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Abstrat. Similarity searh in high-dimensional metri spaes is a key operation in many appliations, suh as
multimedia databases, image retrieval, objet reognition, and others. The high dimensionality of the data requires
speial index strutures to failitate the searh. A problem regarding the reation of suitable index strutures for high-
dimensional data is the relationship between the geometry of the data and the organization of an index struture. In
this paper, we study the performane of a new index struture, alled Divisive-Agglomerative Hierarhial Clustering
tree (DAHC-tree), whih redues the e�ets imposed by the above liability. DAHC-tree is onstruted by dividing and
grouping the data set into ompat lusters. We perform a rigorous experimental design and analyze the trade-o�s
involved in building suh an index struture. Additionally, we present extensive experiments omparing our method
against state-of-the-art of exat and approximate solutions. The onduted analysis and the reported omparative test
results demonstrate that our tehnique signi�antly improves the performane of similarity queries.

Categories and Subjet Desriptors: H.2.2 [Database Management℄: Physial Design�aess methods; H.3.1 [In-
formation Storage and Retrieval℄: Content Analysis and Indexing�indexing methods

Keywords: lustering methods, database indexing, metri aess methods, metri spaes, similarity searh

1. INTRODUCTION

Similarity searh in high-dimensional metri spaes is a subjet of interest for many researh om-

munities. For over two deades, signi�ant researh e�orts have been spent trying to improve its

performane. In spite of that, many issues are still onsidered open problems. A problem regarding

indexes for searh in high-dimensional spaes is the relationship between the data geometry and index

organization.

Most existing indexes are onstruted by partitioning a set of objets using distane-based riteria.

In order to keep the balane of the struture, the data set is divided into even sized parts, ignoring

the inherent grouping of data. In general, those tehniques follow two basi paradigms. One type of

methods produes disjoint partitions, but ignores the distribution properties of the data [Katayama

and Satoh 2001; Bustos and Navarro 2004; Xu et al. 2008; Chávez et al. 2008℄. The other type of

methods produes non-disjoint groups, whih greatly a�et the searh performane [Zezula et al. 1998;

Clarkson 1999; Goldstein and Ramakrishnan 2000; Chávez and Navarro 2003; Amato et al. 2003; Lin

et al. 2005; Cantone et al. 2005℄.

In this paper, we study the e�etiveness of a new index struture, alled Divisive-Agglomerative

Hierarhial Clustering tree (DAHC-tree), whih is onstruted by dividing and grouping the data

set into ompat lusters. It ombines the advantages of both disjoint and non-disjoint paradigms,

improving the searh results.

The performane laims on DAHC-tree are supported by a rigorous experimental design used both
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for exploring the parameter spae of the method and for omparing it with state-of-the-art solutions.

The onduted analysis and the reported omparative test results demonstrate that our approah

signi�antly improves the performane in proessing similarity queries.

The major ontributions of this paper are:

• First, we propose DAHC-tree, a new index struture whih performs very well for approximate

similarity searh in high-dimensional metri spaes.

• Seond, we study how the relationship between the geometry of the data and the organization of

an index struture may greatly a�et the searh performane.

• Third, we analyze the performane of DAHC-tree using a rigorous experimental design. Our results

show that DAHC-tree ahieves a high reall rate.

• Fourth, we evaluate the e�etiveness of DAHC-tree through a omparison with LSH (Loality

Sensitive Hashing) [Gionis et al. 1999℄, a ompeting index struture whih is urrently onsidered

the state-of-the-art in high-dimensional indexing.

• Finally, we assess the e�ieny of DAHC-tree by omparing it to several state-of-the-art indexes

for exat similarity searh in metri spaes.

A preliminary version of this work was presented at ACIVS 2008 [Roha et al. 2008℄. Here, we

introdue several innovations. First, we redesign the struture as an index, supporting the storage in

disk pages and the exeution of similarity queries. Additionally, we present new strategies for both

steps (agglomerative and divisive) of our approah. Finally, we report new experiments both for the

analysis of our method and for the omparison with other tehniques.

The remainder of this paper is organized as follows. Setion 2 introdues some basi onepts of

the similarity searh problems. Setion 3 desribes the related work. Setion 4 presents DAHC-tree

and shows how to apply it to approximate similarity searh. Setion 5 reports the results of our

experiments and ompares the performane of our approah with other methods. Finally, we o�er our

onlusions and disuss the limitations of DAHC-tree in Setion 6.

2. BASIC CONCEPTS

Traditional database systems [Ramakrishnan and Gehkre 2003; Elmasri and Navathe 2005℄ are able

to e�iently deal with strutured reords by using the exat math paradigm. However, omplex

data types, suh as multimedia data (audio, image, and video), biologial data (genomi and protein

sequenes), among others, annot be represented e�etively as strutured reords [Zezula et al. 2005℄.

In those ases, similarity searh [Jagadish et al. 1995℄ has been established as a fundamental par-

adigm. Essentially, the problem is to �nd, in a set of objets, those whih are the most similar to a

given query objet. The similarity between any pair of objets is omputed by some distane fun-

tion, being understood that low values of distane orrespond to high degrees of similarity [Patella

and Ciaia 2009℄.

The ommonest types of similarity queries inlude (1) range queries, where all the objets whose

distane to the query does not exeed a threshold are requested; and (2) k-nearest neighbors (k-NN)

queries, where a spei�ed number k of objets, whih are losest to the query are requested [Zezula

et al. 2005℄.

Several index strutures have been proposed to speed up similarity queries [Gaede and Günther

1998; Chávez et al. 2001; Almeida et al. 2010℄. They an be broadly lassi�ed, depending on their

�eld of appliability, as multi-dimensional (or spatial) and metri aess methods, where the former

only applies when the feature spae is a vetor spae [Patella and Ciaia 2008℄.

Empirial studies, however, have pointed out that those approahes are not e�ient when applied

to high-dimensional spaes [Weber et al. 1998; Hinneburg et al. 2000℄. In suh ases, almost the entire

index struture is aessed by a single query.
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In order to aelerate the searh, it is usual to o�er a quality/time trade-o�: for saving searh time,

it is aepted a degradation in the quality of the result. This is the goal of approximate similarity

searh [Amato and Savino 2008℄.

Approahes to approximate similarity searh an be broadly lassi�ed in methods that exploit spae

transformations and methods that redue the amount of data to be aessed [Zezula et al. 2005℄. In

the �rst ategory, approximation is ahieved by hanging the objet representation and/or distane

funtion with the objetive of reduing searh ost [Faloutsos and Lin 1995; Gionis et al. 1999; Valle

et al. 2008; Weber and Böhm 2000℄. In the seond ategory, strategies omit parts of the dataset that

are not likely to ontain quali�ed objets [Arya et al. 1998; Bennett et al. 1999; Li et al. 2002; Roha

et al. 2008℄.

Many transformation tehniques need objets to be represented as vetors and annot be diretly

applied to generi metri spaes. In those ases, a natural approah is to embed the feature spae into

a vetor spae, so that the distanes of the embedded objets approximate the atual distanes [Hjal-

tason and Samet 2003℄. Reent studies, however, have shown that using suh embedding over high-

dimensional metri spaes is sometimes not very e�etive, inurring in a high approximation error, so

that pratially all distane information is lost [Khot and Naor 2005℄.

On the other hand, tehniques that redue the amount of data examined aim at improving per-

formane by aessing and analyzing less data than is tehnially needed. State-of-the-art indexes

are onstruted based on partitioning a set of objets using distane-based riteria. In general, those

tehniques follow two basi paradigms: disjoint or non-disjoint. The former partitions the data set

into disjoint lusters, but ignores the distribution properties of the data [Katayama and Satoh 2001;

Bustos and Navarro 2004; Xu et al. 2008; Chávez et al. 2008℄. The latter produes non-disjoint

groups, whih greatly a�et the searh performane [Zezula et al. 1998; Clarkson 1999; Goldstein and

Ramakrishnan 2000; Chávez and Navarro 2003; Amato et al. 2003; Lin et al. 2005; Cantone et al.

2005℄. In order to keep the balane of the struture, they divide the data set into even sized parts,

ignoring the inherent grouping of data.

3. RELATED WORK

In this work, we are interested in approximate algorithms, whih relax the ondition of delivering the

exat solution. A survey on tehniques for approximate similarity searh is presented in [Patella and

Ciaia 2008; 2009℄. It proposes a lassi�ation sheme for existing approahes, onsidering the most

relevant harateristis of them: type of data (metri or vetor spaes), error metris (hanging spae

or reduing omparisons), quality guarantees (none, deterministi or probabilisti parametri/non-

parametri), and user interation (stati or interative).

Three di�erent algorithms to solve approximate k-NN queries with the M-tree [Ciaia et al. 1997℄

are presented in [Zezula et al. 1998℄. The �rst one redues the urrent searhing radius of the k-NN

query through relative distane errors. Another tehnique employs the distane distribution to stop

the searh when the probability of �nding a better result does not exeed an user-spei�ed threshold.

The third tehnique simply interrupts the searh when the improvement in the result set falls below

a threshold.

A data struture alled M(S,Q) to answer nearest neighbor queries is proposed in [Clarkson 1999℄.

It requires a training data set Q of objets, taken to be representative of typial query objets. This

data struture may fail to return a orret answer, but the failure probability an be arbitrarily small

at the ost of inreasing the query time and spae requirements for the index.

The P-Sphere tree [Goldstein and Ramakrishnan 2000℄ is a two-level index struture for approximate

1-NN searh. In order to �nd the nearest neighbor of the query objet, the partition losest to the

query objet is aessed. The query is solved through a sequential san of objets ontained in suh

partition.

The approah desribed in [Chávez and Navarro 2003℄ is a probabilisti framework based on streth-
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ing the triangle inequality. The idea is general, but the authors applied it to pivot-based searhing

algorithms. Their tehnique allows for the redution of the searh radius by using the (inverse of the)

distane distribution so as to provide a probabilisti guarantee on the approximate result.

In [Lin et al. 2005℄, several tehniques are presented to perform approximate searhes in high-

dimensional spaes using R-tree-like strutures [Guttman 1984℄. Basially, reognizing the fat that

the di�ult task in k-NN searhing is to guarantee the orretness of the result, the authors propose

several heuristis for aggressively pruning partitions. Two of suh heuristis use Monte Carlo simu-

lation to estimate the probability of �nding a better result in a given partition, while the remaining

three strategies estimate suh probability by using distane bounds for the hyper-retangular region

assoiated to eah partition. Partitions leading to a probability lower than an user-spei�ed threshold

are pruned from the searh.

The method presented in [Chávez et al. 2008℄ performs similarity queries by searhing for objets

that an give enough positive proofs to inlude them in a list of andidates. This proess is the reverse

of that adopted in many existing indexes, whih attempt to �nd a proof to rejet objets from the

andidate list. The algorithmi idea is quite simple and works as a modi�ation of the basi pivot-

based LAESA sequential algorithm [Mió et al. 1994℄. For eah objet in the data set the pivots are

sorted from nearest to farthest; the same is performed for the query. Then, objets in the data set

are sorted for inreasing similarity of their sorted lists of pivots to the query objet. Finally, only an

user-spei�ed fration of objets is examined.

Loality Sensitive Hashing (LSH) [Gionis et al. 1999℄ is urrently the most popular high-dimensional

indexing method. Unlike most other index strutures, the algorithmi idea behind LSH is not based on

a tree struture, but on hashing the data set into bukets. The hosen hash funtions are onstruted

in order to guarantee that very lose objets oinide in the same buket with muh higher likelihood

than those far apart.

One major bene�t of LSH is the simpliity of its algorithmi idea. In the LSH, the objets are

represented as vetors. Eah vetor is projeted onto a set of k random lines through the searh

spae. The lines are partitioned into �xed-sized intervals (determined by a radius R) and eah of the

intervals is named by a symbol. Projeting to k lines gives k symbols, whih are then onatenated

to a word of length k. These words are built over an alphabet, whose ardinality is de�ned by the

number of partition intervals, and form a kind of loality sensitive �ngerprint. The smaller the radius

R, the more intervals are reated and, hene, the more symbols the alphabet ontains.

In order to e�iently searh for those vetors, they are hashed via a standard hash funtion into a

hash table. Sine the partitions do not overlap and the likelihood of separating two lose neighbors also

inreases with �ngerprint length k, it needs several suh hash tables (parameter L in LSH notation)

to guarantee a ertain probability in reall.

During query proessing with LSH, the query vetor q needs to look up the appropriate bukets for

all L hash tables. Therefore, q is projeted to all k lines for eah individual table and the result is

onatenated to a k length �ngerprint, whih then referenes the buket in the hash table that must be

read from disk. At this point, a sequential san is performed over all andidate vetors referened in

this buket, and those qualifying for the query are returned. After all L hash tables have been looked

up this way, all vetors in the result set are sorted aording to their distanes to q and returned.

Di�erent from all of the previous tehniques, DAHC-tree does not divide the data set into disjoint

or non-disjoint groups. Instead, it is an index struture that ombines the advantages of both those

strategies. Moreover, DAHC-tree splits the data set into ompat sets by respeting its distribution,

not a prede�ned size for them.

4. THE DAHC-TREE

Traditional index strutures based on disjoint partitioning approahes use early termination strategies

whih stop the similarity searh before its natural (exat) end. It is generally proessed by �rst
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identifying the partition to whih the query objet belongs. This is usually obtained by traversing

the index struture using partitions whose referene objet is losest to the query objet. One the

above partition is identi�ed, a sequential san is performed, and objets qualifying for the query are

returned.

In ontrast, the tehniques based on non-disjoint groups usually employ relaxed branhing strategies

in order to avoid aessing data that are not likely to ontain quali�ed objets for the query. For this,

the approximate similarity searh algorithm is performed by visiting the groups in inreasing order of

distane from their referene objets to the query objet. The algorithm terminates when the distane

from the referene objet of the urrent group to the query objet satis�es a given stop ondition.

If the objets in the data set are uniformly distributed, there exists a high probability of the query

region intersets several lusters and, hene, a lot of quali�ed objets annot be returned. In order to

larify the above situation, look at Fig. 1, in whih a range query (gray region) using the query objet

q and a range r is posed. The irumferenes bound three lusters c0, c1, and c2. The referene objet

of eah luster is denoted by the points p0, p1, and p2, respetively.

PSfrag replaements

q
r

p0

p1

p2
c0

c1

c2

(a) Disjoint partitions.

PSfrag replaements

q
r

p0

p1

p2

c0

c1

c2

(b) Non-disjoint partitions.

Fig. 1. E�ets of the partitioning paradigms in a data set with an uniform distribution.

Fig. 1(a) illustrates the e�ets of the use of disjoint partitions. In this ase, the query objet q is

losest to the referene objet p1, thus only objets of the partition c1 that are overed by the region

of the query response are returned. Note that objets belonging to the partition c0 and whih also

qualify for the query annot be returned. However, if the query range r is small enough, the whole

query an be found in a single partition.

We show the e�ets of non-disjoint partitioning methods in the Fig. 1(b). In this �gure, the query

objet q is losest to the referene objet p1, thus the group c1 is the �rst to be visited. Next, the

algorithm may analyze the groups c0 and c2, respetively. If the stopping riterion is rather relaxed,

all the three groups c0, c1, and c2 an be aessed. On the other hand, when a more relaxed stopping

ondition is used, many quali�ed objets an be rejeted. Therefore, it is di�ult to de�ne a suitable

stopping riteria in order to guarantee a good quality/time trade-o�.

When the objets in the data set are sparsely distributed, both disjoint and non-disjoint paradigms

may produe tight lusters. Nevertheless, the use of �xed-sized partitions in order to maintain the

balane of those strutures may divide inherent grouping of data, as illustrated in Fig. 2.

In the example, there are two natural groups in the data, bounded by the dashed irumferenes.

Due to the balane onstraints, eah group may be divided into smaller lusters, delimited by solid

irumferenes. When it happens, the shortomings previously disussed may arise and, onsequently,

the searh results may be greatly a�eted.

The novelty of DAHC-tree is to ombine the advantages of both disjoint and non-disjoint approahes.

In DAHC-tree, the data set is divided into ompat lusters by respeting its distribution. This
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Fig. 2. E�ets of �xed-sized partitions in a data set with a sparse distribution.

strategy overomes the above disadvantages.

4.1 Overview of DAHC-tree

Consider an initial set of objets, we �rst divide the objets into groups based on their global dis-

tribution. We an re�ne this partitioning further by dividing eah existing group based on the loal

distribution of a subset of objets. This proess may be repeated by taking a smaller subset at eah

time until no further improvements are possible. Finally, we have a hierarhial set of groups. This is

roughly the basi idea of DAHC-tree, where suh a model is adapted to disk. In other words, given

a query objet, we an redue the searh spae by gradually onsidering a subset of objets with a

more relevant distribution.

At eah level, we luster the data around referene objets. Eah luster is a partition in the sense

that objets in the same luster have similar distanes to its referene objet. Next, we reate subsets

of data by ombining adjaent lusters. This strategy aptures the data distribution in the sense

that far away objets are separated into non-adjaent lusters. After that, we apply this proess

reursively until eah subset of data an no longer be divided. Finally, we have a set of lusters, whih

is a hierarhial partitioning of the data.

In order to expliitly highlight the novelty of DAHC-tree, we elaborate further on how DAHC-tree

bene�ts and ombines the advantages of both disjoint and non-disjoint partitioning approahes. On

the one hand, DAHC-tree partitions the data set into lusters based on distanes to referene objets.

There exists a full order on distanes to a same referene objet and, hene, the lusters are disjoint.

On the other hand, DAHC-tree generates di�erent subsets of data for eah level by ombining objets

of adjaent lusters. The same objet may appear into several subsets of data, thus the lusters may

overlap.

At the end, it is noteworthy that DAHC-tree may be unbalaned. However, for similarity searh

in high-dimensional spaes, unbalaned trees may provide better performane than balaned trees,

as stated by Chávez and Navarro [Chávez and Navarro 2005℄. They have shown that, for similarity

searh in high-dimensional spaes, the searh ost is determined by the pruning rate of the searh

spae, not by the height of the tree. The pruning rate of the searh spae is diretly related to how

the data set is separated. The balaned tree partitions the data set into even sized parts, ignoring the

data distribution. DAHC-tree partitions the data set by the data distribution, thus it may separate

the data set better than balaned partitioning. For a more detailed disussion of the bene�ts of

unbalaned trees in similarity searh, refer to [Chávez and Navarro 2005℄.

4.2 DAHC-Tree Creation

Overall, DAHC-tree is an unbalaned tree index generated by the hierarhial partitioning of the data

set. Like other metri trees, the objets of the data set are stored into �xed size disk pages. Eah
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page holds a prede�ned maximum number of objets K. Table I summarizes the symbols used in this

paper.

Table I. Summary of symbols and de�nitions

Symbols De�nitions
d(x, y) distane funtion between objets x and y

f number of partitions seleted for reating a subset of objets
k the number of partitions spanned by a set
K apaity of a disk page
N number of objets in a set
O a set of objets
C a set of partitions

DAHC-tree has two kinds of nodes: leaf nodes and index nodes. Eah index node orresponds to a

single disk-page and ontains a partitioning information. In ontrast, eah leaf node onsists of a list

of disk pages and, hene, may have an unlimited apaity. The objets of the data set are stored in

both index and leaf nodes.

The struture of a leaf node is

leafnode [ array of < oid(oi), d(oi, oref ), oi > ],

where oid(oi) is the identi�er of the objet oi and d(oi, oref ) is the distane from the objet oi to the

referene objet oref of this leaf node. The struture of an index node is

indexnode [ array of < oi, r(oi), d(oi, oref ), ptr(T (oi)) > ],

where oi keeps the referene objet of the subtree T (oi) pointed by ptr(T (oi)) and r(oi) is the overing
radius of that region. The distane between oi and the referene objet of this node oref is kept in

d(oi, oref ). The pointer ptr(T (oi)) points to the root node of the subtree T (oi) rooted by oi.

The tree onstrution is performed in a top-down fashion. In order to larify this approah, look

at Fig. 3. At the beginning, the set of objets O = {o1, o2, . . . , oN} is onsidered to be part of a

single partition. Objets in this set are �rst divided into k ≤ K disjoint subpartitions c1, c2, . . . , ck.

Information about all those subpartitions form the index node of the �rst level of the tree. For eah

partition ci, a subset Oci
is reated by grouping the objets of ci and the objets of f adjaent

partitions. To build subsequent levels of the tree, this proess of dividing and grouping is repeated

for all of the new subset of objets at eah level, reating the hierarhy of index nodes. The proess

stops when the number of objets in a subset is less than or equals to K or the number of partitions

spanned by a subset is less than the double of f . Then, the objets in the subset are written to a leaf

node on disk.

Algorithm 1 formalizes the above proedure. It starts by heking the ardinality of the set of

objets O (line 2). If it an �t into a disk page, the funtion Create-leafnode is used to reate a

leaf node (line 3). Otherwise, we all the funtion Split in order to divide the set into k ≤ K partitions

(line 5). The funtion Split an use any partitional lustering method, suh as k-medoids [Bishop

2006℄. The partitional algorithm is responsible for �nding the referene objets of eah level. Next, we

hek if the set an be divided (line 7). If so, we all the funtion Create-indexnode, that reates

an index node using those referene objets (line 10). Thereafter, for eah partition, the funtion

Combine is used to reate a subset of objets (line 12). This funtion is responsible for grouping

objets of adjaent partitions. After that, we repeat this proess for all of the new subset of objets

(line 14). Finally, the funtion Update-indexnode is used to update the information in eah entry

of the index node (line 15).

In our implementation, the algorithms for hoosing referene objets in the funtion Split are:

kmedoids, whih uses the well-known PAM (Partitioning Around Medoids) algorithm [Bishop 2006℄

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.
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PSfrag replaements
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Fig. 3. A representation of DAHC-tree.

Algorithm 1 DAHC-tree onstrution.

1: funtion Tree-onstrut(f, d,K,N,O)

2: if N ≤ K then

3: return Create-leafnode(N,O);

4: else

5: C ← Split(d,K,N,O); ⊲ Divisive step

6: k ← cardinality(C);
7: if k < 2 f then

8: return Create-leafnode(N,O);

9: else

10: Parent ← Initialize-indexnode(k,C);

11: for eah c ∈ C do

12: Oc ← Combine(f, d, c, k, C); ⊲ Agglomerative step

13: Nc ← cardinality(Oc);
14: Child ← Tree-onstrut(f, d,K,Nc, Oc); ⊲ Deepening

15: Update-indexnode(c, Parent, Child);

16: end for eah

17: return Parent

18: end if

19: end if

20: end funtion

to partition data; and random, whih partitions the data using referene objets seleted at random

(i.e., the initialization step of the PAM algorithm, whih is the most ommon realization of the k-

medoid lustering). The latter is the default method due to its better performane.

DAHC-tree provides two options for the funtion Combine: mindistane, in whih the partitions

are ombined using the minimum distane between their referene objets; and maxoverlap, in

whih the partitions are ombined using the maximum overlap between their over regions. The

default method for the Combine algorithm is �mindistane�.

4.3 Similarity Queries

DAHC-tree uses early termination strategies to answer similarity queries. During query proessing,

the query objet �rst traverses the hierarhy of index nodes of the DAHC-tree. At eah level, we

ompute the distanes from the query objet to the referene objets. The searh is then direted to

the partition whose referene objet is losest to the query objet. This proess is repeated until the

searh reahes a leaf node. At this point, a sequential san is performed, and objets qualifying for
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the query are returned.

5. EXPERIMENTAL EVALUATION

In this setion, we evaluate and ompare the performane of our tehnique in di�erent senarios.

We implemented DAHC-tree from srath in C++. The experiments were performed on a mahine

equipped with a proessor Intel Xeon QuadCore X3320 2.5 GHz and 8 Gbytes of DDR2-memory. The

mahine run Gentoo Linux (2.6.31 kernel) and the ext3 �le system.

DAHC-tree was tested using two sets of images desribed in literature and extensively used by

the omputer vision and image proessing ommunities. The �rst set ontains 72,000 images from

Amsterdam Library of Objet Images (ALOI)1 [Geusebroek et al. 2005℄. We onverted eah image to

a 256-dimensional feature vetor by omputing a Color Correlogram [Huang et al. 1997℄. Eah olor

orrelogram is a table indexed by olor pairs, where the k-th entry for a pair < i, j > spei�es the

probability of �nding a pixel of olor j at a distane k from a pixel of olor i in the image. The distane

funtion used to ompare the feature vetors is the Manhattan (l1) distane. The other data set was

obtained by extrating loal features from the ETH-80 Image Set2 [Leibe and Shiele 2003℄, whih is

a set of 3,280 images. In this study, we use the well-known SIFT method [Lowe 2004℄, whih is the

most popular approah for extrating loal features from images. The resulting olletion ontains a

total of 134,173 SIFT desriptors. Eah SIFT desriptor onsists of a 128-dimensional feature vetor.

The distane funtion used to ompare the feature vetors is the Eulidean (l2) distane.

Fig. 4 shows the distane density funtions of both databases. Observe the di�erenes in densities of

the individual data olletions. It is worth noting that those databases are haraterized by di�erent

distane distributions.
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Fig. 4. Distane density funtions of the data set used in the experiments.

We randomly seleted about one perent of eah olletion to be used as queries (700 images for the

ALOI dataset and 1,300 SIFT desriptors for the ETH-80 dataset). Five repliations were performed

for eah orpora to ensure statistially sound results. For both the datasets, we performed range

queries, with a searh radius that retrieved, on average, 0.05 perent of the database (i.e., 36 images

for the ALOI dataset and 67 SIFT desriptors for the ETH-80 dataset). The ground-truth were

obtained by an exhaustive sequential san over those olletions.

The measurement taken at eah experiment were the reall (i.e, the ratio between the number of

qualifying objets retrieved and the total number of qualifying objets) and the average number of

distane alulations. We performed �ve repliations for eah test in order to guarantee statistially

signi�ant results.

1http://staff.siene.uva.nl/~aloi/
2http://tahiti.mis.informatik.tu-darmstadt.de/oldmis/Researh/Projets/ategorization/eth80-db.html
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Our experiments are intended to answer the following questions:

• How do �xed-sized partitions a�et the reall of an approximate searh?

• How do the parameters of DAHC-tree a�et its performane?

• How does the performane of DAHC-tree ompare to LSH?

• How does the performane of DAHC-tree ompare to exat searh algorithms?

In the following, we report and disuss the results obtained for eah question above.

5.1 Fixed-Sized versus Variable-Sized Partitions

In this setion, we study how the relationship between the geometry of the data and the organization

of an index struture may greatly a�et the searh performane. For this purpose, we ompare two

di�erent approahes. The �rst is the algorithm presented in Setion 4.2, that divides the data aording

to their distribution, allowing for partitions with di�erent sizes. The other is a simple modi�ation

of the previous tehnique, in whih the data set is divided into even sized partitions, ignoring the

inherent grouping of data. This is obtained by eliminating the stop ondition implemented in the

lines 7-9 of the Algorithm 1.

In those experiments we have evaluated the interplay between three parameters:

• The number f of partitions seleted for reating a new level: the larger this parameter, the more

the intensity of repliated objets on the DAHC-tree. Thus, it tends to improve the quality of the

results at the ost of reating larger trees. We tried the fators 3, 5, and 8.

• The page apaity K: larger disk pages tend to improve the quality of the results at the ost of more

proessing time (sine more data gets to be examined). It also tends to lessen the spae overhead

(sine the trees tend to be shallower). We tried disk pages with a apaity to store 100 and 300

objets.

• The leaf size poliy: with �xed-sized partitions, the leaves are foribly divided in order to �t in

the spei�ed size, even when all data belongs to tight luster. With variable-sized partitions we

authorize the reation of �big leaves� in order to avoid breaking up inherent grouping of data.

The experiment onsisted in testing exhaustively the ombinations of all seleted parameter lev-

els. The results are shown in Figure 5, where eah axis of the ube represents variation in a single

parameter. The value parentheses is the reall ahieved by eah ombination of those parameters.

The analysis of the experiment is interesting, for it shows that when the leaf is �xed (bottom fae),

the ombination of adjaent partitions does not help to improve the results. This happens beause

data whih will be grouped for geometrial reasons will be later separated beause of the exessively

restraining impositions of the data struture. When the leaf is variable, however, the results improve

as more partitions are ombined, as we had expeted. In both ases, larger leaves tend to give better

results.

Those results demonstrate the strong interation between the geometri and data struture on-

straints, showing that when those are not ompatible, the index as a whole su�ers. Fig. 6 shows

a di�erent view of the results inluding an additional level for the parameter f (2, 3, 5, 8). If the

parameter f is equals to 2, DAHC-tree plays a speial ase, sine the distanes between objets are

symmetri in metri spaes. Otherwise, the results on�rm that the variable strategy onsistently

outperforms the �xed one, with a high statistial signi�ane (on�dene higher than 0.99).

Fig. 7 shows the spae oupation (in terms of the number of disk pages) by the index struture for

di�erent ombinations of those parameters. We use log sale in order to highlight the behavior of eah

hoie. Notie that the spae requirements are redued by hanging the leaf size poliy from �xed to

variable. One of the reasons is the better oupation of the nodes. It is noteworthy, therefore, that,

only by organizing the index struture in a di�erent way, we signi�antly improved the searh results

and the storage utilization.
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Fig. 5. The interplay between the parameter f , the page apaity K, and the leaf size poliy. Eah axis of the ube
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Fig. 6. The reall ahieved by di�erent ombinations of the levels seleted for the parameter f , the page apaity K,
and the leaf size poliy.
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Fig. 7. The spae oupation by the index struture for di�erent ombinations of the levels seleted for the parameter
f , the page apaity K, and the leaf size poliy.

5.2 Exploration of the Parameter Spae

In this setion, we explore the parameter spae of DAHC-tree by performing a full fatorial design.

The fatorial design reveals the relative importane of eah parameter of DAHC-tree, inluding ross-
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e�ets. We have overed the four most important parameters, the page apaity K, the number f of

partitions seleted for reating a new level, the strategies for hoosing referene objets in the Split

algorithm, and the strategies for the Combine algorithm.

Table II summarizes the results of the fatorial analysis of variane (ANOVA) in the ALOI dataset.

We separately analyzed the in�uene of the parameters of DAHC-tree for both the e�etiveness (qual-

ity of searh results) and the e�ieny (number of distane alulations). The perentages indiate

the relative ontribution of eah parameter to the observed variation in eah analyzed response. For

instane, a simple hange of strategy in the Split algorithm explains 4.73% of the variation observed

in the e�etiveness of DAHC-tree. The models p-values indiate high statisti signi�ane. Notie

that both the e�etiveness and the e�ieny of DAHC-tree is higher dependent to the hoie of the

parameters K and f .

Table II. ANOVA results for eah parameter of DAHC-tree in the ALOI dataset.

Fators Explanatory Power
Parameter Levels E�etiveness E�ieny

K 200 400 53.24% 88.39%
f 3 5 38.91% 9.90%

Split kmedoids random 4.73% 0.21%
Combine mindistane maxoverlap 0.90% 0.04%

Model p-values: < 0.0001 < 0.0001

The summary results obtained by the analysis of DAHC-tree in the ETH-80 dataset are presented

in the Table III. As in the ALOI dataset, the parameters K and f were the most responsible for

the observed variations. A few ross-e�ets were found statistially signi�ant, but their individual

ontributions were always less than 3%.

Table III. ANOVA results for eah parameter of DAHC-tree in the ETH-80 dataset.

Fators Explanatory Power
Parameter Levels E�etiveness E�ieny

K 200 400 47.51% 78.04%
f 3 5 45.29% 19.00%

Split kmedoids random 5.12% 0.00%
Combine mindistane maxoverlap 0.21% 0.01%

Model p-values: < 0.0001 < 0.0001

One of the drawbaks of DAHC-tree relies on the fat that its parameters K and f must be tuned to

obtain quality results. Although the proper values of K and f are data set dependent, we empirially

found the following rules of thumb to be useful for �nding good values:

• Choose a reasonable page apaity K. One a leaf node may hold several disk pages, their size

must be large enough to avoid breaking up inherent grouping of data. It must also ontain enough

objets so that if a query objet is near to a partition, then the probability that a signi�ant number

of quali�ed objets are in the partition is high. On the other hand, a partition should not be so

large as to prolong query time unneessarily.

• Determine the number f of partitions seleted for reating a new level. The f value must be at

least three, so that objets may be ombined. One a page apaity K is hosen, one an ompute

how many partitions the data set will be divided. If the number of partitions is too small, we may

redue the page apaity K in order to inrease the number of partitions.
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5.3 Comparison with LSH

In this setion, we ompare DAHC-tree with LSH, the most popular approah for onduting approx-

imate similarity searh in high-dimensional spaes. One major drawbak of LSH is its neessity of the

data be represented as vetors and, hene, it annot be diretly applied to generi metri spaes. In

those ases, a natural approah is to embed the feature spae into a vetor spae, so that the distanes

of the embedded objets approximate the atual distanes [Hjaltason and Samet 2003℄. Reent stud-

ies, however, have shown that using suh embedding over high-dimensional metri spaes is sometimes

not very e�etive, inurring in a high approximation error, so that pratially all distane information

is lost [Khot and Naor 2005℄.

As we have explained in Setion 3, LSH relies on three parameters: the �ngerprint length k, the

number of hash tables L, and the searh radius R. For our experimental evaluation, we adopted the

original LSH implementation3. It is optimized to estimate the best hoie for both parameters k and

L based on the data distribution and a given radius R. In order to guarantee a fair omparison, we

reated a new index struture for eah radius R. The parameters used to build a DAHC-tree were:

�mindistane� for the Combine algorithm, the �kmedoids� strategy for referene objets, disk pages

with a page apaity K equals to 300, and f set to 3.

Fig. 8 presents a omparison of the reall of LSH and DAHC-tree for di�erent query radii (in terms

of the average perentage of the database retrieved by the searh radius). Note that, for the ALOI

dataset, by inreasing the searh radius, DAHC-tree performs better than LSH, with a high statistial

signi�ane (on�dene higher than 0.99). For instane, onsidering a searh radius that retrieves, on

average, 0.03 perent of the database (i.e., 21 images), DAHC-tree is ≈30% (22 perentual points)

better than LSH. One of the reasons is a onsequene of the de�nition of LSH: the larger the radius

R, the smaller the gap between the probabilities of ollision for lose points and far points [Andoni

and Indyk 2008℄. On the other hand, for the ETH-80 dataset, LSH outperforms DAHC-tree. This

happens beause the hash funtions for the Eulidean spae (l2) are more stable than for Manhanttan

distanes (l1).
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Fig. 8. Reall for LSH and DAHC-tree as a funtion of the query radius (in terms of the average perentage of the
database retrieved by the searh radius).

5.4 Comparison with exat searhing algorithms

In this setion, we ompare DAHC-tree with MVP-tree [Bozkaya and Özsoyoglu 1999℄, SAT [Navarro

2002℄, List of Clusters [Chávez and Navarro 2005℄, M-tree [Ciaia et al. 1997℄, Slim-tree [Traina Jr.

et al. 2002℄, and DBM-tree [Vieira et al. 2006℄, whih are the most popular approahes for exat

similarity searh in generi metri spaes.

3http://www.mit.edu/~andoni/LSH/
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For our experimental evaluation, we adopted the implementation of MVP-tree, SAT, and List of

Clusters from the Metri Spae Library4 and the implementation of M-tree, Slim-tree, and DBM-

tree from the GBDI Arboretum Library5. In order to guarantee a fair omparison, all the ompared

methods were on�gured using their best reommended setup. DAHC-tree was built using the same

parameters reported in Setion 5.3.

Fig. 9 presents a omparison of the e�ieny (number of distane alulations) of DAHC-tree and

the exat tehniques for di�erent query radii (in terms of the average perentage of the database

retrieved by the searh radius). The results are plotted in log sale to minimize the large di�erene

resulting from queries with small and large radii, whih makes the omparison easier.
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Fig. 9. The query performane (given by the average number of distane alulations) for DAHC-tree and the exat
methods as a funtion of the query radius (in terms of the average perentage of the database retrieved by the searh
radius).

Clearly, DAHC-tree is more e�ient than the exat methods for performing similarity queries, with

a high statistial signi�ane (on�dene higher than 0.99). This e�et is visible for both databases.

Notie that DAHC-tree saves at least 50% of distane alulations when ompared to the best exat

tehnique.

It an be seen from the plots in Fig. 8 and Fig. 9 that DAHC-tree improves the e�ieny on

similarity queries by orders of magnitude while inurring in small loss of e�etiveness (typially 5-

15%) regardless the database. For instane, onsidering the ETH-80 dataset and a searh radius that

retrieves, on average, 0.03 perent of the database (i.e., 40 SIFT desriptors), DAHC-tree ahieves

≈90% of reall (i.e., 36 SIFT desriptors). However, the e�etiveness loss is small when ompared to

its e�ieny gain. For the same settings, DAHC-tree saves more than 98% of distane alulations

when ompared to the best exat algorithm.

6. CONCLUSIONS

In this paper, we have shown how the relationship between the geometry of the data and the organiza-

tion of an index struture may greatly a�et the searh performane of both disjoint and non-disjoint

tehniques desribed in the literature.

Furthermore, we have presented DAHC-tree, a new approah for performing approximate similarity

searh in high-dimensional metri spaes. It is an index struture that ombines the advantages of

both disjoint and non-disjoint strategies. DAHC-tree is onstruted by dividing and grouping the data

set into ompat lusters by respeting its distribution. This strategy redues the e�ets imposed by

the above liability.

4http://www.sisap.org/Metri_Spae_Library.html
5http://www.gbdi.im.usp.br/arboretum/
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Our experiments have demonstrated the strong interation between the geometri and data struture

onstraints, showing that when those are not ompatible, the index as a whole su�ers. Through

experiments we also have learned that DAHC-tree is higher dependent to the hoie of the parameters

K and f . In spite of that, the onduted analysis and the reported omparative test results have

shown that DAHC-tree signi�antly improves the performane in proessing similarity queries.

Finally, we summarize the limitations of DAHC-tree and our future researh plan.

• Control parameter tuning. As we disussed in Setion 5.2, the e�etiveness and the e�ieny of

DAHC-tree is higher dependent to the hoie of the parameters K and f . We have provided some

parameter-tuning guidelines in the paper. We plan to investigate a mathematial model whih

allows diretly to determine the parameters.

• Inremental partitioning. In addition, most top-down approahes are o�ine algorithms and the

partitions an be sensitive to insertions and deletions. We plan to extend DAHC-tree to perform

regional repartitioning for supporting insertions and deletions after the initial reation of the index

struture.

• Measuring performane using other metris. In this study, we use only the reall to measure the

performane of similarity queries. We plan to employ other metris (e.g., [Zezula et al. 2005℄) to

ompare the performane between di�erent indexing shemes.
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