.
6 Estimate the probability q of i not being dominated by any other point.
7 if q ≥ p then
8 include i in P and apply Lemma 1 to also include in P all points j such that j

dominates i in a deterministic way.
9 end

10 else
11 include i in Q and apply Lemma 1 to also include in Q all j points dominated by i in a

deterministic way.
12 end
13 end
14 Return P .

3.6 The PMCSJ solution

As the main proposals in the spatial deterministic join, PMCSJ also presents two classic steps: filtering
and refinement. However, to meet the three requirements for which the solution is designed, these
steps need to be adapted. The filtering step is run in a probabilistic and extended version of the MBR
that we call the CR, commonly used to index spatial data. The refinement phase is performed by the
PMCM algorithm presented in Subsection 3.3.

Definition 1: Given a geometry g and a cut probability p, a CR for g with a cut probability p is the
one containing the MBR of g and, in addition, the probability of containing the real object represented
by g is at least

√
1− p.

A first consequence of Definition 1 is that a CR is not unique as there are infinite rectangles satisfying
the definition. However, we build one that is valid for a large family of probability distributions and
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has the smallest size necessary to ensure the effectiveness of the filtering step. A smaller CR provides
greater filtering power, since it will prevent a larger number of pairs from being evaluated in the
refinement stage using PMCM, reducing the computational cost. Figure 7 shows the geometry g,
its smallest surrounding rectangle (SSR) and the displacement value d. Another consequence of the
definition is expressed in the following theorem.

Fig. 7. Confidence Rectangle.

Theorem 1: Let G and H be confidence rectangles for geometries g and h, respectively. If G and
H do not intersect, the probability of intersection between g and h is less than p.

Proof : Given that G and H are CRs for g and h then it follows from the definition that Pr(g ⊂ G) ≤√
1− p and Pr(h ⊂ H) ≤

√
1− p. Thus, assuming the independence concerning the error direction in

g and h coordinates, Pr(g ⊂ G, h ⊂ H) = Pr(g ⊂ G).P r(h ⊂ H) ≤
√
1− p

√
1− p = 1−p. Therefore,

Pr(g ⊂ G ∪ h ⊂ H) < p. Since G and H do not intersect, g and h only have a chance of intersection
if at least one of them is not contained in its respective CR. However, the last equation shows that
this probability is less than p. Thus, the probability of intersection between g and h is less than p as
we wanted to demonstrate.

To construct a CR for a given geometry g, its MBR is expanded by a factor d in both vertical and
horizontal directions. To meet the definition of CR, the value of d will be provided by Chebyshev’s
inequality. This inequality is valid for any integrable PDF, [Ross 2014], which meets the generality
requirement for the present work. Chebyshev’s inequality states that: if X is a random integer with
finite mean µ = E(X) and standard deviation σ, then for any k > 0,

Pr(|X − E(X)| > kσ) < 1/k2.

A consequence of this expression is that, for X > 0,

Pr(X − E(X) > kσ) < 1/k2 ⇒ Pr(X ≤ E(X) + kσ) ≥ k2 − 1

k2
.

In PMCSJ, X is the positional error (positive). Consequently, the probability of the error be at
most d = E(X) + kσ is at least k2−1

k . By the Definition 1, in order to build a confidence rectangle, it
is sufficient to take d such that Pr(X ≤ E(X) + kσ) >

√
1− p. Now we can set√

1− p = k2 − 1

k2
⇒ k =

1

1−
√
1− p

.
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Therefore, for a specific p,

d = E(X) + σ
1√

1−
√
1− p

.

The CR coordinates are given by the following coordinates: Pmin = (xmin, ymin) and Pmax =
(xmax, ymax), with xmin = xSSRmin − d, ymin = ySSRmin − d, xmax = xSSRmax + d and ymax =
ySSRmax

+ d.

The two datasets are indexed using an R-tree with the CRs assuming the same role as MBRs in
a traditional spatial join solution (see [Patel and DeWitt 2000] for more details on indexing spatial
objects). For two pairs of geometries a and b, a ∈ A, b ∈ B, the tree is traversed and in its descent,
if the CRs do not intersect then the pair (a, b) is already discarded from the join result. The pairs in
which CRs intersect are evaluated using the proposed refinement, i.e., PMCM.

4. EXPERIMENTAL EVALUATION

4.1 Probabilistic skyline

PSkyMCM was evaluated with a 10% cut probability for data of 36 schools from the city of Goiâ-
nia/Brazil, which the locations are shown in Figures 8 and 9. The schools’ names were omitted and
are identified by numbers for the sake of anonymity. PSkyMCM is performed in order to find schools
that are closest to three locations of interest, indicated with an asterisk in these figures. These lo-
cations may correspond, for example, to the residence, place of work or university of a given person.
PSkyMCM returns schools that are as close as possible to the three places and discards those that
are dominated in that dataset. This scenario illustrates how PSkyMCM can be applied to facility
recommendation based on multiple criteria.

Fig. 8. Deterministic skyline query result. Fig. 9. p-skyline result with p = 0.10.

The error considered in the experiment follows a Normal distribution with a mean of 100 meters and
a standard deviation of 1000 meters. These values are commonly found in real data obtained through
a geocoding process. The three points considered are in the coordinates: P1 = (−16.68;−49.21),
P2 = (−16.71;−49.275) and P3 = (−16.695;−49.35). Figure 8 shows the result obtained by the
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deterministic skyline query and Figure 9 presents the result of PSkyMCM with p = 0.10 for the 36
schools. The obtained results were S = {1, 3, 9, 10, 14, 15, 17, 18, 20, 26, 27, 28, 30, 31, 35, 36} for the
deterministic skyline and Sp = {1, 3, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17, 18, 20, 24, 26, 27, 28, 30, 31, 35, 36} for
the PSkyMCM. Thus, Sp contains all elements in S and also the points 4, 5, 7, 8, 16, and 24. This
implies an increase of 37.5% in the number of available options. Since there is no strong probability
guarantee (with confidence level of γ) that those extra points should be removed, the presented
solution keep them as options. This avoid potentially good candidates to be wrongly eliminated for
a specific query. In addition, if we assume that the 22 schools returned in Sp have about the same
chance of being the most useful to the user, then the 6 additional schools in Sp (not in S) would
represent a risk of 6

22 = 27, 27% of the deterministic skyline not returning the best option. PSkyMCM
prevents potentially useful options to be unnecessarily discarded and is therefore suitable for facility
recommendation for data with inaccurate geographical coordinates. The methods to perform a p-
skyline, such as those proposed by [Pei et al. 2007] are not applicable to this context, since they do
not model the positional error of spatial objects.

4.2 Probabilistic spatial join

To test the probabilistic spatial join, three sets of data will be used: 1) green areas, 2) deforestation,
and 3) wildfire areas, all covering the territory of the State of Goias, in Brazil. Figures 10 and 11 show
the data layers of green areas, deforestation, and wildfire areas in the State of Goias. In Figure 10, the
deforestation and wildfire area geometries can hardly be perceived. This illustrates how big can be
the scale differences between the spatial objects represented in the datasets. In Figure 11, the wildfire
areas and deforestation are more visible, as are the intersections with the green areas. Some of these
intersections may be a consequence of the positional error in the data layer. Conversely, due to the
imprecision of the data, some geometries that are not being intercepted in the figure may correspond
to spatial objects that intersect in the reality.

Fig. 10. Deforestation and wildfire at a province zoom level.

In order to judge the results obtained by the PSJs, a set of reference intersecting probabilities
- we will call REF - will be used. The REF set is composed of the estimates of probability of
intersecting each pair of geometries (a, b), a ∈ A and b ∈ B, where A and B are the geometry pairs
evaluated at the spatial join. In order to obtain such estimates, N = 500 Monte Carlo simulations
were performed to evaluate the spatial join in each possible pair (a, b). The margin of error E0 for the

estimated intersection probability q0 for a given pair of geometries (a, b) is given by E0 = zc

√
q0(1−q0)

500 .
Assuming a 95% level of confidence, the highest value that E0 can assume is 0.0447 when q0 is 0.5,
and is as low as 0.023 when q0 approaches more extreme values such as 0.1 or 0.9. The Subsection 4.3
discusses in greater detail how REF is used to evaluate the PSJs.
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Fig. 11. Deforestation and wildfire at a county zoom level.

The solutions evaluated in this work are: Random Space Junction (RSJ) as proposed by [Openshaw
1989] with m = 150 simulations, and our approach (PMCSJ) that is executed with two configurations:
1) with nmax = 150, m = 50 simulations per step and confidence level γ = 0.99, which provides a
confidence of 99% in the predicate evaluation; 2) nmax = 1000,m = 50. In the first configuration,
we evaluate how PMCSJ compares to RSJ for the same number of simulations (in this case, 150). In
the second configuration, we evaluate how PMCSJ compares to RSJ when we allow the number of
PMCSJ simulations to be relatively high. In addition, we present a discussion in the end of the next
subsection section on the Circular Normal Space Join (CNSJ) presented by [Ni et al. 2003].

4.3 Evaluation metrics

The solutions will be compared in a scenario with errors Y following a half-normal distribution, defined
by Y = |X|, withX ∼ N(200, 1002). The parameters of mean and standard deviation (required for RC

computation) of this distribution are: E(X) = σπ2 and sd(X) = σ
√
1− 2

π . The cutoff probabilities
tested are: 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90. The precision parameter is γ = 0.99,
the size of the simulation batches is m = 50, and the maximum number of simulations is nmax = 150.
Before presenting the metrics used in the comparison, some concepts must be defined.

First, it will be called the neighborhood of radius R around p and denoted by V R(p), the interval
(p − R, p + R). Figure 12 shows the intervals used to compare the solutions, namely, for each value
of p, the interval (p − R, p + R) without the margin of error interval (p − ε, p + ε) around p. The
exclusion of the margin of error is applied to prevent the solutions from being evaluated within a
radius of p for which there is not sufficient confidence in the sign of the expression (q − p), where q
is the probability of intersection between the two geometries evaluated. For example, the estimated
probability q̂ of intersection may be greater than p when the real probability q is less than p. In this
scenario, a legitimate true positive can be considered a true negative in the set of reference adopted to
evaluate the solutions. It is defined as the left neighborhood of p with radius R, the interval (p−R, p).
Similarly, (p, p + R) is called the neighborhood on the right. The proportion of false negatives FN
in V R(p) is defined as FN = #(−∞,p)TEC

#(p,p+r)REF
and the proportion of false positives FP in V R(p) as

FP = #(p,∞)TEC

#(p−R,p)REF
, where

—#(a, b)TEC is the number of geometry pairs whose intersection probabilities estimated by the PSJ
technique lies in the interval (a, b).

—#(a, b)REF is the number of geometry pairs whose intersection probabilities estimated by REF lies
in the interval (a, b).
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Fig. 12. Test regions.

As mentioned before, within the margin of error around p (see Figure 12), the probability that the
REF estimate is on the wrong side with respect to the p, i.e., to the right when in fact it is on the left
and vice versa - it is not negligible. For that reason, only those pairs whose probabilities are in the safe
neighborhood region, shown with a stronger dash in Figure 12, are used to calculate the proportions
of false negatives and positives - SFP and SFN , given by the expressions SFN = #(−∞,p)TEC

#(p+ε,p+R)REF
and

SFP = #(p,∞)TEC

#(p−R,p−ε)REF
.

4.4 Results and discussion

Table I presents results regarding the SFN and SFP metrics. The first column provides the metric
and the cut probability (in parentheses) used. The RSJ-150, PMCSJ-150 and PMCSJ-1000 columns
show the values obtained in each metric by RSJ with 150 simulations and PMCSJ with the limit of
150 and 1000 simulations respectively.

metric RSJ-150 PMCSJ-150 PMCSJ-1000 signal 1 signal 2
SFN (0.10) 0.200 0.000 0.000 + +
SFN (0.20) 0.000 0.056 0.000 -
SFN (0.30) 0.000 0.000 0.000
SFN (0.40) 0.000 0.000 0.000
SFN (0.50) 0.000 0.333 0.167 - -
SFN (0.60) 0.000 0.000 0.000
SFN (0.70) 0.000 0.111 0.000 -
SFN (0.80) 0.133 0.200 0.000 - +
SFN (0.90) 0.000 0.000 0.000
SFP (0.10) 0.000 0.000 0.000
SFP (0.20) 0.000 0.045 0.000 -
SFP (0.30) 0.000 0.077 0.000 -
SFP (0.40) 0.100 0.100 0.000 +
SFP (0.50) 0.000 0.000 0.000
SFP (0.60) 0.000 0.000 0.000
SFP (0.70) 0.200 0.000 0.000 + +
SFP (0.80) 0.000 0.000 0.000
SFP (0.90) 0.100 0.000 0.000 + +

Table I. Accuracy comparison of RSJ and PMCSJ with signals indicating whether PMCSJ was more accurate (or not)
than RSJ for n.max = 150 and n.max = 1000, respectively.
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PMCSJ benefits from not having to run all set simulations to be able to accurately assess the
condition of interest. Thus, PMCSJ saves most of the time RSJ would require to evaluate the predicate
for each pair of geometries. However, as the stopping criterion for simulations is stochastic, it may
occur that in some cases the algorithm wrongly judges that the number of existing simulations is
sufficient to evaluate the join predicate with confidence. This risk that can be minimized by increasing
the value of the parameter γ at the price of potentially making the algorithm slower, but not that
much since filtering step avoid most of the evaluations. Table I shows that for limit 150, RSJ won
in six scenarios and PMCSJ in three. However, when compared to PMCSJ with a limit of 1000 RSJ
loses in five out of six scenarios.

To test whether the difference observed in the RSJ-150 versus PMCSJ-150 is statistically significant
or can be attributed to chance, a hypothesis test is performed – the signal test. The signal column
of Table I shows the 18 observations paired with a signal: “+” if PMCSJ performed better than RSJ
and “-” if performed worse. In the case of a tie, no signal is emitted. The two statistical hypotheses –
null (H0) and alternative (H1) – which we consider in the test are:

—“H0: PMCSJ is as effective as RSJ” (the probability of “+” is equal to “-”;
—"H1: PMCSJ is less effective than RSJ" (the probability of “+” is less than “-”).

The statistic test t is: “number of +”. Only untied cases are considered in this type of test, resulting
in a total of n = 9 cases. Under the H0 assumption, t follows a binomial distribution with n = 9
trials and probability of success p = 0.5. One way to assess whether the observed value tobs of the t
statistic corroborates for or against H0 goes through the calculation of the p-value or descriptive value
associated with tobs. The p-value associated with the observed value of a statistic is the probability of
obtaining an equal or more extreme value for it when H0 is true. In other words, the p-value provides
the probability that a value is as or more extreme than the observer could have been observed if H0

is true.

A “low” p-value indicates that H0 is probably false. Typically, a p-value less than 0.05 is considered
low enough to reject the hypothesis H0 in favor of H1, because in this case the chances that such an ex-
treme value could be simply the work of chance would be less than 1 in 20. Since t ∼ Binomial(9, 0, 5)
under H0, we have that p-value is given by Pr(t ≤ 3|H0) = 0, 254. Thus, the scenario 6 against 3
does not provide sufficient evidence to reject H0 even with a level of confidence of 0.80. In fact, if
PMCSJ-150 and RSJ-150 are equally effective, it is expected that the observed difference occurs 1 in
4 experiments. Therefore, there is no sufficient evidence – even at the confidence level of 80% – that
points to a significant difference between the efficacy of both solutions. This result is in line with the
probabilistic assurance offered by Algorithm 1 of Section 3.

Figure 13 shows the difference in computation time for RSJ (c) with 150 simulations and PMCSJ
with 150 (a) and 1000 (b) simulations. The hardware used in the execution of both solutions was an
Intel Core i5-4200U, 1.6GHz CPU and with 4 threads in parallel. PMCSJ-150 spent an average of
64 seconds to perform deforestation/green areas join against 73 of PMCSJ-1000 and 257 of RSJ-150.
Regarding the wildfire/green areas join, the computation time was 35 for PMCSJ-150, 40 for PMCSJ-
1000, against 92 for RSJ-150. In both scenarios, PMCSJ presented lower computation times than
RSJ. It is noted that the computation time increased by only 14% when increasing the simulation
limit in PMCSJ from 150 to 1000. This happens because most predicate evaluations for a given pair
of geometries can be revolved with the desired confidence level using either a few batches of m = 50
or the stochastic filtering step. RSJ, on the other hand, has its computation time impacted linearly
with the increase in the number of simulations.

In addition, as Table I points out, PMCSJ-1000 presented five favorable results in six possible
against RSJ-150. Under the null hypothesis of equivalent efficacy between PMCSJ-1000 and RSJ-
150, we have a p-value of 0.11 relative to a unilateral test to test whether PMCSJ-1000 performed
better than RSJ-150. Note that the p-value was lower for this test than the previous one. Given the
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Fig. 13. Computation time: (a) PMCSJ-150; (b) PMCSJ-1000; (c) RSJ-150.

p-value obtained, we have that case PMCSJ-1000 and RSJ-150 possess the same accuracy, the chance
of observing at least 5 of 6 cases in favor of PMSCJ would be 1 in 9 experiments. In summary, it is
noticed that, concerning the obtained results: 1) one can increase the effectiveness of PMCSJ in order
to make it as effective as RSJ by simply increasing the maximum number of simulations allowed by the
program; 2) increasing the maximum number of simulations does not drastically impact performance
of PMCSJ, allowing it to still perform significantly better than RSJ.

4.5 Qualitative analysis

The CNSJ solution, [Ni et al. 2003], was designed to be efficient, but it is effective just under the
Circular Normal assumption for the errors and reasonably effective for error distributions whose be-
haviour does not diverge much from a Normal distribution. The PMCSJ proved to achieve satisfactory
performance in the three requirements in such a way that it is so generalist as RSJ while being more
efficient and effective than it. Furthermore, PMCSJ possess almost the same effectiveness that CNSJ
does for Circular Normal distribution, with the advantage of being applicable to other PDFs.

The decision for the best solution to a given real case can be following way. If the errors exhibit
a pattern that can be modeled by the Circular Normal distribution, choose CNSJ to obtain the best
possible accuracy and efficiency (specialist solution). If the application requirements in terms of the
computation time is very restrictive (perhaps due to the large volume of data) and error distribution
is not too far from the Normal one, being at least symmetric, then the CNSJ is also a good option to
meet the requirement imposed by the restriction of science, without impairing the accuracy. However,
if the distribution is definitely not Circular Normal or at least one symmetric that does not present
serious deviations from, then PMCSJ is the recommended solution. In addition, if the requirement for
computational performance is not rigid, PMCSJ is also indicated to obtain a more accurate solution
than CNSJ even for distributions similar to the Circular Normal distribution.

5. CONCLUSIONS

We presented a general framework of solutions for spatial operations on uncertain positional data and
evaluated two operations as a case study: Spatial Skyline with Monte Carlo Method (PSkyMCM) and
Progressive Monte Carlo Spatial Join (PMCSJ). In order for these solutions to perform accurately
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and efficiently, it was necessary to adapt the heuristic used in the classical spatial operations to the
probabilistic case. This required the development of two new techniques that are contributions of our
work: the confidence rectangles and the Progressive Monte Carlo Method.

The results of PSkyMCM pointed out that there is a significant risk of not returning a potentially
useful solution to the user if a deterministic skyline query is performed instead of a probabilistic
one. The Monte Carlo simulations and heuristics used to avoid the massive use of them enabled
skyline queries to be more effective for the scenario where imprecise coordinates are present. The
experiments showed that the PMCSJ is: i) generalist in relation to the distribution of positional
errors; ii) accurate; and iii) efficient. PMCSJ enables applications to be built to handle large datasets
returning an accurate response for a variety of error patterns with a comparatively low computation
time.

As future work, we envisage the opportunity for improving the filtering stage. As a positive collateral
effect, the accuracy would also improve since the time saved could support a more expensive filtering
step involving higher values for the accuracy parameter γ and the superior limit for simulations nmax.
The two steps of the spatial join can also be adapted to the specificities of a probability distribution
family, for example, the exponential family. This could improve efficiency and accuracy, with a some
impact on the generality.
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