
Towards Automatic Generation of Application Ontologies

Eveline R. Sacramento1,2, Vânia M. P. Vidal1, José Antonio F. de Macêdo1, Bernadette F. Lóscio1,
Fernanda Lígia R. Lopes1, Marco A. Casanova3

1 Department of Computing, Federal University of Ceará - Fortaleza, CE - Brazil
{eveline,vvidal,jose.macedo,bernafarias,fernanda.ligia}@lia.ufc.br

2 Ceará State Foundation for Meteorology and Water Resources - FUNCEME - Fortaleza, CE - Brazil
eveline@funceme.br

3 Department of Informatics, PUC-Rio - Rio de Janeiro, RJ - Brazil
casanova@inf.puc-rio.br

Abstract. In the context of the Semantic Web, a domain ontology may be used to provide the necessary support for
linking together a large number of heterogeneous data sources pertaining to a same domain. In this paper, such data
sources are first described as local ontologies. Then, each local ontology is rewritten as an application ontology, whose
vocabulary is restricted to be a subset of the vocabulary of the domain ontology. Application ontologies enable the
identification and the association of semantically corresponding concepts, and thereby help information discovery and
retrieval, and also data integration. The main contribution of this paper is a strategy to automatically generate applica-
tion ontologies, considering a set of local ontologies, a domain ontology and the result of the matching between each local
ontology and the domain ontology. The proposed strategy also enables the automatic generation of mappings between
the domain ontology and the application ontologies, and between each application ontology and its corresponding local
ontology, which are used to query the data sources through the domain ontology.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Databases

Keywords: data integration, ontologies, ontology matching, rules, schema mappings, semantic heterogeneity

1. INTRODUCTION

The Web is a complex and vast repository of information, which is often stored in heterogeneous and
distributed data sources. Problems that might arise due to heterogeneity of the data are already well
known within the database community, and broadly classified as syntactic heterogeneity and semantic
heterogeneity.

From a data integration perspective, ontologies provide a possible approach to address the problem
of semantic heterogeneity. They have been used to formally describe the semantics of the data sources
and to make their content explicit [Wache et al. 2001]. In the literature [Calvanese et al. 2007; Klien
2008; Lutz 2006], two architectures for ontology-based data integration can be identified: two-level
and three-level ontology-based architectures.

The main components of the two-level architecture (Figure 1) are: the domain ontology (DO), which
contains the basic terms of a domain; the local ontologies (LO), which describe the data sources using
an ontology language; and the mapping that specifies the correspondences between the local ontologies
and the domain ontology (LO-DO mappings). The systems described in [Calvanese et al. 2007; Klien
2008] adopt this architecture.

The main components of the three-level architecture (Figure 2) are: the domain ontology (DO);

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010, Pages 535–550.

536 · Eveline R. Sacramento et al

Fig. 1: Two-Level Ontology-based Architecture

the local ontologies (LO); the application ontologies (AO), which rewrite the local ontologies using
a subset of the vocabulary of the domain ontology; the mapping that specifies the correspondences
between the application ontologies and the domain ontology (mediated mappings); and the mapping
that specifies the correspondences between the local ontologies and the application ontologies (LO-
AO mappings). In this architecture, the application ontologies are used to facilitate tasks such as
the discovery and retrieval of information, and also data integration. Lutz [Lutz 2006] adopts this
architecture.

Fig. 2: Three-Level Ontology-based Architecture

Although the design of both two-level and three-level architectures is based on the matching between
local ontologies and the domain ontology (explained latter on), the distinguishing point of the three-
level architecture is that it introduces application ontologies, which are used to divide the definition
of the mappings into two stages: mediated mappings and LO-AO mappings. We use the mediated
mappings to define the classes and properties of the domain ontology in terms of the vocabularies
of the application ontologies. Such mappings are used for unfolding a query submitted over the
domain ontology into subqueries expressed in terms of the application ontologies. We use the LO-AO
mappings to define the classes and properties of the application ontology in terms of the vocabulary
of the corresponding local ontology. Such mappings are used for unfolding a query submitted over
the application ontology into a subquery expressed in terms of its local ontology. In our approach,
application ontologies also simplify the definition of the mediated mappings, thereby facilitating the
query rewriting process [Vidal et al. 2009].

The major contribution of this paper is a strategy for generating application ontologies and map-
pings between ontologies at these three levels. The proposed strategy has three steps: (1) vocabulary
matching, which generates a set of correspondences between entities of each local ontology and the
domain ontology; (2) post-matching, which validates the correspondences obtained in Step (1) and
also helps to adjust some correspondences, which cannot be captured by traditional matching algo-
rithms; and (3) generation of application ontologies and mappings, which first induces a set of LO-DO
mapping rules from the correspondences obtained in Step (2), and then use these rules to generate
the application ontologies and a set of mappings (mediated mappings and LO-AO mappings). Note
that we do not propose a new matching algorithm in Step (1), but we propose a matching model that
captures the results of an existing ontology matching process. So, the matching algorithm is not a
contribution of our work. Another contribution is an extended rule-based formalism that is able to

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 537

represent objects and include a suitable mechanism for building object identifiers, which is used to
specify the mappings of Step (3).

Few current works address the problem of automatically generating application ontologies. Further-
more, the existing ontology matching tools only deal with homogeneous correspondences (correspon-
dences between classes and correspondences between properties). Our approach allows validating or
adjusting these correspondences, in order to capture new kinds of correspondences, resulting from the
structural heterogeneity (called in our work path correspondences). Note that these path correspon-
dences cannot be automatically obtained by existing matching tools, but they can be captured by
our post-matching step. The resulting correspondences are then used to generate a set of operational
mappings. Two important points are related to this problem: (i) how to generate and represent such
mappings; and (ii) how to use these mappings to query the data sources. We address both points in
our approach.

This paper is organized as follows. Section 2 introduces basic definitions and presents the example
used in the rest of the paper. Section 3 introduces the matching model and discusses the post-matching
step. Section 4 describes our strategy for generating application ontologies and mappings. Section 5
presents related work. Finally, Section 6 contains the conclusions and future research.

2. BASIC DEFINITIONS

2.1 A Brief Review of Description Logics

We adopt a family of attributive languages [Calvanese et al. 1998] defined as follows. A language L in
the family is characterized by an alphabet A, consisting of a set of atomic concepts (unary predicates),
a set of atomic roles (binary predicates), the universal concept and the bottom concept, denoted by >
and ⊥, respectively, and a set of constants. The universal concept denotes the set of all individuals
(the set of all pairs of individuals), while the bottom concept indicates the empty set.

The set of role descriptions of L is inductively defined as:

• An atomic role is a role description;
• If S is a role description, then the following is also a role description:
S− (the inverse of S).

The set of concept descriptions of L is inductively defined as:

• An atomic concept and the universal and bottom concepts are concept descriptions;
• If a1, ..., an are constants, then {a1, ..., an} is a concept description;
• If C and D are concept descriptions and S is a role description, then the following expressions
are concept descriptions:
¬C (complement) ∃S.C (full existential quantification)
C uD (intersection) ≤ nS (at-most restriction)
C tD (union) ≥ nS (at-least restriction)

In this work, we use the following terminological axioms (where e and f are both concept descrip-
tions):

• inclusion axioms of the form e v f
• disjunction axioms of the form e | f

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

538 · Eveline R. Sacramento et al

2.2 Rule-based Mapping Formalism

Let F be a set of function symbols, P be a set of atomic concepts and atomic roles, and V be a set of
variables. A constant is a 0-ary function symbol. The set of terms over F and V is recursively defined
as follows:
(i) each variable v in V is a term;
(ii) each constant c in F is a term;
(iii) if t1, ..., tn are terms, and f is an n-ary function symbol in F, then f(t1, ..., tn) is a term.

An atom over F, P and V is an expression of the form c(t), where c is a atomic concept and t is a
term, or of the form p(t, u), where p is an atomic role and t and u are terms.

Let OS and OT be two ontologies and R be a rule language. In our work, the relation between
a concept of OS and a concept of OT (called concept mapping and explained latter on) is specified
through a set of mapping rules of the form

β1(w1)⇐ α1(v1), ..., αm(vm), where:

—α1(v1), ..., αm(vm), called the body of the mapping rule, is an atom or an atom conjunction, where
αi(vi) is an atom whose atomic concept or atomic role occurs in the source ontology OS ;

—β1(w1), called the head of the mapping rule, is an atom whose atomic concept or atomic role occurs
in the target ontology OT .

This rule-based formalism supports Skolem functions [Hull and Yoshikawa 1990] for the creation of
new object identifiers of classes in OT from one or more properties of OS . In our work, the Skolem
functions are simply used as URIref generators. So, these mapping rules allow the construction of
URIrefs for new objects in OT as terms of the form f(t1, ..., tn), where f is an n-ary function symbol
and t1, ..., tn is a sequence of terms of OS . Indeed, heterogeneous mappings [Ghidini and Serafini
2006], which use Skolem functions, are necessary to express the semantic relationships between two
ontologies, when, for example, the information represented as a class in the former is represented as
an object property in the latter, or vice versa.

2.3 Extralite Schemas

In this paper, we consider the family of extralite ontologies (or extralite schemas [Leme et al. 2009]).
Using OWL jargon, an extralite ontology includes the definition of classes, datatype properties and
object properties, and admits domain and range constraints, minCardinality and maxCardinality con-
straints, and subset and disjointness constraints with the usual meaning. Formally, an extralite
ontology is a pair s = (A, C) such that:

• A is an alphabet, called the vocabulary of s, whose atomic concepts and atomic roles are called
the classes and properties of s, respectively.

• C is a set of formulas, called the constraints of s, which must be one of the forms
• Domain Constraint : ∃P v D (property P has domain D)
• Range Constraint : ∃P− v R (property P has range R)
• minCardinality constraint : D v (≥ kP), where D is the domain of P
(property P maps each individual in its domain D to at least k distinct individuals)
• maxCardinality constraint : D v (≤ kP), where D is the domain of P
(property P maps each individual in its domain D to at most k distinct individuals)
• Subset Constraint : C v D (class C is a subclass of class D)
• Disjointness Constraint : C | D (class C is disjoint with class D)

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 539

The minCardinality and maxCardinality constraints are collectively called cardinality constraints,
and the subset and disjointness constraints are called class constraints. As property characteristic,
the dialect allows just the InverseFunctionalProperty, which captures simple keys. From now on, we
will use the terms class, property and vocabulary interchangeably with atomic concept, atomic role
and alphabet, respectively.

Finally, for later reference, we define that a class c dominates a class d in a schema s [Leme 2009]
iff c = d, or there is a sequence (c1, c2, ..., cn) such that c = c1, d = cn and cn−1 subsumes cn and, for
each i ∈ [1, n− 2), either

• ci+1 and ci are classes and ci + 1 is declared as a subclass of ci in s, or
• ci+1 is an object property in s whose domain is ci, or
• ci is an object property in s whose range is ci+1.

We also say that π = (c1, c2, ..., cn) is a dominance path [Leme 2009] from c to d and θ =
(pk1, pk2, ..., pkn), the subsequence of π consisting of the object properties that occur in π, is the
property path corresponding to π (note that θ may be the empty sequence).

2.4 Example

This section presents an example, adapted from [Casanova et al. 2009], of a virtual store mediating
access to online booksellers. We assume that the user provides a domain ontology about virtual stores,
and that we have two local ontologies modeling the Amazon and eBay virtual stores (see Figure3).

Fig. 3: Domain Ontology and Local Ontologies

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

540 · Eveline R. Sacramento et al

We use the namespace prefix "s:" to refer to the vocabulary of Sales domain ontology. Figure
4 presents some constraints of the domain ontology: the first column shows the domain and range
constraints; the second column, the cardinality constraints; and the third one, the class constraints.

We use the namespace prefixes "a:" and "e:" to refer to the vocabularies of Amazon and eBay
local ontologies, respectively. Figures 5 and 6 formalize their constraints. Moreover, although not
indicated, we assume that:

• In Figure 5, all properties, except a:publisher, a:rec and a:name have maxCardinality equal to
1, that is, they are single-valued; properties a:title, a:isbn and a:name are inverse functional, that
is, they constitute simple keys to classes a:Product, a:Book and a:Publ, respectively.
• In Figure 6, all properties have maxCardinality equal to 1; and properties e:name and e:title
are inverse functional of classes e:Seller and e:Product, respectively.

∃ s:title v s:Product s:Product v (= 1 s:title) s:Book v s:Product
∃ s:title− v string s:Book v (≥ 1 s:pub) s:Music v s:Product
∃ s:pub v s:Book s:Music v (= 1 s:recorder)
∃ s:pub− v s:Publ ...

Fig. 4: Formal definition of (some of) the constraints of the Sales domain ontology

∃ a:title v a:Product a:Product v (= 1 a:title) a:Book v a:Product
∃ a:title− v string a:Product v (= 1 a:price) a:Music v a:Product
... a:Product v (= 1 a:currency) a:Video v a:Product
∃ a:publisher v a:Book a:Book v (= 1 a:isbn) a:PC-HW v a:Product
∃ a:publisher− v a:Publ... a:Book v (≥ 2 a:publisher) a:Book | a:Music
∃ a:rec v a:Music a:Music v (≥ 1 a:rec) a:Book | a:Video
∃ a:rec− v a:Recorder a:Recorder v (= 1 a:recname) a:Book | a:PC-HW
... a:Publ v (≥ 3 a:name) a:Music | a:Video
∃ a:name v a:Publ a:Publ v (= 1 a:address) a:Music | a:PC-HW
∃ a:name− v string... a:Video | a:PC-HW

Fig. 5: Formal definition of (some of) the constraints of the Amazon local ontology

∃ e:name v e:Seller e:Seller v (= 1 e:name)
∃ e:name− v string... e:Offer v (= 1 e:qty) ...
∃ e:title v e:Product e:Product v (= 1 e:type) (no class constraints)
∃ e:title− v string e:Product v (= 1 e:title)
∃ e:publisher v e:Product ...
∃ e:publisher− v string... e:Product v (≥ 1 e:publisher)

Fig. 6: Formal definition of (some of) the constraints of the eBay local ontology

3. ONTOLOGY MATCHING

3.1 Vocabulary Matching

Let OS and OT be two ontologies, and VS and VT be their respective vocabularies. Let CS and CT

be the sets of classes, and PS and PT be the sets of datatype or object properties in VS and VT ,
respectively. We extend the notion of a contextualized vocabulary matching previously defined in
Leme et al. [Leme et al. 2009]. We consider the definition of restrictions over the domains, that is,
we deal with other kinds of context besides classes and subclasses.

A vocabulary matching from a source ontology OS to a target ontology OT is represented by a finite
set S of sextuples (v1, e1, r1, v2, e2, r2) such that:

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 541

—If (v1, v2) ∈ CS × CT , then e1 and e2 are the top class >, and r1 and r2 are the restrictions of
classes v1 and v2, respectively;

—If (v1, v2) ∈ PS×PT , then e1 and e2 are classes in CS and CT , and r1 and r2 are their corresponding
restrictions, which are allowed only for datatype properties. Note that e1 and e2 must be subclasses
of the domains, the domains themselves, or restricted domains of properties v1 and v2, respectively.

In the first case, (v1,>, r1, v2,>, r2) indicates that any individual x of v1 that satisfies r1 will
be reinterpreted as an individual of v2 and, furthermore, x will satisfy r2. In the second case,
(v1, e1, r1, v2, e2, r2) indicates that any triple (x, v1, a) such that x is an individual of e1 that sat-
isfies r1, v1 is a property of e1, and a is the value of v1, will be reinterpreted as a triple (x, v2, a) if x
is an individual of e2 that satisfies r2, v2 is a property of e2, and a is the value of v2.

Informally, a class restriction r is a numeric or a string equality comparison expression that defines
a domain subset. Whenever possible, we will use the informal notation "S = c", where S is an atomic
role and c is a constant, to denote restrictions. Formally, a restriction is either the top concept > or
an expression of the form ∃S.{c}.

If (v1, e1, r1, v2, e2, r2) ∈ S, we say that S matches v1 with v2 in the context of (e1, r1) and (e2, r2),
respectively; (ei, ri) is the context of vi; and (vi, ei, ri) is a contextualized concept, for i = 1, 2. We use
the term context as in [Köpcke and Rahm 2010].

We also say that a class v1 in OS belongs to the same Semantic Partition(SP) that a class v2 in
OT , according to the following rules:

• If (v1,>, r1, v2,>, r2) ∈ S, then v1 and v2 belong to the same SP.
• If (v1,>, r1, v2’ ,>, r2) ∈ S and v2’ is a subclass of v2, then v1 and v2 belong to the same SP.
• If (v1,>, r1, v2’ ,>, r2) ∈ S and (v2’ u r2 v v2 u r2), then v1 and v2 belong to the same SP.

Finally, we say that a class v1 is semantically related with a class v2 represented by (v1 vsr v2),
iff v1 and v2 belong to the same SP. Otherwise, we say that v1 is not semantically related with v2,
represented by (v1 6vsr v2).

In Table I, line 3 indicates that classes a:Book and s:Book match (a class correspondence); and
line 1 indicates that properties a:title and s:title match (a property correspondence) in the context of
classes a:Book and s:Book, respectively. It means that property a:title of an instance of a:Book has
the same value as property s:title of a corresponding instance of s:Book. Note that, in both examples,
the columns of class restrictions are the top class >, as a:Book and s:Book are the domains of the
properties a:title and s:title, respectively. Line 9 indicates that properties a:recname and s:recorder
match, although their respective contexts (a:Recorder and s:Music) do not match, i.e., they are not
semantically related, as they belong to different semantic partitions. This last example illustrates
a case that needs a special matching condition: a path correspondence used to correctly relate the
corresponding instances. As we will see in the next section, all of these correspondences can be
validated or adjusted in the post-matching step.

In Table II, lines 1 and 2 indicate that properties e:title and s:title match, and also that the domain
e:Product, restricted by a string comparison operation (e:type = ‘book’), matches the domain s:Book.
These examples illustrate domain restrictions.

3.2 Post-Matching

As we said before, even though the focus of this paper is not ontology matching, we are aware that
the correspondences obtained using an existing vocabulary matching tool can be often incomplete,
and sometimes even incorrect [Cappellari et al. 2010]. Therefore, a user interaction may be needed
after the vocabulary matching. This interaction constitutes our post-matching step, which aims to

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

542 · Eveline R. Sacramento et al

Table I: Vocabulary matching between the Amazon local ontology and the Sales domain ontology

Amazon Local Ontology Sales Domain Ontology
v1 e1 r1 v2 e2 r2

1 a:title a:Book > s:title s:Book >
2 a:publisher a:Book > s:pub s:Book >
3 a:Book > > s:Book > >
4 a:title a:Music > s:title s:Music >
5 a:Music > > s:Music > >
6 a:name a:Publ > s:name s:Publ >
7 a:address a:Publ > s:address s:Publ >
8 a:Publ > > s:Publ > >
9 a:recname a:Recorder > s:recorder s:Music >

Table II: Vocabulary matching between the eBay local ontology and the Sales domain ontology

eBay Local Ontology Sales Domain Ontology
v1 e1 r1 v2 e2 r2

1 e:title e:Product e:type=´book´ s:title s:Book >
2 e:Product > e:type=´book´ s:Book > >
3 e:title e:Product e:type=´music´ s:title s:Music >
4 e:Product > e:type=´music´ s:Music > >
5 e:publisher e:Product e:type=´book´ s:name s:Publ >

validate the correspondences obtained in the vocabulary matching step. This validation consists in:
(i) to add correspondences that are missing; (ii) to remove correspondences that are wrong; and (iii)
to adjust some property correspondences, when their respective contexts do not match. Intuitively,
these adjusted correspondences reflect situations that cannot be captured by traditional matching
algorithms, when the contexts of the properties are not semantically related, because they belong to
different semantic partitions, as we explained before. Our approach allows automatically identifying
such property correspondences, and it also allows finding one or more property paths that can be used
to turn them into right path correspondences.

A correspondence from a source ontology OS to a target ontology OT can also be represented by an
adjusted sextuple ("p1; v1", "c1; e1", r1, "p2; v2", "c2; e2", r2) resulting from the post-matching step,
such that:

—If (v1, v2) ∈ PS ×PT , then e1 and e2 are classes in CS and CT , respectively; c1 is a class in CS such
that there is a dominance path π from c1 to e1 in OS ; p1 is the property path θ corresponding to
π; and r1 and r2 are the restrictions of classes e1 and e2, respectively;

—If (v1, v2) ∈ PS ×PT , then e1 and e2 are classes in CS and CT , respectively; c2 is a class in CT such
that there is a dominance path π from c2 to e2 in OT ; p2 is the property path θ corresponding to
π; and r1 and r2 are the restrictions of classes e1 and e2, respectively;

—If (v1, v2) ∈ PS × PT , then e1 and e2 are classes in CS and CT , respectively; c1 and c2 are classes
in CS and CT , respectively, such that there is a dominance path π from c1 to e1, in OS , and also
there is a dominance path π’ from c2 to e2, in OT ; p1 is the property path θ corresponding to π
and p2 is the property path θ’ corresponding to π’; and r1 and r2 are the restrictions of classes e1
and e2, respectively.

Note that p1 or p2 (but not both) may be empty. In order to illustrate our post-matching step,
consider the examples (a) and (b) described below.

(a) Let be the following adjusted sextuple, derived from the sextuple originally presented in line 9
of Table I:

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 543

("a:rec; a:recname", "a:Music; a:Recorder" , >, s:recorder, s:Music, >)

This means that, although the contexts e1 = a:Recorder and e2 = s:Music are not semantically
related, there is a property path p1 = a:rec from the class c1 = a:Music, which is semantically related
with e2 = s:Music, to the class e1 = a:Recorder. Such path allows correctly relate the instances of the
properties v1 = a:recname (that we can get through p1) and v2 = s:recorder.

(b) Let be the following adjusted sextuple, derived from the sextuple originally presented in line 5
of Table II:

(e:publisher, e:Product, e:type=‘book’, "s:pub; s:name", "s:Book; s:Publ", >)

This means that, although the contexts (e1, r1) = (e:Product,e:type=‘book’) and e2 = s:Publ are
not semantically related, there is a property path p2 = s:pub from the class c2 = s:Book, which is
semantically related with the restricted class (e:Product u ∃e:type.‘book ’), to the class e2 = s:Publ.
Such path allows correctly relate the instances of the properties v1 = e:publisher and v2 = s:name
(that we can get through p2).

4. GENERATION OF APPLICATION ONTOLOGIES AND MAPPINGS

In general, a concept mapping from a source ontology OS into a target ontology OT is a set of
expressions that define concepts of OT in terms of concepts of OS in such a way that the concepts
semantically correspond to each other [Leme et al. 2009]. In this section, we first discuss how to
generate a concept mapping from a contextualized vocabulary matching between each local ontology
and the domain ontology, using a Datalog variant with OID-invention [Hull and Yoshikawa 1990],
and also how to obtain a set of LO-DO mappings. Then we show how to generate the application
ontologies and their mappings (mediated mappings and LO-AO mappings).

Note that our process of mapping generation was based in an existing concept mapping process
described in Leme et al. [Leme et al. 2009]. However, their work did not allow generating all kinds
of mapping rules that we generate, as we have a post-matching step that allows adjusting the set of
correspondences automatically obtained.

4.1 Generating the LO-DO Mapping Rules

We show how a set of mapping rules are derived from a contextualized vocabulary matching. Then,
we illustrate the definitions with a concrete example.

Let LO be a local ontology and DO be a domain ontology, whose vocabularies are identified by
the namespace prefixes "lo:" and "do:", respectively. For each sextuple in S, the set M of LO-DO
mapping rules derived from S contains the following rules (we use the namespace prefix to clarify from
which ontology the element belongs to):

Case 1. If lo : v1 and do : v2 are classes and do : r2 is the top class >, then M contains the rules:

do : v2(x)⇐ lo : v1(x), lo : r1(x)
do : s(x)⇐ lo : v1(x), lo : r1(x), for each superclass s of do : v2

Case 2. If lo : v1 and do : v2 are classes and do : r2 is a restriction of the form do : p2 = do : c2,
where do : p2 is a datatype property and do : c2 is a constant, then M contains the rules:

do : v2(x)⇐ lo : v1(x), lo : r1(x)
do : s(x)⇐ lo : v1(x), lo : r1(x), for each superclass s of do : v2

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

544 · Eveline R. Sacramento et al

do : p2(x, do : c2)⇐ lo : v1(x), lo : r1(x)

Case 3. If lo : v1 and do : v2 both are datatype properties (or both are object properties) such
that the classes lo : e1 and do : e2 are semantically related, i.e., (lo : e1 vsr do : e2), then M contains
a single rule:

do : v2(x, y)⇐ lo : v1(x, y), lo : e1(x), lo : r1(x)

Case 4. If lo : v1 and do : v2 both are datatype properties (or both are object properties) and
there is a property path θ = lo : pk1(x, x1), lo : pk2(x1, x2), ..., lo : pkm(xm−1, z) in the local ontology
LO, then M contains a single rule:

do : v2(x, y)⇐ lo : pk1(x, x1), lo : pk2(x1, x2), ..., lo : pkm(xm−1, z), lo : v1(z, y), lo : e1(z), lo :
r1(z)

Case 5. If lo : v1 and do : v2 both are datatype properties (or both are object properties) and there
is a property path θ = do : pk1, ..., do : pkn, do : op2 in the domain ontology DO, then M contains the
rules:

do : v2(f(y), y)⇐ lo : v1(x, y), lo : e1(x), lo : r1(x), where do : v2 is a datatype property
do : e2(f(y))⇐ lo : v1(x, y), lo : e1(x), lo : r1(x), where do : e2 is a class
do : op2(x, f(y))⇐ lo : v1(x, y), lo : e1(x), lo : r1(x), where do : op2 is an object property

Case 6. If lo : v1 and do : v2 both are datatype properties (or both are object properties) and there
is a property path θ in the local ontology LO and also a property path θ’ in the domain ontology DO
(as this case is a combination of Cases 4 and 5), then M contains the rules:

do : v2(f(y), y) ⇐ lo : pk1(x, x1), lo : pk2(x1, x2), ..., lo : pkm(xm−1, z), lo : v1(z, y), lo :
e1(z), lo : r1(z), where do : v2 is a datatype property

do : e2(f(y))⇐ lo : pk1(x, x1), lo : pk2(x1, x2), ..., lo : pkm(xm−1, z), lo : v1(z, y), lo : e1(z), lo :
r1(z), where do : e2 is a class

do : op2(x, f(y)) ⇐ lo : pk1(x, x1), lo : pk2(x1, x2), ..., lo : pkm(xm−1, z), lo : v1(z, y), lo :
e1(z), lo : r1(z), where do : op2 is an object property

The strategy for generating the mapping rules is deterministic, follows the order of the matching
cases, and always stops, since the number of sextuples in S is finite. Figures 7 and 8 show the LO-DO
rules induced by the vocabulary matching of Tables I and II, respectively.

#1: s : Book(b)⇐ a : Book(b)

#2: s : Product(b)⇐ a : Book(b)
#3: s : Music(m)⇐ a : Music(m)
#4: s : Product(m)⇐ a : Music(m)

#5: s : Publ(p)⇐ a : Publ(p)

#6: s : title(b, t)⇐ a : title(b, t), a : Book(b)
#7: s : pub(b, p)⇐ a : publisher(b, p), a : Book(b)

#8: s : title(m, t)⇐ a : title(m, t), a : Music(m)
#9: s : name(p, n)⇐ a : name(p, n), a : Publ(p)
#10: s : address(p, a)⇐ a : address(p, a), a : Publ(p)

#11: s : recorder(m, n)⇐ a : rec(m, r), a : recname(r, n), a : Recorder(r)

Fig. 7: Mapping rules from the Amazon local ontology to the Sales domain ontology

The rest of this section presents examples illustrating the matching cases.

Example 1 - Case 1. Consider the sextuple in line 2 of Table II

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 545

#1: s : Book(p)⇐ e : Product(p), e : type(p) = ′book′

#2: s : Product(p)⇐ e : Product(p), e : type(p) = ′book′

#3: s : Music(p)⇐ e : Product(p), e : type(p) = ′music′

#4: s : Product(p)⇐ e : Product(p), e : type(p) = ′music′

#5: s : title(p, t)⇐ e : title(p, t), e : Product(p), e : type(p) = ′book′

#6: s : title(p, t)⇐ e : title(p, t), e : Product(p), e : type(p) = ′music′

#7: s : Publ(fpubl(n))⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

#8: s : name(fpubl(n), n)⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

#9: s : pub(b, fpubl(n))⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

Fig. 8: Mapping rules from the eBay local ontology to the Sales domain ontology

(e:Product, >, e:type =‘book’, s:Book, >, >)

This sextuple indicates that e:Product, restricted by a string comparison operation (e:type =´book´),
matches s:Book. This matching induces the following rule from e:Product to s:Book (according to the
type of the product in e:type), shown in line 1 of Figure 8:

s : Book(p)⇐ e : Product(p), e : type(p) = ′book′

Also, for each superclass of s:Book, an additional mapping rule is generated. In this case, as s:Book
has only one superclass, s:Product, we have the following rule, shown in line 2 of Figure 8:

s : Product(p)⇐ e : Product(p), e : type(p) = ′book′

Example 2 - Case 3. Consider the sextuple in line 1 of Table II:

(e:title, e:Product, e:type =‘book’, s:title, s:Book, >)

This sextuple indicates that properties e:title and s:title match in the restricted context of class
e:Product and class s:Book, respectively (as explained in Example 1). In this example, s:title belongs
to the superclass s:Product. This matching induces the following rule from e:title to s:title (according
to the type of the product in e:type), shown in line 5 of Figure 8:

s : title(p, t)⇐ e : title(p, t), e : Product(p), e : type(p) = ′book′

Example 3 - Case 4. Consider the sextuple in line 9 of Table I:

(a:recname, a:Recorder, >, s:recorder, s:Music, >)

This sextuple indicates that properties a:recname and s:recorder match, although their respective
contexts, a:Recorder and s:Music, do not match. So, we cannot directly map a:recname into s:recorder.
As we explained before, this sextuple was adjusted in the post-matching step:

("a:rec; a:recname", "a:Music; a:Recorder", >, s:recorder, s:Music, >)

The following rule can be derived from this adjusted sextuple, and it is shown in line 11 of Figure
7:

s : recorder(m,n)⇐ a : rec(m, r), a : recname(r, n), a : Recorder(r)

The body of this rule reflects a path defined from a:Music, the class that matches the context
s:Music of s:recorder, to the class a:Recorder, the context of a:recname. Also, observing the body
of the rule, we have that: (1) m stands for an instance of a:Music, which the object property a:rec

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

546 · Eveline R. Sacramento et al

associates with an instance r of a:Recorder, and (2) the datatype property a:recname in turn associates
r with a string n. Now, observing the head of the rule, the datatype property s:recorder associates
m, an instance of a:Music, reinterpreted as an instance of s:Music (the domain of s:recorder) with n.
This reinterpretation is consistent, since line 5 of Table I indicates that a:Music matches s:Music.

Example 4 - Case 5. Consider the sextuple in line 5 of Table II:

(e:publisher, e:Product, e:type=‘book’, s:name, s:Publ, >)

This sextuple indicates that properties e:publisher and s:name match, although their respective
contexts, e:Product and s:Publ, do not match. So, we cannot directly map e:publisher into s:name.
As we explained before, this sextuple was adjusted in the post-matching step:

(e:publisher, e:Product, e:type=‘book’, "s:pub; s:name", "s:Book; s:Publ", >)

The following rule can be derived from this adjusted sextuple, and it is shown in line 8 of Figure 8.

s : name(fpubl(n), n)⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

Then, two other rules can be automatically deduced from the vocabulary matching and from the
Sales domain ontology. These rules are shown in lines 7 and 9 of Figure 8. In these rules, fpubl is
an URIref generator function, and n is the value of the inverse functional property e:publisher of the
local ontology, passed as argument to f .

s : Publ(fpubl(n))⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

s : pub(b, fpubl(n))⇐ e : publisher(b, n), e : Product(b), e : type(b) = ′book′

4.2 Generating the Application Ontologies and their Mappings

Referring to Figure 2, let S be a contextualized vocabulary matching between a local ontology LO
and a domain ontology DO, and let M be the set of LO-DO mapping rules induced by S. In this
section, with the help of our running example, we illustrate how to use M and LO to automatically
generate: (1) the application ontology AO corresponding to LO; (2) a set of LO-AO mapping rules;
and (3) a set of mediated mapping rules between DO and AO.

Application Ontologies. The AO vocabulary consists of the classes and properties which are,
intuitively, just the subset of DO that matches LO, with the additional classes and properties of DO
used to define contexts in S. Furthermore, the constraints of AO are the translation of the constraints
of LO using the LO-AO mapping rules.

Figure 9 shows the Amazon and eBay application ontologies generated from their corresponding
local ontologies (see Figure 3), adopting the namespace prefixes "ap:" and "ep:" to refer to their
vocabularies, respectively. Figures 10 and 11 show some of the constraints obtained for the applica-
tion ontologies Amazon and eBay, respectively. Remember that the first column shows the domain
and range constraints; the second column, the cardinality constraints; and the third one, the class
constraints.

The constraints of the Amazon and the eBay application ontologies are obtained based on both the
LO-AO rules (introduced latter on) and on the constraints of the respective local ontologies, shown in
Figures 5 and 6. For example, the LO-AO rules for the eBay application ontology (introduced latter
on) define ep:Music and ep:Book as restrictions of ep:Product. As a consequence, we have the two
subset constraints and the disjointness constraint shown on the third column of Figure 11. Also note
that the eBay local ontology has neither these classes nor these constraints (see Figure 6).

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 547

Fig. 9: Application Ontologies

∃ ap:pub v ap:Book ap:Product v (= 1 ap:title) ap:Book v ap:Product
∃ s:pub− v ap:Publ ap:Book v (≥ 2 ap:pub) ap:Music v ap:Product
∃ ap:recorder v ap:Music ap:Music v (= 1 ap:recorder) ap:Book | ap:Music
∃ ap:recorder− v string ... ap:Publ v (≥ 3 ap:name) ...

Fig. 10: Formal definition of some constraints of the Amazon application ontology

∃ ep:pub v ep:Book ep:Product v (= 1 ep:title) ep:Book v ep:Product
∃ ep:pub− v ep:Publ ep:Book v (≥ 1 ap:pub) ep:Music v ep:Product
∃ ep:name v ep:Publ ep:Book | ep:Music
∃ ep:name− v string ...

Fig. 11: Formal definition of some constraints of the eBay application ontology

LO-AO mapping rules. Since, by construction, the vocabulary of an application ontology is just
a subset of the vocabulary of the DO, the LO-AO mapping rules are similar to the LO-DO mapping
rules, except for the namespace prefixes that must refer to the AO vocabulary. For example, the
LO-AO rules for the eBay application ontology include the following two rules, obtained from rules
#1 and #3 in Figure 8 by replacing "s:", the Sales domain ontology namespace, by "ep:", the eBay
application ontology namespace:

ep : Book(p)⇐ e : Product(p), e : type(p) = ′book′

ep : Music(p)⇐ e : Product(p), e : type(p) = ′music′

Mediated mapping rules. First observe that the contextualized vocabulary matching S may
have more than one sextuple for the same concept do : v2 of the domain ontology, which implies that
the process described in Section 4.1 may generate more than one rule for do : v2. Therefore, as a last
step in the construction of the concept mapping M , we collect together all rules for do : v2 as a single
rule with a disjunctive body (where a disjunction is a list of conjunctions separated by semi-colons).
For example, suppose that do : v2 is a class and the process generates the following rules:

do : v2(x)⇐ Bi[x], for i ∈ [1, n]

Then, we replace all such rules by a single rule of the form:

do : v2(x)⇐ B1[x]; ...;Bn[x]

and likewise, if do : v2 is a property.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

548 · Eveline R. Sacramento et al

Figures 12 and 13 show the rules generated from the rules presented in Figures 7 and 8, respectively,
using disjunction in the body of the rules.

from #2 and #4:
s : Product(p)⇐ a : Book(p); a : Music(p)

from #6 and #8:
s : title(p, t)⇐ (a : title(p, t), a : Book(p)); (a : title(p, t), a : Music(p))

Fig. 12: Mapping rules from the Amazon local ontology to the Sales domain ontology with disjunctive bodies

from #2 and #4:
s : Product(p)⇐ (e : Product(p), e : type(p, ′book′)); (e : Product(p), e : type(p, ′music′))
from #5 and #6:
s : title(p, t)⇐ (e : title(p, t), e : Product(p), e : type(p, ′book′)); (e : title(p, t), e : Product(p), e : type(p, ′music′))

Fig. 13: Mapping rules from the eBay local ontology to the Sales domain ontology with disjunctive bodies

The mediated mapping rules then follow directly from the LO-DO rules in disjunctive form and
from the LO-AO rules. Figure 14 shows the mediated mapping rules for our example. Finally, we
observe that the mediated mapping rules can be used for unfolding a query submitted over the domain
ontology into one or more sub-queries over the application ontologies [Vidal et al. 2009].

Class Mapping rules: Property Mapping rules:
s : Product⇐ ap : Product; ep : Product s : title⇐ ap : title; ep : title

s : Book ⇐ ap : Book; ep : Book s : name⇐ ap : name; ep : name
s : Music⇐ ap : Music; ep : Music s : pub⇐ ap : pub; ep : pub

... ...

Fig. 14: Some of the mediated mapping rules

5. RELATED WORK

Comprehensive surveys of ontology matching can be found in [Kalfoglou and Schorlemmer 2003; Eu-
zenat and Shvaiko 2007]. Rahm and Bernstein [Rahm and Bernstein 2001] survey schema matching,
and Bernstein and Melnik [Bernstein and Melnik 2007] list the requirements for model management
systems that support the matching process. Köpcke and Rahma [Köpcke and Rahm 2010] compara-
tively analyze eleven frameworks for entity matching. In general, schema matching techniques can be
classified as syntactic, semantic (or instance-based) and hybrid [Rahm and Bernstein 2001].

Melnik et al. [Melnik et al. 2002] describe syntactic techniques based on modeling the schemas
as graphs. Bilke and Naumann [Bilke and Naumann 2005] propose a semantic technique based on
an analysis of duplicated instances. Leme et al. [Leme et al. 2009] introduced the notion of a
contextualized vocabulary matching between a source ontology and a target ontology using a finite
set of quadruples as the specification model; and also proposed a semantic schema matching technique
based on similarity functions. Our strategy for generating application ontologies is based on the result
of an existing ontology matching process.

Few works address the problem of generating application ontologies. In the geospatial area, recent
research [Klien 2008; Lutz 2006] uses ontology-based architectures for enhancing the discovery and
retrieval of geographic information. In [Lutz 2006], for example, each feature type schema offered
via WFS is described by application concepts that are built from a shared vocabulary. However, in
his work, the application ontologies and the mappings are both manually computed by the service
providers.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

Towards Automatic Generation of Application Ontologies · 549

Casanova et al. [Casanova et al. 2009] address the problem of revising the constraints of a mediated
schema to accommodate the constraints of a new local schema, after the appropriated translation to a
common vocabulary. However, their work just considers homogeneous mappings between ontologies,
expressed in DL.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we first proposed a model for specifying ontology vocabulary matching, whose objective
is to describe correspondences between the concepts of the local ontologies and concepts of the domain
ontology. We then proposed a strategy for the automatic generation of the application ontologies,
considering a set of local ontologies, a domain ontology and the result of the matching between each
local ontology and the domain ontology. This strategy also enabled the automatic generation of
mappings between ontologies at the three levels. These mappings are used for unfolding a query
submitted over the domain ontology into one or more sub-queries expressed in terms of the data
sources.

We are now implementing the process of generation of the LO-DO mappings, and of generation of
the application ontologies and their corresponding mappings. We are also implementing the query
rewriting process between a source ontology and a target ontology using the LO-AO mappings.

As a future work, we intend to prove that a vocabulary matching which is structurally correct
induces a correct concept mapping, and that a correct concept mapping is also a consistent concept
mapping. Our proof will extend that of [Leme 2009] to accommodate our extended definition of
contextualized vocabulary matching and our increased set of induced rules.

REFERENCES

Bernstein, P. A. and Melnik, S. Model management 2.0: Manipulating richer mappings. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. Beijing, China, pp. 1–12, 2007.

Bilke, A. and Naumann, F. Schema matching using duplicates. In Proceedings of the International Conference on
Data Engineering. Tokyo, Japan, pp. 69–80, 2005.

Calvanese, D., Giacomo, G. D., andMaurizio Lenzerini, D. L., Poggi, A., and Rosati, R. MASTRO-I: Efficient
Integration of Relational Data through DL Ontologies. In Proceedings of the International Workshop on Description
Logic. Brixen-Bressanone, Italy, pp. 227–234, 2007.

Calvanese, D., Lenzerini, M., and Nardi, D. Description Logics for Conceptual Data Modeling. In J. Chomicki
and G. Saake (Eds.), Logics for Databases and Information Systems. Kluwer Academic Publishers, pp. 229–263,
1998.

Cappellari, P., Barbosa, D., and Atzeni, P. A framework for automatic schema mapping verification through
reasoning. In Proceedings of the International Workshop on Data Engineering meets the Semantic Web. Long Beach
CA, USA, pp. 245–250, 2010.

Casanova, M. A., Lauschner, T., Leme, L. A., Breitman, K. K., Furtado, A. L., and Vidal, V. M. A strategy
to revise the constraints of the mediated schema. In Proceedings of the International Conference on Conceptual
Modeling. Gramado, Brazil, pp. 265–279, 2009.

Euzenat, J. and Shvaiko, P. Ontology Matching. Springer-Verlag New York Inc, 2007.
Ghidini, C. and Serafini, L. Reconciling concepts and relations in heterogeneous ontologies. In Proceedings of the

European Semantic Web Conference. Budva, Montenegro, pp. 50–64, 2006.
Hull, R. and Yoshikawa, M. Ilog: Declarative creation and manipulation of object identifiers. In Proceedings of the

International Conference on Very Large Databases. Brisbane, Australia, pp. 455–468, 1990.
Kalfoglou, Y. and Schorlemmer, M. Ontology mapping: the state of the art. The Knowledge Engineering

Review 18 (1): 1–31, 2003.
Klien, E. Semantic Annotation of Geographic Information. Ph.D. thesis, University of Muenster, Germany, 2008.
Köpcke, H. and Rahm, E. Frameworks for entity matching: A comparison. Data & Knowledge Engineering 69 (2):
197–210, 2010.

Leme, L. A. P. P. Conceptual Schema Matching based on Similarity Heuristics. Ph.D. thesis, PUC - Rio, Brazil,
2009.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

550 · Eveline R. Sacramento et al

Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., and Furtado, A. L. Instance-based OWL schema
matching. In Proceedings of the International Conference on Enterprise Information Systems. Milan, Italy, pp.
14–26, 2009.

Lutz, M. Ontology-based discovery and composition of geographic information services. Ph.D. thesis, Institut für
Geoinformatik, Germany, 2006.

Melnik, S., Garcia-Molina, H., and Rahm, E. Similarity flooding: A versatile graph matching algorithm and its
application. In Proceedings of the International Conference on Data Engineering. San Jose, USA, pp. 117–128, 2002.

Rahm, E. and Bernstein, P. A. A survey of approaches to automatic schema matching. The VLDB Journal 10 (4):
334–350, 2001.

Vidal, V. M., Sacramento, E. R., Macêdo, J. A., and Casanova, M. A. An ontology-based framework for
geographic data integration. In Proceedings of the International Workshop on Semantic and Conceptual Issues in
Geographic Information Systems. Gramado, Brazil, pp. 337–346, 2009.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and Hübner, S.
Ontology-based integration of information - a survey of existing approaches. In Proceedings of the International
Workshop on Ontologies and Information Sharing. Seattle, USA, pp. 108–117, 2001.

Journal of Information and Data Management, Vol. 1, No. 3, October 2010.

