
Indexing Web Form Constraints

Ronaldo dos Santos Mello1, Ramesh Pinnamaneni2, Juliana Freire2

1 Universidade Federal de Santa Catarina, Brazil
ronaldo@inf.ufsc.br

2 University of Utah, USA
{pinnaman,juliana}@cs.utah.edu

Abstract. Millions of online databases are available today on the Web that cover many different domains. These
databases are accessible through forms and provide several useful services from searching for rental cars and airfares to
used cars and genes. To leverage this information and locate online databases that are relevant for particular information
needs, we have created a search engine that is specialized in forms that serve as the entry points to these databases.
This search engine, however, only provides a keyword-based interface that greatly limits the kinds of queries that can be
posed. In this paper, we study the problem of supporting structured queries over Web form collections. We formalize
the problem of querying Web forms as satisfying constraints that hold between form attributes and their values, form
metadata, as well as dependencies across distinct attributes. We also propose an indexing method that leverages the
constraints to support efficient query processing. Because the proposed index extends traditional inverted indexes, our
method can be easily combined with existing text searching tools. An experimental evaluation, where we compare query
performance under the proposed index against different storage configurations using a relational database, shows that
with our index, structured queries can be evaluated at a fraction of the time required by the relational database. We
also show the higher precision of the result sets generated by our structured queries against traditional keyword-based
queries over Web forms.

Categories and Subject Descriptors: H. Information Systems [H.3 Information Storage and Retrieval]: H.3.1
Content Analysis and Indexing—Indexing methods

Keywords: constraints, indexing, Web form collections

1. INTRODUCTION

A large volume of digital data available today is stored in the millions of online databases on the Web
[Madhavan et al. 2009]. The content in these databases is referred to the hidden or deep Web, since
they are hidden behind Web form interfaces and are not accessible to traditional Web crawlers.

Although the problem of finding and organizing the forms that serve as entry points to online
databases has been received substantial attention [Barbosa et al. 2007], [Barbosa and Freire 2007a],
[Barbosa and Freire 2007b], [Fang et al. 2007], [Madhavan et al. 2008], [Wang et al. 2009], the same
cannot be said of query support for exploring form collections. In the context of DeepPeep [Freire
et al. 2010], we have done preliminary work on querying form collections. DeepPeep is a search engine
specialized in forms. The system, however, provides a very limited query interface which supports
only keyword-based queries and selection of forms based on the online database domain (e.g., Used
Cars, Molecular Biology, Airfare).

As the number of hidden databases grows, effective means for exploring them are necessary, in the
same way we query traditional databases based on their known structure. To provide a structured
query interface over a Web form collection is important to end users that want to locate databases

This research was funded by brazilian CAPES Foundation, U.S. National Science Foundation (grants IIS-0905385,
IIS-0844546, IIS-0746500, CNS-0751152 and IIS-0713637), and the U.S. Department of Energy.
Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010, Pages 343–358.

344 · R. S. Mello, R. Pinnamaneni and J. Freire

for a particular information need. In a Used Cars domain, for example, a user may want to find
companies that sell a given car make/model in a specific city, or to retrieve companies with a certain
average price for a given used car model in a certain year.

We model a Web form as a set of attributes that define constraints over the database contents, such
as range or enumeration of allowed values, or even the possibility of filling out additional attributes
that become visible after a certain value is set to another attribute. Again, in a Used Cars domain
it is very common to find out forms that let the user selects the desired car manufacturer (Toyota,
Honda, etc) through a make attribute, and, in turn, a model attribute has its values automatically
restricted to valid car models for the chosen car make.

Web form constraints are useful in this context because they provide information about the hidden
database, and, as a consequence, allow the specification of queries in a declarative way. If we knew,
in a Hotel domain, that the location of some hotels is restricted to Brazilian State capitals and these
hotels provide rooms for one to four people, we would probably get much more relevant hotel forms if
we formulate a structured query based on these known constraints, like "domain = ’hotel’ and city =
’Florianópolis’ and rooms = 3" instead of a query with the keywords "domain hotel city Florianópolis
rooms 3". Knowledge about constraints can be also useful for query optimization. On supposing no
hotels exist in Florianópolis, the declarative query above would return the empty set without the need
for checking the availability of rooms for three people.

In this paper, we study the problem of supporting structured queries over Web form collections,
focusing on indexing structured query predicates based on form constraints. In particular, we consider
queries over form metadata, allowed values for form attributes, and form attribute dependencies. In
the first case, we filter out forms based on their properties, like domains and existing attributes. In
the second case, we look for forms that hold specific attribute values, like make = ’Honda’. In the
last case, we can check, for example, if a specific value dependency for two or more attributes exists
in a form, like the need to know if a company sells Corolla model manufactured by the Toyota make.
These three kinds of queries cover the existing constraints in a large sample of Web forms we had
analyzed.

The main challenge in this context is how to provide an efficient storage and index structuring for
relevant query predicates over Web forms. One alternative is to use a relational database. However,
they provide poor support for keyword-based queries, and as we show in Section 4, they also have
poor performance for structured queries. This is due to the great number of required table joins in
order to match data about forms and their attributes, values and dependencies.

Instead, we propose an indexing structure that extends inverted indexes to support structured
queries. Our approach considers a hierarchical representation of Web form properties (including
attributes and constraints), and our index entries are path expressions that traverse such a structure,
like path expression-based indexes for XML data [Brenes et al. 2008], [Chung et al. 2002], [Kaushik
et al. 2004], [Milo and Suciu 1999], [Qun et al. 2003]. The benefits of this approach are that we can
index structured query predicates as paths in a simple way, and we can re-use existing inverted index
systems such as Lucene [PMC 2010] to provide efficient queries.

We also perform query expansion to retrieve Web forms with attributes that are similar to the
attributes specified in the query predicates. This is possible by accessing a synonym table that relates
each attribute to a canonic term that represent a cluster of similar attributes in different forms.
Attribute clusters and the synonym table are generated by a schema matching process for Web forms,
which it is out of the scope of this paper. See the work of [Nguyen 2008] for details about this process,
which is based on related work [He and Chang 2003], [Pei et al. 2006], [Wu et al. 2006], being only its
output used by our indexing module.

We evaluated the proposed index method against traditional B-tree indexes on a relational database,
running queries between 2 and 45 times faster. Besides, our approach had scaled very well for an

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 345

increasing number of query predicates, being at most 13% slower in comparison to a 100% increasing
in the processing times for the relational access.

The main contributions of this paper are:

—A classification for Web form constraints and related structured query types. This classification is
the foundation for a structured query language for Web forms.

—A simple but efficient indexing schema for such constraint/query types.
—A set of experiments that shows that our indexing method outperforms traditional indexes for
accessing Web form data stored in a relational database. We compare our method with relational
indexes because there is no other work with the same focus to be considered, and also because
we have a relational repository for Web forms and our intention is to verify the performance of
structured query processing over it. We also show that our proposed classes of structured queries
improve the precision of the result set if compared to keyword-based queries.

This paper is organized as follows. Section 2 provides a foundation for Web forms and their classes of
constraints. Based on this, Section 3 presents our strategy for indexing Web form constraints. Section
4 describe some experiments that evidence the good performance of our indexes against relational
indexes for the same data. Section 5 discusses some related work and Section 6 is dedicated to the
final remarks and future work.

2. CONSTRAINTS AND WEB FORMS

In a database context, a constraint for a data Dt defines a set of rules that restricts Dt valid states
[Codd 1980]. A Web Form (WF) contains several implicit and explicit constraints, including the online
database domain and a set of valid values for an attribute. We define a WF from the point of view
of its constraints as a tuple wf = (id, wp, wpt, D, W, A, dep), where id is a unique identifier for wf ;
wp is the URL of the Web page where wf is located and wpt is the title of this page; D are the online
database domains that wf belongs to; W is the bag of words in wf (i.e., all terms within the HTML
form tag); A denotes the set of attributes in wf 1; and the dependencies between attributes is denoted
by dep2.

wf.D holds all possible WF domains, like a form for hotel booking, as shown in Figure 1. wf.W
maintains the words that provide some relevant information about the WF, like Holidays in Figure 1.

Fig. 1. Example of Web form in Hotel domain.

A WF wf also holds a set of attributes A on which the user specifies searching criteria for retrieving
data from the hidden database. An attribute ai ∈ A is, in turn, a tuple ai = (l, V), where ai.l is

1We use the terms attribute, field and element interchangeably.
2The dep property will be further explained.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

346 · R. S. Mello, R. Pinnamaneni and J. Freire

the attribute name (attribute label) and ai.V are the allowed values for ai. In Figure 1, the user can
search for available hotel rooms through several filter attributes that are restricted to a set of values,
like Region and Duration.

Based on this WF definition, we specify the classes of constraints for WFs and, as a consequence,
the classes of queries that can be formulated over a set of WFs to test these constraints. The classes
of constraints are: (i) context ; and (ii) dependency. Context constraints refer to the contextualized
data in a WF, which can be classified, in turn, as metadata or valid attribute value. In the first
case, we consider WF meta-information that belongs to our WF definition, i.e., the WF page title,
the URL on which the WF is defined, an attribute label, an attribute value, a domain name or a WF
word. Formally, we say that metadata(wf) = {PAGE_TITLE, URL, LABEL, VALUE, DOMAIN,
WORD}3. The WF of Figure 1, for example, belongs to the Hotel domain and has Country as an
existing attribute label. For querying purposes, WFs are retrieved using a set of specific filters. These
filters are defined as equality or inequality predicates based on metadata(wf), like "DOMAIN = ’Hotel’
and VALUE > 2010".

In the second case, we consider the relationship between attribute labels and values, being a value
contextualized as a restriction for an attribute identified by a label, i.e., given ai ∈ wf.A, ai.l is
constrained by ai.V. ’Mexico’ in Figure 1 is a valid Country value. We can query WF data based
on this kind of constraint through equality or inequality predicates, like "Country = ’Mexico’ and
Duration < 3".

(a) (b)

Fig. 2. Example of Web form in Airfare domain with roundtrip (a) and one way (b) selection.

Dependency constraints occur when an attribute value implies restrictions over the values of other
attributes, or when an attribute value implies restrictions on the existence of other attributes. We
categorize them as value dependency and non-existence dependency, respectively. Figure 2 (a) and (b)
shows, respectively, for a WF in Airfare domain, that if the flight type attribute is set to roundtrip or
one way, the Return attribute exists or not exists. Figure 1 exemplifies a value dependency between
the attributes Region and Country : if Region value is ’North America’, the allowed values for Country
are ’Bermuda’, ’Canada’, etc.

3A WF usually have more than one label, value, domain and word. However, we define it as singular terms in meta-
data(wf) (not LABELS, for example) in order to standardize the naming of all metadata type to be used in index entries
as well as in query predicates.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 347

Class Syntax Example
Metadata metadata(wf) [= | < | ≤ | > | ≥] value LABEL = ’Country’

Attribute Value label [= | < | ≤ | > | ≥] value Country = ’Brazil’
Value Dependency V.predicate1 AND ... AND V.predicaten V.Country = ’Brazil’ AND V.State =

’Santa Catarina’
Non-Existence Dependency V.predicate1 AND ... AND V.predicaten V.Type = ’one-way’ AND V.Return =

’06/30/10’

Table I. Constraint-based query classes for Web forms.

Dependency constraints are represented by the wf.dep property, which is defined as a tuple dep
= (VD, NED), being VD and NED the sets of value and non-existence dependencies, respectively.
Formally, given ai, aj ∈ wf.A and vx ∈ ai.V, f ∈ wf.dep.VD is defined as f = (ai.l [= | < | ≤ | > | ≥]
vx ⇒ aj.V ⊆ {v1, ..., vn}), with {v1, ..., vn} ⊆ aj.V, and ne ∈ wf.dep.NED is defined as ne = (ai.l
[= | < | ≤ | > | ≥] vx ⇒ ¬∃ aj).

We can pose a query to retrieve WFs with respect to a value dependency. It is represented by a
query condition that defines at least two conjunctive predicates with the form v.predicate1 and ...
and v.predicaten, where v is a variable that denotes the intention to test a dependency between the
involved query predicates4. For example, the query v.Region = ’North America’ and v.Country =
’Canada’ retrieves WFs that hold a dependency between the specified values of the attributes Region
and Country. The same query notation is applied to test non-existence dependencies. For example,
on processing the query v.Type = ’one-way’ and v.Return = ’6/30/10’, we can verify a priori if there
are WFs whose existence of the attribute Return is dependent of the restriction Type = ’one-way’ for
the attribute Type. On considering this dependency true for a set of WFs Sf (Return attribute does
not exist if Type attribute has ’one-way’ as value), we can eliminate Sf early from the result set.

Table I summarizes the considered constrained-based query classes for WFs with the proposed
syntax and examples in Airfare domain. This work focuses on providing an efficient indexing schema
for all of the query classes. Next section details the proposed indexes.

3. INDEXES FOR WEB FORM CONSTRAINTS

The foundation of our indexing method is a hierarchical organization for the WF instance properties,
in a similar way well-structured XML data5 are represented. A complex structured XML instance
has a complex element Ei as root and a bag of sub-elements Bi = {e1, e2, ..., en} that describes
Ei properties. A sub-element can be, in turn, a complex element composed by other elements, or a
simple element that holds a text value. A traditional way to pose a query on XML instances is to
specify a path expression, i.e., a traversal on the instance hierarchical structure from the root to the
desired element. For example, a path Ei/e1/e1i.../e1m retrieves the content of the element e1m that
is reached from Ei following the chain of sub-elements described by the path.

Figure 3 shows the hierarchical structuring for the WF of Figure 1 that is similar to the representa-
tion of complex XML instances6. Root node denotes the WF ID and each descendant node represents
a property and its type. Because we consider that each property is a direct feature of the WF instance,
all non-root nodes are connected to the root node. A deeper hierarchical chain occurs when we have
dependencies between WF attributes, or attributes restricted to a set of values. In Figure 1, we can
only visualize and select Country allowed values after we select a Region value. This dependency

4Details about the syntax and semantics of a structured query language for WFs are out of the scope of this paper.
This subject is the focus of a forthcoming work.
5http://www.w3c.org/xml.
6We said "similar" hierarchical structuring because a node may have more than one parent node. This is necessary to
define all possible paths to be indexed by our indexing structures.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

348 · R. S. Mello, R. Pinnamaneni and J. Freire

Fig. 3. Example of hierarchical structuring of Web form data.

is exemplified in Figure 3 for the North America value of the Region attribute, being Bermuda and
Canada values of Country positioned as its descendant nodes because they are valid North America
countries. Some allowed values of the Duration attribute are also shown.

(a) (b) (c)

Fig. 4. Index structures: Metadata index (a); Attribute value index (b); Dependency index (c).

We propose three index structures based on a path expression access to the hierarchical represen-
tation of a WF. Our indexes are simple extensions of the inverted list index traditionally used by the
Information Retrieval area [Baeza-Yates and Ribeiro-Neto 1999], being able to support the indexing
of all classes of constraints defined in Section 2. Basically, we allow path expressions as index entries
in an inverted list entry instead of keywords, while the index columns keep the WF IDs (F1, F2, ...,
Fn). Specific types of path expressions are provided for each one of our indexes:

—Metadata context : a path expression with the form keyword/metadata_type, which is able to index
query predicates that test metadata context constraints. The keyword component refers to any
desired meta-information in a WF and metadata_type ∈ metadata(wf). Figure 4 (a) shows an
example of this index (visualized as an incidence matrix);

—Attribute value context : a path expression with the form value/label, which is able to index query
predicates that test valid attribute values context constraints. The value and label components refer
to a valid attribute value in a WF. Figure 4 (b) shows an example of this index;

—Dependency : a path expression with the form value1/label1/value2/label2, which is able to index
query predicates that test dependency constraints. This index entry means that label2 attribute
with a value value2 restricts label1 attribute to value1 as one of its possible values. Figure 4 (c)

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 349

shows an example of this index. When specified in a path, the special character ’*’ denotes a non-
existence dependency between two attributes with the form */labeli/valuej/labelj , meaning that
labelj attribute with a value valuej forbids the existence of labeli attribute.

Observe that the general format of our path expressions is node_value/node_context instead of the
format node_context:node_value in the nodes of a WF hierarchical representation. We give priority
to the description of values in the index entry because they allow a lexicographic order that provides
efficient index lookup for searching a same value in different contexts.

We still highlight two relevant points related to the design of the Dependency index. First, real
WFs can specify a chain of value dependencies between label/value pairs. One example is the WF
of Figure 1 which holds a three level dependency chain involving the attributes Region, Country and
State/Province, in that order. For this example, a valid value dependency is Region = ’North America’
⇒ Country = ’United States’ ⇒ State/Province = ’Utah’. Thus, an index with path expressions
composed by an arbitrary number of label/value pairs as entries would be expected. We identify three
major problems regarding this approach: (i) index entries with high redundancy because determinant
label/value pairs in the first levels of the dependency chain repeat for each possible valid determined
pair (or chain of pairs) in the lower level(s); (ii) large index entries; and (iii) we cannot match
indirect value dependencies in the index because we may have an arbitrary number of label/value
pairs in between. Because of this, we decided to maintain index entries with only two label/value
pairs holding a valid direct or indirect value dependency. We still have redundancy, but it is less
than the previous approach, and we are able to efficiently check direct and indirect dependencies with
smaller index entries. In practice, we do not have a large number of WFs with dependency constraints,
and the number of dependency chains with more than three levels is reduced.

Another point is related to the choice for indexing a non-existence dependency instead of an existence
one. The issue here is that non-existence constraints are the exceptions and, as a consequence, require
less index entries than true existences. Besides, as exemplified in Section 2, if we check early a query
condition for non-existence dependency, we can discard a set of WFs from the result set, or even to
conclude that the result set is empty.

3.1 Indexing Module Overview

We had developed an indexing module in order to implement and validate our indexing method. It
basically accomplishes three steps:

(1) Query parsing.
(2) Index access.
(3) Generation of the result set.

The first step is responsible to receive and to validate the input query. The input query is a set of
conjunctive and/or disjunctive predicates that follows the syntax presented in Table I. If the input
query is correctly validated, each one of its query predicates is converted to a path expression that
fits an index entry and the modified input query can now be processed by the second step.

The Index Access step is the core of the indexing module, being responsible to analyze the input
query, to set the ordering that the indexes are accessed, and to provide some particular processing.
Despite of following the traditional precedence order to process a large query filter (conjunctive pred-
icates have precedence over disjunctive predicates), it gives some priorities to the processing of a set
of conjunctive predicates, as follows:

(1) non-existence dependency checking.
(2) value dependency checking.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

350 · R. S. Mello, R. Pinnamaneni and J. Freire

(3) metadata and attribute/value checking.

This ordering is relevant because dependency constraint filters are more selective than, for example,
an attribute/value filter given that a small number of WFs holds dependencies. In case of a dependency
checking fails, it is not necessary to check the other predicates. Thus, these priorities define the
ordering the respective indexes are accessed. This step still accomplishes some specific processing
that are relevant in the context of querying WFs. These processing are detailed as follows.

A conjunctive filter for attribute values like "Make = ’Honda’ AND Make = ’Ford’" is supposed to
return the empty set in a traditional database query because an attribute cannot hold two different
values in a tuple. However, this query in our context means we want to retrieve WFs that hold these
two constraints. Thus, an intersection of the result sets for each predicate must be performed. The
same reasoning holds for a query over metadata constraints like "LABEL = ’Make’ AND LABEL
= ’Year’". Other relevant processing issue is related to dependency queries. Given, for example, a
query "f.Year = 2008 AND f.Make = ’Toyota’", we may have two possible value dependencies in the
WFs: (i) Year = 2008 → Make = ’Toyota’, or (ii) Make = ’Toyota’ → Year = 2008. Thus, we have
to access these two possible entries in the dependency index and perform an union of the result sets.
The more predicates a dependency filter has, the more combinations must be tested.

Finally, the last step produces the result set, which is composed by the WF ID and the WF URL.
These two properties are available in the index structure and be directly retrieved from the index
entry.

4. EXPERIMENTAL EVALUATION

We base our experiments on a sample of real WFs. Our database research group had developed tools
that are able to crawl forms on the Web [Barbosa and Freire 2007a] and to extract information about
their location, attributes and constraints, as well as to store these information in a relational repository
(see RelDB repository in the following). The extraction strategy is centered on a learning classifier
that identifies attributes and their properties based on form layout patterns that are learned basically
from HTML markup. The approach is able to deal with dynamic forms by simulating, using client-side
scripting, the actions a user would perform while selecting different values. Such a capability allows
the discovery of attribute and value dependencies. See [Nguyen et al. 2008] for details, which includes
experiments that confirm the high extractor accuracy.

The set of experiments aims at validating the efficiency of our indexing methods over traditional
relational indexes created in the form repository. The next sections detail the experimental setup and
results.

4.1 Experimental Setup

Our data sample is composed of 3,218 WFs on 8 application domains with 18,143 attributes and
287,518 allowed values constraints, as well as 88,017 value dependencies between values7, with an
approximate size of 118 Mb. We ran three kinds of experiments that return WF IDs and URLs:

—RelDB : SQL queries executed over a MySQL 5.1 relational repository with B-tree indexes for keys
and relevant columns to be filtered. The index size for this repository is 23 Mb.

—RelViewDB : SQL queries executed over materialized views of the relational repository. These views
organize data about WF constraints in a reduced number of tables that avoids (or minimizes) joins
between tables. Relevant columns are also indexed here through B-trees. Index size in this case is
105 Mb.

7Only value dependencies were extracted from the data sample.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 351

Fig. 5. RelDB schema.

Fig. 6. RelViewDB schema.

—ConstrIL: queries executed over our WF indexing module. Index size in this case is 57 Mb.

Figure 5 and 6 show the RelDB and RelViewDB schemata, respectively. Only the main tables and
their most relevant columns are shown. RelDB schema is centered on the Web Form table. From a
WF tuple, it is possible to obtain information about its Web page and the domains it belongs, as well
as the attributes (fields) that compose it, with their labels and values. Additional tables catalog the
attribute dependencies and the attribute values that constraint other attribute values. WF Field table
holds a Cluster_Name column. All synonym fields have the same value for this column. RelViewDB
schema joins some of the RelDB tables and preserves the most important columns for query purposes.
The strategy here was to reduce, as most as possible, RelDB table joins and, at the same time, to avoid
the generation of very large merged tables that could compromise query processing performance. As
shown in Figure 6, we obtained a good balance by merging: (i) Web pages and their domains; (ii) Web
pages with their WFs and attributes, and; (iii) WFs attributes and their related synonyms. A version
of case (ii) (WPtoFieldwithDependencies table) keeps information about attribute dependencies, being
used for dependency queries. Note that WF Field Value and Value Dependency tables were not merged
because they are very large tables.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

352 · R. S. Mello, R. Pinnamaneni and J. Freire

We implemented the indexing module using the Lucene indexing tool [PMC 2010], which supports
inverted lists, and coded all necessary algorithms in Java. The experiments were conducted on a
machine with 2.20 GHz and 4 GB memory.

We executed seven queries with filters over metadata and attribute value constraints (we call them
Query 1 to Query 7 - see Section 4.2 for more details): a simple one (with a single predicate), 3
disjunctive queries with 2, 5 and 10 predicates, and 3 conjunctive queries with the same incremental
number of predicates. We also ran queries that return WFs with value dependencies among 2 and
3 attributes8 (we call them Query 1 and Query 2). Query conditions were defined over the most
frequent WF attributes, which generated a higher data volume in the result sets.

In order to show an example of input query over each data repository, the expressions in the following
show a same query formulated over RelDB, RelViewDB and ConstrIL, respectively. The intention
here is to retrieve WFs (in any domain) that holds cars manufactured by Ford and cars produced
in 2005. In the first two SQL queries it is possible to see the need for accessing and joining several
relational tables, even for RelViewDB, including the fetching of WFs with similar attributes (see the
condition on Cluster_Name column in RelDB query and the access to FieldToSimilarLabels table in
RelViewDB query). In the ConstrIL case, instead, we have a more simple syntax and a less complex
query processing.

SELECT * /******* RelDB query *******/
FROM
(SELECT DISTINCT wp.URL, wf.ID
FROM WebPage wp JOIN WebForm wf ON wp.ID = wf.webPage-ID
JOIN WFField wff ON wf.ID = wff.webForm-ID
JOIN WFFieldValue wffv ON wff.id = wffv.WFField-ID
WHERE wffv.Value = ’Ford’
AND wff.Cluster_Name IN (SELECT DISTINCT wff.Cluster_Name

FROM Label l
JOIN WFField wff on wff.Label-ID = l.ID
WHERE l.Content = ’Make’)) AS Table_1

NATURAL JOIN
(SELECT DISTINCT wp.URL, wf.ID
FROM WebPage wp JOIN WebForm wf ON wp.ID = wf.webPage-ID
JOIN WFField wff ON wf.ID = wff.webForm-ID
JOIN WFFieldValue wffv ON wff.id = wffv.WFField-ID
WHERE wffv.Value = ’2005’
AND wff.Cluster_Name IN (SELECT DISTINCT wff.Cluster_Name

FROM Label l
JOIN WFField wff on wff.Label-ID = l.ID
WHERE l.Content = ’Year’)) AS Table_2

SELECT * /******* RelViewDB query *******/
FROM
(SELECT DISTINCT wp2f.URL, wp2f.WF-ID
FROM WPToField wp2f
JOIN WFFieldValue wffv ON wp2f.WFF-ID = wffv.WFF-ID
JOIN FieldToSimilarLabels f2sl ON wp2f.WFF-ID = f2sl.WFF-ID
WHERE wffv.Value = ’Ford’
AND f2sl.Label-Content = ’Make’) AS Table_1

NATURAL JOIN
(SELECT DISTINCT wp2f.URL, wp2f.WF-ID
FROM WPToField wp2f
JOIN WFFieldValue wffv ON wp2f.WFF-ID = wffv.WFF-ID
JOIN FieldToSimilarLabels f2sl ON wp2f.WFF-ID = f2sl.WFF-ID
WHERE wffv.Value = ’2005’
AND f2sl.Label-Content = ’Year’) AS Table_2

8At most 3 attributes were involved in value dependencies in our data sample.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 353

Make=’Ford’ AND Year=2005; /******* ConstrIL query *******/

4.2 Experimental Results

4.2.1 Processing Time Analysis. Figures 7, 8 and 9 present the results of our experiments, which
measure the processing times for the proposed set of queries, as described in Section 4.1. The measured
times consider query expansion execution, i.e., the time spent to execute the query for each found
attribute synonym, besides the given attribute in the input query. For ConstrIL, this time considers
the access to the synonym table for each described attribute in the input query as well as query
rewriting and run for each attribute synonym9.

Fig. 7. Processing times for queries over Metadata constraints.

According to Figures 7, 8 and 9, our indexing method obtained a very good performance if compared
to the relational indexes for accessing the same data. This is particularly true for queries that filter
metadata and dependency constraints. In the first case, ConstrIL ran approximately 10 times faster
than RelViewDB for all types of queries. When RelDB is considered, we were around 20 times faster for
single predicates, and maintained a range from 3 to 8 and from 35 to 40 times faster for disjunctive and
conjunctive queries, respectively. Our processing times for 10 disjunctive and conjunctive predicates
(queries 4 and 7) were 877/794 ms against 2.5/31 sec for RelDB and 9.8/10.6 sec for RelViewDB,
respectively. We also obtained excellent results when querying dependency constraints, being around
45 times faster than RelDB. We spent 375 ms to process query 2 against 19.8 sec for RelDB and 2.3
min for RelViewDB.

We observe that RelViewDB performance was poor than RelDB in some cases. It happened because
the materialized views generated large tables after the join of the relevant data. As a consequence,
the sizes of the index structures for these tables were also large.

Attribute value index is our largest index structure due to the great number of allowed values for
WFs attributes. Besides that, we outperform the relational indexes in all types of queries, ranging

9It is important to note that Figures 7, 8 and 9 do not detail the fraction of the query processing time spent with query
expansion because our indexing module returns only the total amount of time spent to process a query.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

354 · R. S. Mello, R. Pinnamaneni and J. Freire

Fig. 8. Processing times for queries over Attribute Value constraints.

Fig. 9. Processing times for queries over Dependency constraints.

from 2 to 4 times faster than RelViewDB. We spent 303/345 ms for 10 disjunctive and conjunctive
predicates (queries 4 and 7) against 1/1.9 sec for RelDB and 0.82/1.4 sec for RelViewDB, respectively.

We also note that our indexes scale very well given an increasing number of disjunctive or conjunctive
predicates. In fact, processing times remain basically the same when querying dependency constraints,
and had an increasing of only 170 ms for queries varying from one to 10 disjunctive or conjunctive
query predicates over attribute value constraints. RelViewDB, instead, had reached more than 1.28
sec with respect to processing times increasing. For queries over metadata constraints, ConstrIL got
an average increasing of 450 ms for disjunctive and conjunctive predicates against an increasing of 6.4
sec and 24.7 sec for RelViewDB and RelDB, respectively.

We observed decreasing processing times in the relational repository only for RelDB disjunctive

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 355

Query Class Structured Query Query Expansion
Metadata 24% 80%

Attribute Value 33% 89%
Dependency 95% 89%

Table II. Quality improvement with structured queries and query expansion.

queries over metadata constraints. This exceptional behavior had happened because the result set
remains basically the same for all queries, being kept in the database cache.

4.2.2 Quality Analysis. Our approach also introduces important improvements in the quality of
the query results if compared to traditional exact keyword-based queries provided by search engines
for WFs. These quality improvements are related to the following issues:

—Structured query : knowledge about several classes of WF constraints makes possible the definition of
structured queries with a more accurate semantic intention, if compared to keyword-based queries.

—Query expansion: the consideration of WFs with similar attributes during the processing of query
predicates improves the recall if compared to exact queries.

Table II presents the percentage of quality improvement for these issues for each WF query class.
We had analyzed queries over the more frequent constraints in our WFs data sample, showing the
highest percentage of improvement in query results.

All of the query results we obtained from the experiments described in Section 4.2.1 had a 100%
precision, i.e., all the returned WFs match the query predicates. Therefore, we assume the following
interpretation for the percentages given in Table II:

—Structured Query : the purpose here is to analyze the improvement of a structured query result set
over the result set of a traditional keyword-based query. Thus, we run a keyword query with the same
terms of a given structured query, i.e., for a structured query "Make = ’Toyota’", for example, we run
a keyword query "Make AND Toyota". The percentage is given by 100% - (#resultSet(structured
query) / #resultSet(keyword query)) * 100, which measures the fraction of irrelevant WFs that were
put away by the structured query.

—Query Expansion: we analyze here the improvement in terms of additional WFs that are retrieved
by applying query expansion against the result set of the same structured query without considering
query expansion. We quantify here the percentage of additional correct WFs based on the number
of WFs retrieved without query expansion.

Table II reveals very good query result improvements, specially when query expansion is performed.
This is particularly true for attribute value and dependency constraints, which define predicates based
on attributes, which can hold a lot of synonyms. For the attribute value case, for example, we had
reached the highest quality improvement with the filter "Year = 2005", which results in 241 WFs
on running query expansion against 26 WFs without query expansion (an improvement of 89%). It
happens because the attribute Year has a lot of synonyms in different WFs, like Year: and Copyright
year.

With respect to the quality improvement of structured queries, we had obtained better results for
query classes that impose more strict semantic constraints, which is less probable to match a keyword
filter. This is also the case of attribute value and dependency constraints. We got excellent results
for dependency queries because they impose a complex constraint. The highest quality improvement
comes with the filter "V.Year = 2005 AND V.Make = ’Ford’", which had returned 3 WFs against 57
WFs for the equivalent keyword query "Year AND 2005 AND Make AND Ford" (an improvement of
95% in the result precision).

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

356 · R. S. Mello, R. Pinnamaneni and J. Freire

5. RELATED WORK

For the best of our knowledge, there is no other work that focuses on the definition of classes of
WF constraints and related structured query classes, as well as their indexing. Several work propose
indexes based on path-expressions that are similar to ours, like indexes for XML [Brenes et al. 2008],
[Chung et al. 2002], [Kaushik et al. 2004], [Milo and Suciu 1999], [Qun et al. 2003] or dataspace
data [Dong and Halevy 2007]. If compared to indexes for XML, an indexed path expression has a
different meaning of our approach, i.e., path expressions describe relevant relationships between data
that are useful to query related XML elements. Instead, a path expression in our work relates a WF
property with its constraints, i.e., it denotes a restriction on their contextualized values or on attribute
dependencies, being useful for queries that filter data based on constraints. Analogously, long path
expressions for dataspace data denote relationships between complex objects, having also a different
semantics.

A drawback of approaches for XML indexing is that they index only the most frequent accessed
paths to avoid large index structures. In some cases, an adaptive index is supported, i.e., an index
that evolves based on changes in the frequent searched paths. Despite of that, if the user formulates
a query whose XML path access does not belong to the frequent access paths, this query will be slow
because the path is not indexed. This strategy is not applicable to WFs because the scope of queries
over Web data is very large, i.e., the user intention when posing a query over Web data is very flexible,
being not relevant to identify the most frequent accessed data. Instead, we gave focus to WF schema
matching and the definition of WF attribute synonyms in order to increase the number of relevant
forms to be retrieved, which is much more interesting when querying heterogeneous Web data sources.

We identify two related work close to our approach. In [Qiu et al. 2003], hidden database data
(not data constraints) are extracted and stored in a relational database. They create a table for each
WF attribute and each table basically maintains an indexed column for the values, and an additional
column for the WF list or a cluster that groups similiar WF lists for different (but similar) values. We
identify the following drawbacks in this proposal: (i) A great number of indexes must be created if we
want to index values of several attributes; (ii) They assume that a schema matching for WFs in a same
domain was previously accomplished to generate a relational global schema using a mediation system.
This support increases the complexity of the approach; (iii) They are able to answer only queries over
attribute values. Our approach has a broader scope, being able to query several classes of constraints.
Besides these drawbacks, their experiments focus on the efficiency of the indexes compression as well
as on the accuracy for avoiding the retrieval of false positives. Our experiments, on the other hand,
focus on efficiency in terms of processing time for accessing indexes and answering user queries.

The work of [Dong and Halevy 2007] addresses the more general problem of indexing dataspaces and
support only attribute-value queries through similar path-expression-based indexes. Our approach,
while also indexes attribute/value pairs, gives additional index support to query metadata context
and attribute dependencies. We argue that our approach can be potentially useful to dataspaces, for
data that is similar to forms. Besides that, as pointed out before, the semantics of our queries is
different because we query WF data based on their specific constraints, and not dataspace complex
objects based solely on their attributes’ values. Our different semantics require specific processing in
order to access the indexes, as described in Section 3.1.

6. CONCLUSIONS

This paper presents an indexing method for WF constraints. By WF constraints we mean restrictions
about WF properties available at form interfaces. The motivation for this work is the fact that such
constraints provide semantic information about the database hidden behind the WF, which can be
useful to filter relevant WFs through structured queries, i.e., declarative predicates based on WF
property constraints. No related work focuses on this problematic.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Indexing Web Form Constraints · 357

Our indexing solution extends traditional inverted list indexes by allowing path expressions as
index entries. A path expression specifies a valid predicate over a WF property according to the WF
constraints, providing a direct translation of a structured query predicate to an index entry. Our
experiments revealed that this simple approach is efficient and scalable.

Despite of the focus on indexing constraints defined on a WF, we also decided to implement a
traditional keyword inverted list index. The purpose here was to index any term, like a page title,
a label, an allowed value or a word, in the form interface. With this additional index we can mix
keyword and structured filters in a query language for WFs, being able, for example, to retrieve WFs
that have a given term T, where T could match a label or word, for example. Experiments similar
to the ones described in Section 4 had shown that our keyword-based queries run from 8 to 37 times
faster than RelDB, and from 2 to 31 times faster than RelViewDB. We also outperform the relational
repositories for this kind of query because a keyword can be related to any WF metadata, requiring
joins between most of the tables (Web pages, domains, fields, etc) in the schema.

Our indexing method intends to be the basis of a framework for structured queries over WFs. The
main idea here is to design a structured query processing infra-structure for WFs that could support not
only simple equality or inequality predicates, but also complex queries that provide data aggregation
or data grouping, in the same way SQL query language works. With such a support, we will be able
to answer a query like the one exemplified in Section 1 "to retrieve companies with a certain average
price for a given used car model in a certain year ". In order to process complex queries like this, we
have some challenges to deal with, like the need to access data on the hidden database to generate the
desired aggregated information. We plan to develop and integrate systematically this infra-structure
to Deeppeep [Freire et al. 2010], [Barbosa et al. 2010] in order to improve its query capabilities.

Besides the framework initiative, other future work include:

—An index strategy for inequality constraints, like 1,000 <= Price < 50,000 and Year >= 2000.
Inverted lists are not suitable for inequality predicates due to the potential overhead with index
scan, so we are investigating other approaches, like hierarchical indexes (Tries [Brenes et al. 2008],
[Comer 1979], [Terrovitis et al. 2006] or indexes for XML), that could be extended to organize value
range constraints. We intend to provide such a solution as soon as possible, given the high relevance
of this kind of constraint for our framework.

—Experiments on a larger number of attributes involved in value dependencies in order to analyze
the efficiency of query processing and index accessing for dependency constraints. The intention
here is to work on a larger set of real WFs or to produce some synthetic data, including WFs that
hold non-existence dependencies, which were not considered in the set of experiments described in
this paper.

—Efficient mechanisms for index update and compression, given the increasing availability of hidden
databases.

—A query-by-similarity support. We mean here to allow searching for similar WFs based on affinities
among their properties and constraints. An index for similarity-based filters could be considered.

REFERENCES

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. Modern Information Retrieval. ACM Press / Addison-Wesley, 1999.
Barbosa, L. and Freire, J. An Adaptive Crawler for Locating Hidden Web Entry Points. In Proceedings of the 16th

International Conference on World Wide Web. Banff, AL, Canada, pp. 441–450, 2007a.
Barbosa, L. and Freire, J. Combining Classifiers to Identify Online Databases. In Proceedings of the 16th Interna-

tional Conference on World Wide Web. Banff, AL, Canada, pp. 431–440, 2007b.
Barbosa, L., Freire, J., and da Silva, A. S. Organizing Hidden-Web Databases by Clustering Visible Web Doc-
uments. In Proceedings of the 26th International Conference on Data Engineering. Istanbul, Turkey, pp. 326–335,
2007.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

358 · R. S. Mello, R. Pinnamaneni and J. Freire

Barbosa, L., Nguyen, H., Nguyen, T., Pinnamaneni, R., and Freire, J. Creating and Exploring Web Form
Repositories. In Proceedings of the ACM International Conference on Management of Data. Indianapolis, IN, USA,
pp. 1175–1178, 2010.

Brenes, S., Wu, Y., Gucht, D. V., and Cruz, P. S. Trie Indexes for Efficient XML Query Evaluation. In Proceedings
of the International Workshop on Web and Databases. Vancouver, BC, Canada, 2008.

Chung, C.-W., Min, J.-K., and Shim, K. APEX: An Adaptive Path Index for XML Data. In Proceedings of the
ACM International Conference on Management of Data. Madison, WI, USA, pp. 121–132, 2002.

Codd, E. F. Data Models in Database Management. In Proceedings of the Workshop on Data Abstraction, Databases
and Conceptual Modelling. Pingree Park, CO, USA, pp. 112–114, 1980.

Comer, D. Heuristics for Trie Index Minimization. ACM Transactions on Database Systems 4 (3): 383–395, 1979.
Dong, X. and Halevy, A. Y. Indexing Dataspaces. In Proceedings of the ACM International Conference on

Management of Data. Beijing, China, pp. 43–54, 2007.
Fang, W., Cui, Z., and Zhao, P. Ontology-Based Focused Crawling of Deep Web Sources. In Proceedings of

the Knowledge Science, Engineering and Management, Second International Conference. Melbourne, Australia, pp.
514–519, 2007.

Freire, J., Barbosa, L., Nguyen, H., Nguyen, T., and Pinnamaneni, R. DeepPeep: Discover the Hidden Web.
http://www.deeppeep.org/, 2010.

He, B. and Chang, K. C.-C. Statistical Schema Matching across Web Query Interfaces. In Proceedings of the ACM
International Conference on Management of Data. San Diego, CA, USA, pp. 217–228, 2003.

Kaushik, R., Krishnamurthy, R., Naughton, J. F., and Ramakrishnan, R. On the Integration of Structure
Indexes and Inverted Lists. In Proceedings of the ACM International Conference on Management of Data. Paris,
France, pp. 779–790, 2004.

Madhavan, J., Afanasiev, L., Antova, L., and Halevy, A. Y. Harnessing the Deep Web: Present and Future. In
Proceedings of the 4th Biennial Conference on Innovative Data Systems Research. Asilomar, CA, USA, 2009.

Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., and Halevy, A. Y. Google’s Deep Web Crawl.
Proceedings of the VLDB Endowment 1 (2): 1241–1252, 2008.

Milo, T. and Suciu, D. Index Structures for Path Expressions. In Proceedings of the 7th International Conference
on Database Theory. Jerusalem, Israel, pp. 277–295, 1999.

Nguyen, H., Nguyen, T., and Freire, J. Learning to Extract Form Labels. Proceedings of the VLDB Endow-
ment 1 (1): 684–694, 2008.

Nguyen, T. Prudent Schema Matching for Web Forms. Tech. rep., University of Utah, Salt Lake City, UT, USA,
2008.

Pei, J., Hong, J., and Bell, D. A. A Robust Approach to Schema Matching over Web Query Interfaces. In
Proceedings of the 22nd International Conference on Data Engineering Workshops. Atlanta, GA, USA, pp. 46–55,
2006.

PMC, L. P. M. C. Welcome to Lucene! http://lucene.apache.org/, 2010.
Qiu, J., Shao, F., Zatsman, M., and Shanmugasundaram, J. Index Structures for Querying the Deep Web. In

Proceedings of the International Workshop on Web and Databases. San Diego, CA, USA, pp. 79–86, 2003.
Qun, C., Lim, A., and Ong, K. W. D(k)-Index: An Adaptive Structural Summary for Graph-Structured Data. In

Proceedings of the ACM International Conference on Management of Data. San Diego, CA, USA, pp. 134–144, 2003.
Terrovitis, M., Passas, S., Vassiliadis, P., and Sellis, T. K. A Combination of Trie-trees and Inverted Files for

the Indexing of Set-valued Attributes. In Proceedings of the 2006 ACM International Conference on Information
and Knowledge Management. Arlington, VI, USA, pp. 728–737, 2006.

Wang, Y., Lu, J., and Chen, J. Crawling Deep Web Using a New Set Covering Algorithm. In Proceedings of the
5th International Conference Advanced Data Mining and Applications. pp. 326–337, 2009.

Wu, W., Doan, A., and Yu, C. T. WebIQ: Learning from the Web to Match Deep-Web Query Interfaces. In
Proceedings of the 22nd International Conference on Data Engineering. Atlanta, GA, USA, pp. 44–54, 2006.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

