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Abstract. Geographic Data Warehouses (GDWs) are traditional data warehouses with spatial attributes that are used
for defining spatial dimension tables, spatial measures and spatial hierarchies. Non-redundant spatial data warehouse
schemas have been recognized as an essential issue in the GDW design. Although the lack of spatial redundancy
represents a gain in data storage, it implies in a need for performing expensive join operations to answer a given query
that may refer to one or more query windows. In this paper, we investigate to what extent the separate storage of
spatial and conventional data is recommended in GDW, according to increasing numbers of query windows. We also
investigate if the complexity of the spatial data (i.e. points versus polygons) influences the choice of storing spatial and
conventional data in the same or in different dimension tables. Our experimental results indicated that if non-redundant
spatial data are represented as point objects, an approach to avoid additional join costs by storing both point data
and their descriptive data in a single table should be chosen. The results also showed that redundant GDW schemas
introduce a severe drawback, as some spatial analytical queries cannot reuse previously fetched spatial data, impairing
query performance. Finally, based on the experimental results, we propose in this paper a set of guidelines for the
design of logical GDW schemas, called “Logical GDW Design Guidelines”.

Categories and Subject Descriptors: H.2.1 [Information Systems]: Logical Design—data models

Keywords: benchmark, geographic data warehouse, performance evaluation

1. INTRODUCTION

There are several approaches for handling business applications that help users in increasing the pro-
ductivity of decision-making processes, such as Data Warehouse (DW), On-Line Analytical Processing
(OLAP) and Geographic Information System (GIS). A DW is a multidimensional database that stores
subject-oriented, integrated, time-variant and non-volatile data, and is often modeled through a star
schema composed of fact and dimension tables [Kimball and Ross 2002]. An OLAP tool is a software
aimed at multidimensional processing of data extracted from DWs, allowing these data to be analyzed
in different perspectives and levels of aggregation [Chaudhuri and Dayal 1997]. Regarding GIS, it
focuses on the acquisition, manipulation, visualization and analysis of spatial objects [Câmara et al.
1996; Demers 2000]. The integration of the features of OLAP tools and GIS has been referred to as
spatial OLAP (SOLAP) [da Silva et al. 2010], and benefits the strategic decision-making process by
broadening the use of spatial predicates in OLAP queries over a Geographic DW (GDW). A GDW,
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therefore, extends a DW by storing vector geometries in spatial attributes and by defining spatial
dimension tables, spatial measures and spatial hierarchies [Siqueira et al. 2009b].

Concerning schemas of GDWs, GeoDWFrame is a framework based on the star schema that consists
of a set of concepts and principles for guiding the design of GDWs [Fidalgo et al. 2004]. Based on
this framework and using OCL (Object Constraint Language) restrictions, a UML (Unified Modeling
Language) class diagram of a GDW metamodel was introduced in [Fonseca et al. 2007]. This GDW
metamodel, which has formally been defined in [Times et al. 2008], aids the specification of GDW
schemas by avoiding spatial data redundancy and storing spatial and conventional attributes sepa-
rately, even though this storage introduces additional joins among conventional and spatial dimension
tables to process SOLAP queries. Also, redundant and non-redundant GDW schemas were compared
and experimental results indicated that spatial redundancy is related to high performance losses both
in query processing and in storage requirements [Siqueira et al. 2009b]. Therefore, the literature
clearly recommends the use of non-redundant schemas in GDWs.

There are three main operations related to SOLAP query processing performance in a star schema:
(i) joining large fact tables and spatial and conventional dimension tables; (ii) computing one or
more costly spatial predicates based on spatial ad hoc query windows; and (iii) aggregating data
according to different spatial granularity levels. The aforementioned previous works recommend the
use of non-redundant schemas based on the claim that computing few additional joins is less costly
than storing a large amount of redundant spatial data in the dimension table and processing them to
answer SOLAP queries. However, we argue that, if the number of query windows found in SOLAP
queries is increased, spatial redundancy avoidance requires performing several joins to answer these
queries. In this paper, we go one step forward to previous works by investigating to what extent
the separate storage of spatial and conventional attributes is recommended in GDW, according to
increasing numbers of query windows. This is the main contribution of this paper.

Another contribution of this paper is related to non-redundant GDW schemas. It has been rec-
ognized that spatial and conventional attributes should not be stored in the same dimension table,
regardless of the characteristics of the spatial objects. However, in several cases, the spatial objects
are characterized by being distinct and having a 1:1 association with the dimension table primary
key values. For instance, a non-redundant GDW that represents historical data related to orders and
sales may store each customer in terms of its ID and its unique georeferenced address. In these cases,
it is important to assess if the joint storage of spatial and conventional data that follow the mentioned
characteristics really impairs SOLAP query performance. In this paper, we examine this issue and
also investigate if the complexity of the spatial objects (i.e. points versus polygons) influences the
choice of storing spatial and conventional attributes in the same or in different dimension tables.

The third contribution of this paper is related to the design of logical GDW schemas. Although
some principles for guiding the design of GDWs have been proposed by GeoDWFrame, they do not
focus on the joint storage of spatial and conventional data in a single dimension table nor on the
issue of uniqueness and complexity of spatial attributes. On the other hand, in this paper we ex-
perimentally investigate these two issues. We provide a set of guidelines for the design of logical
GDW schemas, called “Logical GDW Design Guidelines”, that take into account the joint storage of
spatial and conventional data. Another difference refers to the fact that the principles introduced
in GeoDWFrame were not validated experimentally, while the guidelines proposed in this paper are
based on experimental performance results.

The remainder of this paper is organized as follows. Section 2 describes the basic concepts used
throughout the paper. The contributions of the paper are described in Sections 3 to 5, as follows.
Section 3 compares non-redundant and redundant GDW schemas concerning increasing numbers of
spatial query windows, Section 4 analyses the joint storage of spatial and conventional attributes in
non-redundant GDW schemas, and Section 5 describes the proposed “Logical GDW Design Guide-
lines”. Section 6 surveys related work, while Section 7 concludes the paper and highlights future
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work.

2. THEORETICAL FOUNDATION

A conventional DW is often implemented in relational databases through a star schema, which is
composed of fact and dimension tables [Kimball and Ross 2002]. Fact tables store numeric measures
of interest, while dimension tables contain attributes that contextualize these measures. Each attribute
of a dimension may have a relationship with other attributes of the same dimension through hierarchies
of attributes, which specify levels of aggregation and, consequently, data granularity. For instance, the
dimension table Customer may be described by the attributes ID, address, city, nation and region, so
that region � nation � city � address. In this hierarchy, region is the attribute of the highest level of
granularity, while address is the attribute of the lowest level of granularity. In addition, according to
Harinarayan (1996), v1 � v2 if and only if it is possible to answer v1 using no more than the results
of v2. Therefore, it is possible to obtain the measures for higher granularity attributes by aggregating
the results from lower granularity attributes.

Based on hierarchies of attributes, data in a DW are usually organized from a lower level of gran-
ularity that contains detailed data up to a higher level of granularity containing highly summarized
data. There also may be several intermediate levels, which represent increasing levels of aggregation.
Furthermore, this organization in levels of aggregation allows decision-making users to begin their
analyses at a higher level of granularity to look over broad perspectives and then progressively access
less aggregated levels as more specific data are required. This kind of analysis illustrates drill-down
queries. On the other hand, roll-up queries investigate data in progressively less detailed aggrega-
tion levels. For instance, the following queries could be commonly required in a drill-down analysis:
revenue by region, then revenue by nation, then revenue by city, and then revenue by address, where
revenue is a numeric measure.

Differently from a conventional DW, a GDW stores spatial data as specific attributes in dimension
tables or as spatial measures in fact tables [Malinowski and Zimányi 2004; 2006; 2008]. In a GDW,
spatial hierarchies may be defined over spatial attributes of one or more dimension tables. A spatial
hierarchy is typically a 1:N association among higher and lower granularity spatial attributes that is
determined by a spatial relationship, such as region_geo � nation_geo � city_geo � s_address_geo,
where the suffix _geo represents spatial attributes that store vector geometries and the spatial rela-
tionship is containment.

A GDW can be organized into a star schema according to two different approaches: redundant
GDW schema and non-redundant GDW schema. In a redundant GDW schema, the dimension tables
store both conventional and spatial attributes. Therefore, a given dimension table may replicate the
same spatial data several times (e.g. the geometry of a given nation). Figure 1 depicts an example
of a redundant GDW schema, adapted from the Star Schema Benchmark (SSB) [O’Neil et al. 2009]
and proposed in [Siqueira et al. 2009b]. In this paper, we call this schema Geographic Redundant
Star Schema Benchmark (GRSSB). The spatial attributes in the GRSSB schema are s_address_geo,
s_city_geo, s_nation_geo and s_region_geo for the dimension table Supplier, and c_address_geo,
c_city_geo, c_nation_geo and c_region_geo for the dimension table Customer. The changes that
were performed preserved the original SSB conventional data and created a spatial hierarchy based
on the previously defined conventional dimensions. Both the dimension tables Supplier and Customer
have the following hierarchy: region_geo � nation_geo � city_geo � address_geo.

On the other hand, the non-redundant GDW schema uses two types of dimension tables. The
spatial dimension table stores the ID and the vector geometry of each spatial data, while the cor-
responding conventional dimension table contains the conventional attributes and a foreign key to
the spatial dimension table. For instance, Figure 2 shows an example of a non-redundant GDW
schema, where spatial data related to Customer is stored in the spatial dimension table C_Address
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Fig. 1. The redundant GDW schema (called the GRSSB schema).

(i.e. c_address_pk is the ID and c_address_geo is the vector geometry). The conventional dimension
table Customer has the attribute c_address_fk as the foreign key to the table C_Address. In this non-
redundant GDW schema, the dimension tables Customer and Supplier share City, Nation and Region
locations, but not Address locations. Therefore, only the domains of the attributes s_address_geo and
c_address_geo are disjoint, while the domains of the attributes city_geo, nation_geo and region_geo
are overlapping for customers and suppliers. In this paper, we call the schema of Figure 2 Geographic
Hybrid Star Schema Benchmark (GHSSB), which was proposed in [Siqueira et al. 2009b]. We used
the term Hybrid to comply with the GeoDWFrame dimension tables definitions [Fidalgo et al. 2004]
as both the dimension tables Supplier and Customer found in this schema are of type hybrid, which
deals with location descriptions and conventional data (e.g. customer’s address plus name and phone
number).

Fig. 2. The non-redundant GDW schema (called the GHSSB schema).

The type of geographic query investigated in this paper is known as range query [Gaede and Günther
1998]. Given a bi-dimensional rectangle QW (i.e. query window) whose sides are parallel to the axes of
their respective dimensions, this query finds all the objects that satisfy a topological relationship with
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respect to QW . Each type of topological relationship (e.g. intersects, contains, within) characterizes
a specific subtype of a range query. Conventional and spatial hierarchies enable the processing of drill-
down and roll-up operations extended with range queries [Rivest et al. 2005; Malinowski and Zimányi
2008]. In these operations, the spatial ad hoc query window is a region that was not previously stored
in a spatial dimension table. For instance, the following queries could be commonly required in a drill-
down analysis extended with range queries: revenue by c_region_geo that intersects a given spatial
ad hoc query window QW1, then revenue by c_nation_geo that intersects a given spatial ad hoc query
window QW2, then revenue by c_city_geo that intersects a given spatial ad hoc query window QW3,
and then revenue by c_address_geo that is within a given spatial ad hoc query window QW4. These
queries are further explained in Section 3.1.

3. PERFORMANCE TESTS USING REDUNDANT AND NON-REDUNDANT GDW SCHEMAS

In this section, we show and discuss performance results related to the experiments based on both
the redundant GDW schema (i.e. the GRSSB schema) and the non-redundant GDW schema (i.e. the
GHSSB schema). The goal of these performance tests is to investigate to what extent the separate
storage of conventional and spatial attributes in dimension and spatial dimension tables is recom-
mended in GDWs, according to increasing numbers of query windows and, consequently, increasing
numbers of joins among these tables.

This section is organized as follows. Section 3.1 describes the experimental setup that was used
to investigate how much SOLAP query performance was affected by increasing numbers of query
windows, Section 3.2 details the performance results for disjoint query windows, and Section 3.3
describes the obtained measurements for overlapping query windows.

3.1 Experimental Setup

The data generation for the GHSSB schema was performed as follows. The GHSSB schema was
created using the SSB benchmark with scale factor 10, occupied 15 GB and generated 60 million of
tuples in the fact table, 5 distinct regions, 5 nations per region, 10 cities per nation and a certain
quantity of addresses per city that varied from 349 to 455. Cities, nations and regions were represented
by polygons, while addresses were represented by points. Polygons were real-world data adapted from
Tiger/Line (www.census.gov/geo/www/tiger), while points were synthetic data.

Regarding the data generation for the GRSSB schema, it was carried out similarly to the data
generation of the GHSSB schema. It produced the same number of tuples for fact and dimension
tables, data was generated using the same scale factor of the SSB benchmark and spatial data had
the same geometric types and values. But in the GRSSB schema, the vector geometries were stored
redundantly and, as a result, the GRSSB schema stored about 150 GB. For instance, the polygon
representing the map of Brazil was stored in every row whose customer or supplier was located in
Brazil.

With regard to the workload, we used roll-up queries extended with range queries. These SOLAP
queries were based on predefined spatial attribute hierarchies of dimensions tables and spatial dimen-
sion tables that encompassed several granularity levels (i.e. address, city, nation and region). We
replaced the conventional predicate of SSB queries with spatial predicates involving query windows.
The number of query windows were one, two, four and eight and, for each number of query windows,
the experiments were performed by submitting five complete SOLAP roll-up queries to both the re-
dundant and the non-redundant GDW schemas and taking the average of the measurements for each
granularity level.

While the SOLAP roll-up queries that referred to a single query window were based on Query
Q2.3 from the SSB benchmark (Figure 3), the queries with two, four and eight query windows were
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based on Query Q3.3 from this benchmark (Figure 4). For queries with one and two query windows,
the windows were defined as follows. They were quadratic, had a correlated distribution with the
spatial data and their sizes were proportional to the spatial granularity. Addresses were evaluated
with containment range queries and their query windows covered 0.001% of the extent, while cities,
nations and regions were evaluated with intersection range queries and their query windows covered
0.05%, 0.1% and 1% of the extent, respectively. The centroids of the query windows consisted of
random addresses, where one of them was a customer address and, for two query windows, the other
query window was a supplier address also randomly chosen.

Fig. 3. Query Q2.3 from the SSB benchmark adapted to a single query window QW.

Fig. 4. Query Q3.3 from the SSB benchmark adapted to two query windows QW and QW’.

Due to some restrictions found in the SSB schema, which were related to its total number of spatial
dimensions, it was necessary to adapt the Query Q3.3 from SSB to investigate the effect of performing
increasing numbers of query windows (i.e. specifically aiming at using four and eight query windows).
For this purpose, we used the set operator UNION of SQL. This operator was used to combine the
partial results derived from the application of a pair of query windows with the two spatial dimensions
of the adapted SSB schema (i.e. the dimension tables Customer and Supplier).

Experiments were conducted on a computer with 2.8 GHz Pentium D processor, 8 GB of main
memory, 7200 RPM SATA 320 GB hard disk, Linux CentOS 5.2, PostgreSQL 8.2.5 and PostGIS
1.3.3. The star-join computations were aided by the GiST index (http://gist.cs.berkeley.edu)
defined over the spatial attributes. In the performance tests, we gathered the elapsed time in seconds.

3.2 Performance Evaluation for Disjoint Query Windows

In this section, we discuss the performance results for all the granularity levels considering an increasing
number of disjoint query windows. Table I shows the performance results for SOLAP roll-up queries
related to a single query window, while Tables II, III and IV show the response times of SOLAP
roll-up queries having two, four and eight query windows, respectively.
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Our main performance findings are shown in the reduction columns, which compare how much faster
the SOLAP roll-up queries were processed over the GHSSB schema than over the GRSSB schema.
In general, the greater the number of query windows in these queries, the greater the processing
costs were, once this implied in a need for processing additional joins. There were only the following
exceptions regarding two query windows. For the city and nation granularity levels, the elapsed times
of the queries were almost the same for a single query window and for two query windows. This fact
is highlighted in gray in Tables I and II. We can conclude that the increase in the number of query
windows in these cases did not impair the query performance.

Comparing the GRSSB schema with the GHSSB schema, the latter significantly improved the
query processing performance, despite the fact that it required more joins because the spatial data
were stored separately from their corresponding dimention tables. The GHSSB schema produced a
performance gain that ranged from at least 19.73% up to 99.97%. The smallest performance gain
(i.e. 19.73%) was obtained at the address granularity level. This is due the fact that this level stored
point data which were both less computationally expensive to evaluate spatial relationships and not
redundant in the dimension table.

Granularity Level Query Processing (elapsed time in seconds) Reduction (%)
GHSSB GRSSB

ADDRESS 146.22 182.19 19.74

CITY 94.52 195.43 51.64

NATION 93.66 999.69 90.63

REGION 93.42 3, 523.27 97.35

Table I. Performance results for a single disjoint query window.

Granularity Level Query Processing (elapsed time in seconds) Reduction (%)
GHSSB GRSSB

ADDRESS 180.01 6, 267.19 97.13

CITY 93.05 111, 600.00 99.92

NATION 93.26 86, 400.00 99.89

REGION 110.43 86, 400.00 99.87

Table II. Performance results for two disjoint query windows.

Granularity Level Query Processing (elapsed time in seconds) Reduction (%)
GHSSB GRSSB

ADDRESS 266.16 12, 140.65 97, 81

CITY 160.99 25, 200.00 99.36

NATION 141.03 23, 400.00 99.40

REGION 194.69 39, 600.00 99, 51

Table III. Performance results for four disjoint query windows.

3.3 Performance Evaluation for Overlapping Query Windows

The use of overlapping query windows aims at evaluating the reuse of previously fetched spatial
objects when performing the spatial predicate computation in SOLAP roll-up queries. Therefore, we
established in our tests an overlapping threshold of 50%. This means that, if ten objects satisfy the
spatial predicate for a given query window, namely QWi, then five of them must also satisfy it for
the subsequent query window QWi+1. It is not required that all of these five objects be referenced in
the fact table, but it is expected that at least two of them are in the fact table to satisfy the query
related to these query windows. The overlapping properties are valid for all query windows, for all
the granularity levels and for queries related to Customer and Supplier.
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Granularity Level Query Processing (elapsed time in seconds) Reduction (%)
GHSSB GRSSB

ADDRESS 479.38 31, 884.02 98.50

CITY 302.72 37, 800.00 99.20

NATION 328.28 41, 700.00 99.21

REGION 442.98 43, 200.00 98.98

Table IV. Test results for eight disjoint query windows.

Tables V, VI and VII show the response times of queries having two, four and eight overlapping
query windows. Our experimental results indicated that at any granularity level and for any number
of overlapping query windows, the spatial data redundancy drastically impaired the performance of
SOLAP roll-up queries: the non-redundant GHSSB schema outperformed the redundant GRSSB
schema by at least 95.52%. These results corroborate the fact that data organization affects query
processing performance, which is a well-known fact in the database literature. Specially in GDWs,
the storage of both multidimensional and spatial data requires the manipulation of higher volumes of
data and, therefore, GDWs are even more sensitive to data organization. In addition, the organization
of spatial objects in multidimensional data structures affects SOLAP query processing performance
because this organization may prevent the reuse of previously fetched spatial objects and may affect
the number of scanned tables in query processing.

The GRSSB schema presents a severe drawback since some queries are not able to reuse previously
fetched spatial objects as illustrated as follows. Suppose that QWC,City and QWS,City are query
windows for Customer and Supplier, respectively, at the city granularity level. Although QWC,City

and QWS,City are overlapping query windows, they require scanning two distinct tables of the GRSSB
schema, Customer and Supplier, specifically on the attributes c_city_geo and s_city_geo. Even if
these two attributes have spatial indices built over them, the indices have to be scanned to filter the
spatial objects before the corresponding spatial objects stored in tables be analyzed for refinement
purposes. On the other hand, the GHSSB schema maintains for each level a single spatial object
table with a single spatial attribute, city_geo, and a single index defined on it. Therefore, queries
performed against the GHSSB schema and evolving QWC,City and QWS,City require accessing a single
index and a single spatial object table. This benefited the non-redundant schema over the redundant
one for all the granularity levels.

Granularity Level Query Processing (elapsed time in seconds) Reduction(%)
GHSSB GRSSB

ADDRESS 92.86 6, 873.80 98.65

CITY 91.60 14, 400.00 99.36

NATION 91.80 10, 800.00 99.15

REGION 134.18 12, 600.00 98.94

Table V. Performance results for two overlapping query windows.

Granularity Level Query Processing (elapsed time in seconds) Reduction(%)
GHSSB GRSSB

ADDRESS 263.05 12, 426.39 97.88

CITY 178.50 7, 200.00 97.52

NATION 169.50 3, 780.00 95.52

REGION 230.47 5, 400.00 95.73

Table VI. Performance results for four overlapping query windows.
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Granularity Level Query Processing (elapsed time in seconds) Reduction(%)
GHSSB GRSSB

ADDRESS 500.03 26, 400.00 98, 11

CITY 344.45 7, 800.00 95, 58

NATION 280.99 7, 200.00 96, 10

REGION 426.95 9, 000.00 95, 26

Table VII. Performance results for eight overlapping query windows.

4. PERFORMANCE RESULTS USING ONLY NON-REDUNDANT SCHEMAS

In this section, we show and discuss performance results related to the experiments based on non-
redundant GDW schemas. The goal of these tests is to assess the benefits of performing joins in
a non-redundant schema by maintaining the spatial data (i.e. point data or polygons representing
addresses) in separated dimension tables from their corresponding descriptive data. Descriptive data
are conventional data that describe the related spatial data. For instance, an address represented
as a string is a descriptive data of the related location of an address represented as a point data.
Section 4.1 describes the experimental setup that was used to evaluate the performance of SOLAP
queries, while Section 4.2 discusses the performance results.

4.1 Experimental Setup

Experiments were conducted using the same computer configuration and the same DBMS resources
(including spatial indices) as those described in Section 3.1. Regarding the workload, it was based
on Query Q2.3 from the SSB benchmark. SOLAP queries had the following properties: (i) they
referred to a single query window; (ii) they were related to the lowest spatial granularity level (i.e.
the address granularity level); and (iii) they retrieved non-redundant coordinate data. We replaced
the conventional predicate of Query Q2.3 with the spatial predicate within. Each query window was
quadratic and had a correlated distribution with spatial data, and its centroid was a random customer
address. Its size was proportional to the lowest spatial granularity level. Therefore, addresses were
evaluated with containment range queries and their query windows covered 0.001% of the extent.

We defined two test configurations based on non-redundant GDW schemas. The first one used the
GHSSB schema described in Figure 2, while the second one was based on the NewGHSSB schema
proposed in Figure 5. The NewGHSSB schema was designed as an adaptation of the GHSSB schema,
in which for each spatial object type found in the GHSSB schema (e.g. Customer and Supplier), we
added all spatial data to the corresponding dimension table if these spatial data are not likely to be
shared among any other spatial dimension tables, such as the attribute c_address_geo in Figure 5.
This schema adaptation aimed at avoiding unnecessary joins when space storage is not affected by
spatial redundancy.

Polygon data were generated as follows. They were created from existing customer’s addresses of the
original GHSSB schema. For each address, the following computations were executed: (i) a squared
shape was created using the customer’s address as its centroid (X, Y ) and an offset value denoted by
d for defining its corners (i.e. XMIN = X−d; XMAX = X +d; YMIN = Y −d; YMAX = Y +d; where
d = 0.003); (ii) each side of the square was divided by 100 to increase the spatial object geometry
complexity by generating polygon data consisting of 400 points; and (iii) for each vertical side of
the polygon, points were created from the beginning to the end of the side by shifting 0.0001 and
generating 100 points on each side. In the horizontal side, the points were shifted using the same offset
of 0.0001, generating 100 points. Figure 6a depicts a sample of the original addresses represented as
points, while Figure 6b shows the corresponding polygons generated. Figure 6c details the geometry
of a polygon, which is slightly different from a square as its sides are generated using a small shift.

The BuildSquaredShapes algorithm (Algorithm 1), which was developed according to the afore-
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Fig. 5. The new non-redundant GDW schema (called the NewGHSSB schema).

Fig. 6. The two kinds of geometry considered for customers addresses and the detailed geometry of a polygon.

mentioned discussion, works as follows. It has a single parameter setOfPoints that specifies the
number of points and the coordinates of each point. In lines 1 to 3, the variable count indicating the
current number of polygons generated is initialized to zero, an offset value of 0.003 distance units is
assigned to d, and the variable setOfPolygons that represents the squared shapes to be returned is
initialized to empty. After comparing the value of count with the number of elements found in the
input data collection (line 4), there is a loop that initially computes the numerical values of the coordi-
nates that describe the boundaries of a square (lines 5 to 8). These values, called XMIN , XMAX , YMIN

and YMAX , are obtained using d. Then, in line 9, a shift value is computed dividing the length of each
square line segment by 100 to generate a polygon with 400 points. In line 10, a new polygon object
is created and, in lines 11 to 14, each time the algorithm generatePoints is called, 100 points are
generated for each side of the polygon and are added to the set of points of this new polygon, which
is in turn added to setOfPolygons in line 15. Finally, the generated polygons are returned (line 18).

Regarding the algorithm generatePoints (Algorithm 2), it works as follows. In line 1, the variable
listOfPoints, which represents the points to be returned, is initialized to empty and, in line 2, the
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Algorithm 1: BuildSquaredShapes (setOfPoints)
Input : setOfPoints {set of points representing customers addresses}
Output: setOfPolygons {set of squared shapes successfully created}
count ← 0;1
d ← 0.003;2
setOfPolygons.New();3
while (count < setOfPoints.sizeOf()) do4

XMIN ← (setOfPoints.getElement[count]).getX() - d;5
XMAX ← (setOfPoints.getElement[count]).getX() + d;6
YMIN ← (setOfPoints.getElement[count]).getY() - d;7
YMAX ← (setOfPoints.getElement[count]).getY() + d;8
shift ← (XMAX - XMIN ) / 100;9
polygon.New();10
polygon.AddPoints(generatePoints (XMIN , YMIN , YMAX , shift, “Vertical”));11
polygon.AddPoints(generatePoints (XMAX , YMAX , YMIN , shift * (-1), “Vertical”));12
polygon.AddPoints(generatePoints (YMIN , XMAX , XMIN , shift * (-1), “Horizontal”));13
polygon.AddPoints(generatePoints (YMAX , XMIN , XMAX , shift, “Horizontal”));14
setOfPolygons.Add(polygon);15
count ← count + 1;16

end17
return setOfPolygons;18

value of fixCoor is assigned to the auxiliary variable auxCoor. The size of the side in which the points
will be generated is calculated and stored in the variable sizeOfSegment in line 3, while the variable
totalShift, which represents the offset from the beginning of the side that will contain the point being
generated, is initialized in line 4. Lines 6 to 10 create a point for a given side of the polygon. If this side
corresponds to a vertical line segment, the point with coordinates (auxCoor, varCoor+ totalShift) is
created; otherwise the coordinate values are reversed and the point (varCoor + totalShift, auxCoor)
is created. Then, the value of totalShift is increased by shift (line 11) aiming to determine the
coordinate of the new point along the side, and the value of auxCoor is updated in lines 13 and 15 to
slightly change the shape of the polygon. The loop of lines 5 to 17 is performed until the maximum
coordinate of a side be reached. Finally, the generated points are returned (line 18).

Algorithm 2: generatePoints (fixCoor, varCoor, maxCoor, shift, typeOfLine)
Input :fixCoor {fixed coordinate of the points generated along a side}

varCoor {initial value of the coordinate of the points generated along a side}
maxCoor {maximum coordinate of a side}
shift {a small shift to generate polygons to slightly differ from a square}
typeOfLine {horizontal or vertical side}

Output: list of Points {list of points that compose the line segment}
listOfPoints.New();1
auxCoor ← fixCoor;2
sizeOfSegment← abs(maxCoor − varCoor);3
totalShift← 0;4
while ((sizeOfSegment− abs(totalShift)) > 0) do5

if typeOfLine = “Vertical” then6
listOfPoints.Add(auxCoor, varCoor + totalShift);7

else8
listOfPoints.Add(varCoor + totalShift, auxCoor);9

end10
totalShift ← totalShift + shift;11
if abs(totalShift) < sizeOfSegment/2 then12

auxCoor ← auxCoor - 0.000001;13
else14

auxCoor ← auxCoor + 0.000001;15
end16

end17
return listOfPoints;18

4.2 Performance Evaluation

Aiming to investigate the impact of join operations costs, we conducted experiments that issued SO-
LAP queries related to the lowest granularity level of both the GHSSB and the NewGHSSB schemas.
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We gathered the elapsed time in seconds to process these queries considering two different spatial data
types on the attribute c_address_geo: point and polygon.

Our main performance findings are shown in the reduction column of Table VIII, which compares
how much faster SOLAP queries were processed over the NewGHSSB schema than over the GHSSB
schema. A positive value indicates that the NewGHSSB schema provided better performance results,
while a negative value in this column indicates that the GHSSB schema was the best choice. The
performance results showed that SOLAP queries had a great performance improvement over the
NewGHSSB schema for point data. On the other hand, for polygon data, the performance was
almost the same for both schemas, but slightly better over the GHSSB schema. In fact, queries
related to point-based addresses (i.e. when addresses are represented as non-redundant points) caused
a performance gain in the NewGHSSB schema of 27.82%, while queries related to polygon-based
addresses (i.e. when addresses are represented as non-redundant polygons) resulted in a very small
increase of 1.19% in the elapsed time over the NewGHSSB schema. Based on our experiments, we
can conclude that the NewGHSSB schema should be chosen whenever non-redundant spatial data are
represented as point objects, since this schema avoids additional joins between dimension and spatial
dimension tables. On the other hand, if non-zero-dimensional geometries are used for representing
non-redundant spatial data, the well-known GHSSB schema should be chosen.

Granularity Level Query Processing (elapsed time in seconds) Reduction(%)
GHSSB NewGHSSB

ADDRESS (Point Data) 135.15 105.74 27.82

ADDRESS (Polygon Data) 110.74 112.08 −1.19

Table VIII. Test results for the non-redundant schemas.

5. GUIDELINES FOR BUILDING A LOGICAL GDW SCHEMA

From the performance evaluation discussed in Sections 3 and 4, we specified a taxonomy of tables
and a set of guidelines for helping the design of spatial dimension tables of logical GDW schemas.
These tables are detailed as follows, together with the proposed set of guidelines called “Logical GDW
Design Guidelines”.

Guideline 1: Spatial dimension tables can have vector geometry data in any dimensional level and
are represented using the following tables: Geometric, Descriptive and Descriptive-and-Geometric.

We consider that spatial dimension tables are traditional dimensions with attributes that are used
for directly storing vector geometries or for keeping references to these geometries (i.e. by indirectly
storing spatial data). Table IX lists the types of tables that should be taken into account when
creating spatial dimensions and building a logical GDW schema. These tables are classified according
to whether they have been designed for keeping spatial data only, for storing conventional data only
or for maintaining both vector geometry data and conventional attributes in a single table.

Guideline 2: All redundant N-dimensional spatial data (N ≥ 0) must be stored using two tables,
namely Descriptive and Geometric, to avoid spatial data redundancy. Each redundant conventional
data is stored in a table of type Descriptive together with a foreign key that points to its corresponding
spatial data that are recorded non-redundantly in a table of type Geometric.

The table Geometric listed in the first row of Table IX only stores a primary key and a spatial level
whose members are non-redundant vector geometry data. The tables City, Nation, Region, S_Address
and C_Address shown in Figure 2 are examples of this table type. Also, the table Descriptive has
a primary key, a set of conventional levels or properties that are represented only by conventional
data that can be either location descriptions (e.g. customers’ address) or non-location descriptions
(e.g. gender) and a set of foreign keys where each of these foreign keys refers to a primary key of a
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Table Objective Column Attribute Data Type
Geometric To avoid the re-

dundant storage of
geometries shared
among several spa-
tial dimension ta-
bles.

Primary Key Sequence Number

Spatial Level Non-redundant N-
dimensional spatial data
(N ≥ 1)

Descriptive To store descrip-
tive data used for
categorizing and
grouping facts
and to represent
relationships be-
tween the tables
Geometric and
Descriptive-and-
Geometric.

Primary Key Sequence Number

Set of Conventional Levels A Conventional Data Type of
SQL per Level

Set of Foreign Keys A Sequence Number per Key
Descriptive-and-Geometric To avoid join op-

erations to access
non-redundant
point data and to
avoid the storage of
N-dimensional spa-
tial data (N ≥ 1)
together with their
conventional at-
tributes.

Primary Key Sequence Number

Set of Conventional Levels A Conventional Data Type of
SQL per Level

Set of Spatial Levels Non_redundant Point Data
per Level

Set of Foreign Keys A Sequence Number per Key

Table IX. A taxonomy of tables for building logical GDW schemas.

Geometric table. The tables Customer and Supplier shown in Figure 1 are instances of a table of type
Descriptive. For the sake of simplicity, we do not make a distinction between a location description
and any other kind of conventional data. This is related to the fact that conventional data always
require less storage space than spatial ones.

Guideline 3: Non-redundant point data must be stored together with their conventional data using
the Descriptive-and-Geometric table.

The table Descriptive-and-Geometric contains a primary key, a set of conventional granularity levels
or properties that are represented only by conventional data that can be either location descriptions
or non-location descriptions, and a set of spatial granularity levels whose members of a given level are
non-redundant point coordinate data and for the remaining levels, their members must be represented
by foreign keys pointing to the corresponding primary keys of a Geometric table. The tables Customer
and Supplier given in Figure 5 are examples of this table definition.

Guideline 4: Spatial dimensions store redundant conventional data of spatial objects together with
their corresponding spatial data in a single table called Descriptive-and-Geometric only if spatial data
are non-redundant point data or N-dimensional spatial data (N ≥ 1) represented by a set of foreign
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keys.

Guideline 5: Spatial dimensions store redundant conventional data of spatial objects separately from
their corresponding spatial data in a pair of tables called Descriptive and Geometric, respectively, only
if these geometries are redundant data or N-dimensional spatial data (N ≥ 1).

When building a logical GDW schema, if all of its spatial dimension tables are instances of any of
the three table types listed in Table IX and are designed according to Guidelines 1 to 5, the resulting
logical GDW schema is seen as non-redundant. This is due the fact that in this schema vector geometry
data are not stored redundantly and are stored separately from their corresponding conventional data
if they are non-zero-dimensional spatial objects. The GDW schemas shown in Figures 2 and 5 are
examples of logical non-redundant schemas.

Finally, a logical GDW schema may also contain non-spatial dimensions, which stores only conven-
tional data and do not include foreign keys to any other table with spatial data. The table Date and
Part shown in Figure 2 are examples of this dimension type.

6. RELATED WORK

Several techniques have been proposed to improve SOLAP query processing performance over GDW.
They can be classified according to the following groups: (i) the use of materialized views [Harinarayan
et al. 1996; Golfarelli et al. 2004]; (ii) the horizontal or vertical data fragmentation in one site or several
sites in a distributed environment [Golfarelli et al. 2000; Ciferri et al. 2007; Costa and Madeira 2004];
(iii) the partition of data across multiple processors to enable parallel processing [Datta et al. 1998;
Furtado 2004]; (iv) the use of index structures [O’Neil and Graefe 1995; Sarawagi 1997; Jürgens and
Lenz 1999; Papadias et al. 2001; Siqueira et al. 2009a; 2009b]; and (v) the design of efficient data
schemas to reduce query response times and minimize data storage costs [Fidalgo et al. 2004; Fonseca
et al. 2007; Times et al. 2008; da Silva et al. 2010]. This last group is the focus of the work described
here and therefore, the main studies related to this group are surveyed as follows.

Detailing GeoDWFrame [Fidalgo et al. 2004; Fonseca et al. 2007; Times et al. 2008], its GDW
metamodel is based on the relational package of CWM (Common Warehouse Metamodel) [OMG
2001] and SFS (Simple Features Specification) for SQL of OGC [OGC 1999] to facilitate its usage and
extension in other studies. It defines how the concepts (e.g. numeric measures and conventional and
spatial dimensions) of a GDW schema can be organized and related to each other. It also provides a
set of stereotypes with pictograms that are meant to assist and guide the user designer in his GDW
modeling activity. In GeoDWFrame, a dimension table can be specialized in three different dimensions:
(i) conventional dimension, which stores only conventional data, as in a traditional DW; (ii) hybrid
dimension, which deals with location descriptions and conventional data (e.g. client’s address stored as
string plus age and gender); in this case location descriptions are not spatial data; and (iii) geographic
dimension, which is specialized in composite and primitive dimensions. The geographic composite
dimensions only stores location descriptions (e.g. country names), while the geographic primitive
dimensions maintain the spatial data (e.g. geometries of countries) related to the corresponding
location descriptions kept in composite or hybrid dimensions. Therefore, GeoDWFrame proposes
the storage of conventional and spatial attributes separately in GDW schemas. Differently from
GeoDWFrame, we focus on the joint storage of spatial and conventional data in a single dimension
table according to the uniqueness and complexity of the spatial data. Another difference refers to
the fact that GeoDWFrame has not been based on experimental validation, which is the case of the
“Logical GDW Design Guidelines” proposed in this paper.

An extensive experimental performance evaluation aimed at validating GeoDWFrame was conducted
in [Siqueira et al. 2009b]. Due to the intrinsic redundancy of dimensional data and the high costs of
storing the spatial attributes (compared to foreign keys to primitive dimensions), keeping conventional
and spatial attributes together in a single dimension table has proven to have high storage costs and

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.



How Does the Spatial Data Redundancy Affect Query Performance in Geographic Data Warehouses? · 533

low performance. As a result, the Spatial Bitmap index (SB-index) was proposed in [Siqueira et al.
2009a] for improving SOLAP query performance on a redundant GDW. However, the impact of the
increase in the number of joins to answer a given query that may refer to one or more query windows
has so far not been studied. In fact, in this paper we extend and enrich the discussion introduced
in [Siqueira et al. 2009b] by investigating how increasing numbers of query windows affect SOLAP
query performance over GDWs. Another differential of our work is a performance comparison using
two different non-redundant schemas to verify if a 1:1 association between Descriptive and Geometric
dimensions and the complexity of the spatial objects enables the joint storage of conventional and
spatial attributes.

7. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the effects of spatial data redundancy in spatial analytical query perfor-
mance over different types of geographic data warehouse schemas. We focused on a redundant schema,
a non-redundant schema with vector geometry data stored separately from their corresponding de-
scriptive data, and another non-redundant schema in which the joint storage of vector geometries with
their descriptive data depends on both the spatial data redundancy and the spatial data type. We
issued against these schemas spatial analytical queries that referred to different numbers of spatial
query windows, generating a need for performing different numbers of join operations.

Our main findings showed that: (i) the chosen spatial representation for storing non-redundant
spatial data does affect query processing performance in geographic data warehouses; (ii) if non-
redundant spatial data are represented as point data, an approach to avoid additional join costs by
storing both point data and their descriptive data in a single table should be chosen; (iii) even for
lower granularity levels, if the number of disjoint query windows of spatial on-line analytical roll-up
queries increases, spatial data redundancy does impair the performance of these queries; and (iv)
redundant geographic data warehouse schemas introduce a severe drawback, as some spatial on-line
analytical roll-up queries cannot reuse previously fetched spatial data, impairing query performance.

This paper also introduced a set of guidelines for guiding the design of logical geographic data
warehouse schemas. The motivation behind proposing these guidelines are two-fold. First, they are
based on quantitative evaluation results. Second, these guidelines may be useful for helping in the
proposal of a normalization theory for geographic data warehouses.

The development of a normalization theory is seen as a first suggestion of future work. Also, it
would be interesting to explore the use of real datasets to further compare non-redundant schemas.
The definition of a spatial on-line analytical algebra is another additional research. Finally, extra
investigations should focus on how predefined hierarchies and how spatial on-line analytical query
processing based on spatial measures may be affected by spatial data redundancy.
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