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Abstra
t. Similarity sear
h in high-dimensional metri
 spa
es is a key operation in many appli
ations, su
h as
multimedia databases, image retrieval, obje
t re
ognition, and others. The high dimensionality of the data requires
spe
ial index stru
tures to fa
ilitate the sear
h. A problem regarding the 
reation of suitable index stru
tures for high-
dimensional data is the relationship between the geometry of the data and the organization of an index stru
ture. In
this paper, we study the performan
e of a new index stru
ture, 
alled Divisive-Agglomerative Hierar
hi
al Clustering
tree (DAHC-tree), whi
h redu
es the e�e
ts imposed by the above liability. DAHC-tree is 
onstru
ted by dividing and
grouping the data set into 
ompa
t 
lusters. We perform a rigorous experimental design and analyze the trade-o�s
involved in building su
h an index stru
ture. Additionally, we present extensive experiments 
omparing our method
against state-of-the-art of exa
t and approximate solutions. The 
ondu
ted analysis and the reported 
omparative test
results demonstrate that our te
hnique signi�
antly improves the performan
e of similarity queries.

Categories and Subje
t Des
riptors: H.2.2 [Database Management℄: Physi
al Design�a

ess methods; H.3.1 [In-
formation Storage and Retrieval℄: Content Analysis and Indexing�indexing methods

Keywords: 
lustering methods, database indexing, metri
 a

ess methods, metri
 spa
es, similarity sear
h

1. INTRODUCTION

Similarity sear
h in high-dimensional metri
 spa
es is a subje
t of interest for many resear
h 
om-

munities. For over two de
ades, signi�
ant resear
h e�orts have been spent trying to improve its

performan
e. In spite of that, many issues are still 
onsidered open problems. A problem regarding

indexes for sear
h in high-dimensional spa
es is the relationship between the data geometry and index

organization.

Most existing indexes are 
onstru
ted by partitioning a set of obje
ts using distan
e-based 
riteria.

In order to keep the balan
e of the stru
ture, the data set is divided into even sized parts, ignoring

the inherent grouping of data. In general, those te
hniques follow two basi
 paradigms. One type of

methods produ
es disjoint partitions, but ignores the distribution properties of the data [Katayama

and Satoh 2001; Bustos and Navarro 2004; Xu et al. 2008; Chávez et al. 2008℄. The other type of

methods produ
es non-disjoint groups, whi
h greatly a�e
t the sear
h performan
e [Zezula et al. 1998;

Clarkson 1999; Goldstein and Ramakrishnan 2000; Chávez and Navarro 2003; Amato et al. 2003; Lin

et al. 2005; Cantone et al. 2005℄.

In this paper, we study the e�e
tiveness of a new index stru
ture, 
alled Divisive-Agglomerative

Hierar
hi
al Clustering tree (DAHC-tree), whi
h is 
onstru
ted by dividing and grouping the data

set into 
ompa
t 
lusters. It 
ombines the advantages of both disjoint and non-disjoint paradigms,

improving the sear
h results.

The performan
e 
laims on DAHC-tree are supported by a rigorous experimental design used both
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for exploring the parameter spa
e of the method and for 
omparing it with state-of-the-art solutions.

The 
ondu
ted analysis and the reported 
omparative test results demonstrate that our approa
h

signi�
antly improves the performan
e in pro
essing similarity queries.

The major 
ontributions of this paper are:

• First, we propose DAHC-tree, a new index stru
ture whi
h performs very well for approximate

similarity sear
h in high-dimensional metri
 spa
es.

• Se
ond, we study how the relationship between the geometry of the data and the organization of

an index stru
ture may greatly a�e
t the sear
h performan
e.

• Third, we analyze the performan
e of DAHC-tree using a rigorous experimental design. Our results

show that DAHC-tree a
hieves a high re
all rate.

• Fourth, we evaluate the e�e
tiveness of DAHC-tree through a 
omparison with LSH (Lo
ality

Sensitive Hashing) [Gionis et al. 1999℄, a 
ompeting index stru
ture whi
h is 
urrently 
onsidered

the state-of-the-art in high-dimensional indexing.

• Finally, we assess the e�
ien
y of DAHC-tree by 
omparing it to several state-of-the-art indexes

for exa
t similarity sear
h in metri
 spa
es.

A preliminary version of this work was presented at ACIVS 2008 [Ro
ha et al. 2008℄. Here, we

introdu
e several innovations. First, we redesign the stru
ture as an index, supporting the storage in

disk pages and the exe
ution of similarity queries. Additionally, we present new strategies for both

steps (agglomerative and divisive) of our approa
h. Finally, we report new experiments both for the

analysis of our method and for the 
omparison with other te
hniques.

The remainder of this paper is organized as follows. Se
tion 2 introdu
es some basi
 
on
epts of

the similarity sear
h problems. Se
tion 3 des
ribes the related work. Se
tion 4 presents DAHC-tree

and shows how to apply it to approximate similarity sear
h. Se
tion 5 reports the results of our

experiments and 
ompares the performan
e of our approa
h with other methods. Finally, we o�er our


on
lusions and dis
uss the limitations of DAHC-tree in Se
tion 6.

2. BASIC CONCEPTS

Traditional database systems [Ramakrishnan and Gehkre 2003; Elmasri and Navathe 2005℄ are able

to e�
iently deal with stru
tured re
ords by using the exa
t mat
h paradigm. However, 
omplex

data types, su
h as multimedia data (audio, image, and video), biologi
al data (genomi
 and protein

sequen
es), among others, 
annot be represented e�e
tively as stru
tured re
ords [Zezula et al. 2005℄.

In those 
ases, similarity sear
h [Jagadish et al. 1995℄ has been established as a fundamental par-

adigm. Essentially, the problem is to �nd, in a set of obje
ts, those whi
h are the most similar to a

given query obje
t. The similarity between any pair of obje
ts is 
omputed by some distan
e fun
-

tion, being understood that low values of distan
e 
orrespond to high degrees of similarity [Patella

and Cia

ia 2009℄.

The 
ommonest types of similarity queries in
lude (1) range queries, where all the obje
ts whose

distan
e to the query does not ex
eed a threshold are requested; and (2) k-nearest neighbors (k-NN)

queries, where a spe
i�ed number k of obje
ts, whi
h are 
losest to the query are requested [Zezula

et al. 2005℄.

Several index stru
tures have been proposed to speed up similarity queries [Gaede and Günther

1998; Chávez et al. 2001; Almeida et al. 2010℄. They 
an be broadly 
lassi�ed, depending on their

�eld of appli
ability, as multi-dimensional (or spatial) and metri
 a

ess methods, where the former

only applies when the feature spa
e is a ve
tor spa
e [Patella and Cia

ia 2008℄.

Empiri
al studies, however, have pointed out that those approa
hes are not e�
ient when applied

to high-dimensional spa
es [Weber et al. 1998; Hinneburg et al. 2000℄. In su
h 
ases, almost the entire

index stru
ture is a

essed by a single query.
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In order to a

elerate the sear
h, it is usual to o�er a quality/time trade-o�: for saving sear
h time,

it is a

epted a degradation in the quality of the result. This is the goal of approximate similarity

sear
h [Amato and Savino 2008℄.

Approa
hes to approximate similarity sear
h 
an be broadly 
lassi�ed in methods that exploit spa
e

transformations and methods that redu
e the amount of data to be a

essed [Zezula et al. 2005℄. In

the �rst 
ategory, approximation is a
hieved by 
hanging the obje
t representation and/or distan
e

fun
tion with the obje
tive of redu
ing sear
h 
ost [Faloutsos and Lin 1995; Gionis et al. 1999; Valle

et al. 2008; Weber and Böhm 2000℄. In the se
ond 
ategory, strategies omit parts of the dataset that

are not likely to 
ontain quali�ed obje
ts [Arya et al. 1998; Bennett et al. 1999; Li et al. 2002; Ro
ha

et al. 2008℄.

Many transformation te
hniques need obje
ts to be represented as ve
tors and 
annot be dire
tly

applied to generi
 metri
 spa
es. In those 
ases, a natural approa
h is to embed the feature spa
e into

a ve
tor spa
e, so that the distan
es of the embedded obje
ts approximate the a
tual distan
es [Hjal-

tason and Samet 2003℄. Re
ent studies, however, have shown that using su
h embedding over high-

dimensional metri
 spa
es is sometimes not very e�e
tive, in
urring in a high approximation error, so

that pra
ti
ally all distan
e information is lost [Khot and Naor 2005℄.

On the other hand, te
hniques that redu
e the amount of data examined aim at improving per-

forman
e by a

essing and analyzing less data than is te
hni
ally needed. State-of-the-art indexes

are 
onstru
ted based on partitioning a set of obje
ts using distan
e-based 
riteria. In general, those

te
hniques follow two basi
 paradigms: disjoint or non-disjoint. The former partitions the data set

into disjoint 
lusters, but ignores the distribution properties of the data [Katayama and Satoh 2001;

Bustos and Navarro 2004; Xu et al. 2008; Chávez et al. 2008℄. The latter produ
es non-disjoint

groups, whi
h greatly a�e
t the sear
h performan
e [Zezula et al. 1998; Clarkson 1999; Goldstein and

Ramakrishnan 2000; Chávez and Navarro 2003; Amato et al. 2003; Lin et al. 2005; Cantone et al.

2005℄. In order to keep the balan
e of the stru
ture, they divide the data set into even sized parts,

ignoring the inherent grouping of data.

3. RELATED WORK

In this work, we are interested in approximate algorithms, whi
h relax the 
ondition of delivering the

exa
t solution. A survey on te
hniques for approximate similarity sear
h is presented in [Patella and

Cia

ia 2008; 2009℄. It proposes a 
lassi�
ation s
heme for existing approa
hes, 
onsidering the most

relevant 
hara
teristi
s of them: type of data (metri
 or ve
tor spa
es), error metri
s (
hanging spa
e

or redu
ing 
omparisons), quality guarantees (none, deterministi
 or probabilisti
 parametri
/non-

parametri
), and user intera
tion (stati
 or intera
tive).

Three di�erent algorithms to solve approximate k-NN queries with the M-tree [Cia

ia et al. 1997℄

are presented in [Zezula et al. 1998℄. The �rst one redu
es the 
urrent sear
hing radius of the k-NN

query through relative distan
e errors. Another te
hnique employs the distan
e distribution to stop

the sear
h when the probability of �nding a better result does not ex
eed an user-spe
i�ed threshold.

The third te
hnique simply interrupts the sear
h when the improvement in the result set falls below

a threshold.

A data stru
ture 
alled M(S,Q) to answer nearest neighbor queries is proposed in [Clarkson 1999℄.

It requires a training data set Q of obje
ts, taken to be representative of typi
al query obje
ts. This

data stru
ture may fail to return a 
orre
t answer, but the failure probability 
an be arbitrarily small

at the 
ost of in
reasing the query time and spa
e requirements for the index.

The P-Sphere tree [Goldstein and Ramakrishnan 2000℄ is a two-level index stru
ture for approximate

1-NN sear
h. In order to �nd the nearest neighbor of the query obje
t, the partition 
losest to the

query obje
t is a

essed. The query is solved through a sequential s
an of obje
ts 
ontained in su
h

partition.

The approa
h des
ribed in [Chávez and Navarro 2003℄ is a probabilisti
 framework based on stret
h-
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ing the triangle inequality. The idea is general, but the authors applied it to pivot-based sear
hing

algorithms. Their te
hnique allows for the redu
tion of the sear
h radius by using the (inverse of the)

distan
e distribution so as to provide a probabilisti
 guarantee on the approximate result.

In [Lin et al. 2005℄, several te
hniques are presented to perform approximate sear
hes in high-

dimensional spa
es using R-tree-like stru
tures [Guttman 1984℄. Basi
ally, re
ognizing the fa
t that

the di�
ult task in k-NN sear
hing is to guarantee the 
orre
tness of the result, the authors propose

several heuristi
s for aggressively pruning partitions. Two of su
h heuristi
s use Monte Carlo simu-

lation to estimate the probability of �nding a better result in a given partition, while the remaining

three strategies estimate su
h probability by using distan
e bounds for the hyper-re
tangular region

asso
iated to ea
h partition. Partitions leading to a probability lower than an user-spe
i�ed threshold

are pruned from the sear
h.

The method presented in [Chávez et al. 2008℄ performs similarity queries by sear
hing for obje
ts

that 
an give enough positive proofs to in
lude them in a list of 
andidates. This pro
ess is the reverse

of that adopted in many existing indexes, whi
h attempt to �nd a proof to reje
t obje
ts from the


andidate list. The algorithmi
 idea is quite simple and works as a modi�
ation of the basi
 pivot-

based LAESA sequential algorithm [Mi
ó et al. 1994℄. For ea
h obje
t in the data set the pivots are

sorted from nearest to farthest; the same is performed for the query. Then, obje
ts in the data set

are sorted for in
reasing similarity of their sorted lists of pivots to the query obje
t. Finally, only an

user-spe
i�ed fra
tion of obje
ts is examined.

Lo
ality Sensitive Hashing (LSH) [Gionis et al. 1999℄ is 
urrently the most popular high-dimensional

indexing method. Unlike most other index stru
tures, the algorithmi
 idea behind LSH is not based on

a tree stru
ture, but on hashing the data set into bu
kets. The 
hosen hash fun
tions are 
onstru
ted

in order to guarantee that very 
lose obje
ts 
oin
ide in the same bu
ket with mu
h higher likelihood

than those far apart.

One major bene�t of LSH is the simpli
ity of its algorithmi
 idea. In the LSH, the obje
ts are

represented as ve
tors. Ea
h ve
tor is proje
ted onto a set of k random lines through the sear
h

spa
e. The lines are partitioned into �xed-sized intervals (determined by a radius R) and ea
h of the

intervals is named by a symbol. Proje
ting to k lines gives k symbols, whi
h are then 
on
atenated

to a word of length k. These words are built over an alphabet, whose 
ardinality is de�ned by the

number of partition intervals, and form a kind of lo
ality sensitive �ngerprint. The smaller the radius

R, the more intervals are 
reated and, hen
e, the more symbols the alphabet 
ontains.

In order to e�
iently sear
h for those ve
tors, they are hashed via a standard hash fun
tion into a

hash table. Sin
e the partitions do not overlap and the likelihood of separating two 
lose neighbors also

in
reases with �ngerprint length k, it needs several su
h hash tables (parameter L in LSH notation)

to guarantee a 
ertain probability in re
all.

During query pro
essing with LSH, the query ve
tor q needs to look up the appropriate bu
kets for

all L hash tables. Therefore, q is proje
ted to all k lines for ea
h individual table and the result is


on
atenated to a k length �ngerprint, whi
h then referen
es the bu
ket in the hash table that must be

read from disk. At this point, a sequential s
an is performed over all 
andidate ve
tors referen
ed in

this bu
ket, and those qualifying for the query are returned. After all L hash tables have been looked

up this way, all ve
tors in the result set are sorted a

ording to their distan
es to q and returned.

Di�erent from all of the previous te
hniques, DAHC-tree does not divide the data set into disjoint

or non-disjoint groups. Instead, it is an index stru
ture that 
ombines the advantages of both those

strategies. Moreover, DAHC-tree splits the data set into 
ompa
t sets by respe
ting its distribution,

not a prede�ned size for them.

4. THE DAHC-TREE

Traditional index stru
tures based on disjoint partitioning approa
hes use early termination strategies

whi
h stop the similarity sear
h before its natural (exa
t) end. It is generally pro
essed by �rst

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.
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identifying the partition to whi
h the query obje
t belongs. This is usually obtained by traversing

the index stru
ture using partitions whose referen
e obje
t is 
losest to the query obje
t. On
e the

above partition is identi�ed, a sequential s
an is performed, and obje
ts qualifying for the query are

returned.

In 
ontrast, the te
hniques based on non-disjoint groups usually employ relaxed bran
hing strategies

in order to avoid a

essing data that are not likely to 
ontain quali�ed obje
ts for the query. For this,

the approximate similarity sear
h algorithm is performed by visiting the groups in in
reasing order of

distan
e from their referen
e obje
ts to the query obje
t. The algorithm terminates when the distan
e

from the referen
e obje
t of the 
urrent group to the query obje
t satis�es a given stop 
ondition.

If the obje
ts in the data set are uniformly distributed, there exists a high probability of the query

region interse
ts several 
lusters and, hen
e, a lot of quali�ed obje
ts 
annot be returned. In order to


larify the above situation, look at Fig. 1, in whi
h a range query (gray region) using the query obje
t

q and a range r is posed. The 
ir
umferen
es bound three 
lusters c0, c1, and c2. The referen
e obje
t

of ea
h 
luster is denoted by the points p0, p1, and p2, respe
tively.

PSfrag repla
ements

q
r

p0

p1

p2
c0

c1

c2

(a) Disjoint partitions.

PSfrag repla
ements

q
r

p0

p1

p2

c0

c1

c2

(b) Non-disjoint partitions.

Fig. 1. E�e
ts of the partitioning paradigms in a data set with an uniform distribution.

Fig. 1(a) illustrates the e�e
ts of the use of disjoint partitions. In this 
ase, the query obje
t q is


losest to the referen
e obje
t p1, thus only obje
ts of the partition c1 that are 
overed by the region

of the query response are returned. Note that obje
ts belonging to the partition c0 and whi
h also

qualify for the query 
annot be returned. However, if the query range r is small enough, the whole

query 
an be found in a single partition.

We show the e�e
ts of non-disjoint partitioning methods in the Fig. 1(b). In this �gure, the query

obje
t q is 
losest to the referen
e obje
t p1, thus the group c1 is the �rst to be visited. Next, the

algorithm may analyze the groups c0 and c2, respe
tively. If the stopping 
riterion is rather relaxed,

all the three groups c0, c1, and c2 
an be a

essed. On the other hand, when a more relaxed stopping


ondition is used, many quali�ed obje
ts 
an be reje
ted. Therefore, it is di�
ult to de�ne a suitable

stopping 
riteria in order to guarantee a good quality/time trade-o�.

When the obje
ts in the data set are sparsely distributed, both disjoint and non-disjoint paradigms

may produ
e tight 
lusters. Nevertheless, the use of �xed-sized partitions in order to maintain the

balan
e of those stru
tures may divide inherent grouping of data, as illustrated in Fig. 2.

In the example, there are two natural groups in the data, bounded by the dashed 
ir
umferen
es.

Due to the balan
e 
onstraints, ea
h group may be divided into smaller 
lusters, delimited by solid


ir
umferen
es. When it happens, the short
omings previously dis
ussed may arise and, 
onsequently,

the sear
h results may be greatly a�e
ted.

The novelty of DAHC-tree is to 
ombine the advantages of both disjoint and non-disjoint approa
hes.

In DAHC-tree, the data set is divided into 
ompa
t 
lusters by respe
ting its distribution. This

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.
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Fig. 2. E�e
ts of �xed-sized partitions in a data set with a sparse distribution.

strategy over
omes the above disadvantages.

4.1 Overview of DAHC-tree

Consider an initial set of obje
ts, we �rst divide the obje
ts into groups based on their global dis-

tribution. We 
an re�ne this partitioning further by dividing ea
h existing group based on the lo
al

distribution of a subset of obje
ts. This pro
ess may be repeated by taking a smaller subset at ea
h

time until no further improvements are possible. Finally, we have a hierar
hi
al set of groups. This is

roughly the basi
 idea of DAHC-tree, where su
h a model is adapted to disk. In other words, given

a query obje
t, we 
an redu
e the sear
h spa
e by gradually 
onsidering a subset of obje
ts with a

more relevant distribution.

At ea
h level, we 
luster the data around referen
e obje
ts. Ea
h 
luster is a partition in the sense

that obje
ts in the same 
luster have similar distan
es to its referen
e obje
t. Next, we 
reate subsets

of data by 
ombining adja
ent 
lusters. This strategy 
aptures the data distribution in the sense

that far away obje
ts are separated into non-adja
ent 
lusters. After that, we apply this pro
ess

re
ursively until ea
h subset of data 
an no longer be divided. Finally, we have a set of 
lusters, whi
h

is a hierar
hi
al partitioning of the data.

In order to expli
itly highlight the novelty of DAHC-tree, we elaborate further on how DAHC-tree

bene�ts and 
ombines the advantages of both disjoint and non-disjoint partitioning approa
hes. On

the one hand, DAHC-tree partitions the data set into 
lusters based on distan
es to referen
e obje
ts.

There exists a full order on distan
es to a same referen
e obje
t and, hen
e, the 
lusters are disjoint.

On the other hand, DAHC-tree generates di�erent subsets of data for ea
h level by 
ombining obje
ts

of adja
ent 
lusters. The same obje
t may appear into several subsets of data, thus the 
lusters may

overlap.

At the end, it is noteworthy that DAHC-tree may be unbalan
ed. However, for similarity sear
h

in high-dimensional spa
es, unbalan
ed trees may provide better performan
e than balan
ed trees,

as stated by Chávez and Navarro [Chávez and Navarro 2005℄. They have shown that, for similarity

sear
h in high-dimensional spa
es, the sear
h 
ost is determined by the pruning rate of the sear
h

spa
e, not by the height of the tree. The pruning rate of the sear
h spa
e is dire
tly related to how

the data set is separated. The balan
ed tree partitions the data set into even sized parts, ignoring the

data distribution. DAHC-tree partitions the data set by the data distribution, thus it may separate

the data set better than balan
ed partitioning. For a more detailed dis
ussion of the bene�ts of

unbalan
ed trees in similarity sear
h, refer to [Chávez and Navarro 2005℄.

4.2 DAHC-Tree Creation

Overall, DAHC-tree is an unbalan
ed tree index generated by the hierar
hi
al partitioning of the data

set. Like other metri
 trees, the obje
ts of the data set are stored into �xed size disk pages. Ea
h

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.
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page holds a prede�ned maximum number of obje
ts K. Table I summarizes the symbols used in this

paper.

Table I. Summary of symbols and de�nitions

Symbols De�nitions
d(x, y) distan
e fun
tion between obje
ts x and y

f number of partitions sele
ted for 
reating a subset of obje
ts
k the number of partitions spanned by a set
K 
apa
ity of a disk page
N number of obje
ts in a set
O a set of obje
ts
C a set of partitions

DAHC-tree has two kinds of nodes: leaf nodes and index nodes. Ea
h index node 
orresponds to a

single disk-page and 
ontains a partitioning information. In 
ontrast, ea
h leaf node 
onsists of a list

of disk pages and, hen
e, may have an unlimited 
apa
ity. The obje
ts of the data set are stored in

both index and leaf nodes.

The stru
ture of a leaf node is

leafnode [ array of < oid(oi), d(oi, oref ), oi > ],

where oid(oi) is the identi�er of the obje
t oi and d(oi, oref ) is the distan
e from the obje
t oi to the

referen
e obje
t oref of this leaf node. The stru
ture of an index node is

indexnode [ array of < oi, r(oi), d(oi, oref ), ptr(T (oi)) > ],

where oi keeps the referen
e obje
t of the subtree T (oi) pointed by ptr(T (oi)) and r(oi) is the 
overing
radius of that region. The distan
e between oi and the referen
e obje
t of this node oref is kept in

d(oi, oref ). The pointer ptr(T (oi)) points to the root node of the subtree T (oi) rooted by oi.

The tree 
onstru
tion is performed in a top-down fashion. In order to 
larify this approa
h, look

at Fig. 3. At the beginning, the set of obje
ts O = {o1, o2, . . . , oN} is 
onsidered to be part of a

single partition. Obje
ts in this set are �rst divided into k ≤ K disjoint subpartitions c1, c2, . . . , ck.

Information about all those subpartitions form the index node of the �rst level of the tree. For ea
h

partition ci, a subset Oci
is 
reated by grouping the obje
ts of ci and the obje
ts of f adja
ent

partitions. To build subsequent levels of the tree, this pro
ess of dividing and grouping is repeated

for all of the new subset of obje
ts at ea
h level, 
reating the hierar
hy of index nodes. The pro
ess

stops when the number of obje
ts in a subset is less than or equals to K or the number of partitions

spanned by a subset is less than the double of f . Then, the obje
ts in the subset are written to a leaf

node on disk.

Algorithm 1 formalizes the above pro
edure. It starts by 
he
king the 
ardinality of the set of

obje
ts O (line 2). If it 
an �t into a disk page, the fun
tion Create-leafnode is used to 
reate a

leaf node (line 3). Otherwise, we 
all the fun
tion Split in order to divide the set into k ≤ K partitions

(line 5). The fun
tion Split 
an use any partitional 
lustering method, su
h as k-medoids [Bishop

2006℄. The partitional algorithm is responsible for �nding the referen
e obje
ts of ea
h level. Next, we


he
k if the set 
an be divided (line 7). If so, we 
all the fun
tion Create-indexnode, that 
reates

an index node using those referen
e obje
ts (line 10). Thereafter, for ea
h partition, the fun
tion

Combine is used to 
reate a subset of obje
ts (line 12). This fun
tion is responsible for grouping

obje
ts of adja
ent partitions. After that, we repeat this pro
ess for all of the new subset of obje
ts

(line 14). Finally, the fun
tion Update-indexnode is used to update the information in ea
h entry

of the index node (line 15).

In our implementation, the algorithms for 
hoosing referen
e obje
ts in the fun
tion Split are:

kmedoids, whi
h uses the well-known PAM (Partitioning Around Medoids) algorithm [Bishop 2006℄
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Fig. 3. A representation of DAHC-tree.

Algorithm 1 DAHC-tree 
onstru
tion.

1: fun
tion Tree-
onstru
t(f, d,K,N,O)

2: if N ≤ K then

3: return Create-leafnode(N,O);

4: else

5: C ← Split(d,K,N,O); ⊲ Divisive step

6: k ← cardinality(C);
7: if k < 2 f then

8: return Create-leafnode(N,O);

9: else

10: Parent ← Initialize-indexnode(k,C);

11: for ea
h c ∈ C do

12: Oc ← Combine(f, d, c, k, C); ⊲ Agglomerative step

13: Nc ← cardinality(Oc);
14: Child ← Tree-
onstru
t(f, d,K,Nc, Oc); ⊲ Deepening

15: Update-indexnode(c, Parent, Child);

16: end for ea
h

17: return Parent

18: end if

19: end if

20: end fun
tion

to partition data; and random, whi
h partitions the data using referen
e obje
ts sele
ted at random

(i.e., the initialization step of the PAM algorithm, whi
h is the most 
ommon realization of the k-

medoid 
lustering). The latter is the default method due to its better performan
e.

DAHC-tree provides two options for the fun
tion Combine: mindistan
e, in whi
h the partitions

are 
ombined using the minimum distan
e between their referen
e obje
ts; and maxoverlap, in

whi
h the partitions are 
ombined using the maximum overlap between their 
over regions. The

default method for the Combine algorithm is �mindistan
e�.

4.3 Similarity Queries

DAHC-tree uses early termination strategies to answer similarity queries. During query pro
essing,

the query obje
t �rst traverses the hierar
hy of index nodes of the DAHC-tree. At ea
h level, we


ompute the distan
es from the query obje
t to the referen
e obje
ts. The sear
h is then dire
ted to

the partition whose referen
e obje
t is 
losest to the query obje
t. This pro
ess is repeated until the

sear
h rea
hes a leaf node. At this point, a sequential s
an is performed, and obje
ts qualifying for
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the query are returned.

5. EXPERIMENTAL EVALUATION

In this se
tion, we evaluate and 
ompare the performan
e of our te
hnique in di�erent s
enarios.

We implemented DAHC-tree from s
rat
h in C++. The experiments were performed on a ma
hine

equipped with a pro
essor Intel Xeon QuadCore X3320 2.5 GHz and 8 Gbytes of DDR2-memory. The

ma
hine run Gentoo Linux (2.6.31 kernel) and the ext3 �le system.

DAHC-tree was tested using two sets of images des
ribed in literature and extensively used by

the 
omputer vision and image pro
essing 
ommunities. The �rst set 
ontains 72,000 images from

Amsterdam Library of Obje
t Images (ALOI)1 [Geusebroek et al. 2005℄. We 
onverted ea
h image to

a 256-dimensional feature ve
tor by 
omputing a Color Correlogram [Huang et al. 1997℄. Ea
h 
olor


orrelogram is a table indexed by 
olor pairs, where the k-th entry for a pair < i, j > spe
i�es the

probability of �nding a pixel of 
olor j at a distan
e k from a pixel of 
olor i in the image. The distan
e

fun
tion used to 
ompare the feature ve
tors is the Manhattan (l1) distan
e. The other data set was

obtained by extra
ting lo
al features from the ETH-80 Image Set2 [Leibe and S
hiele 2003℄, whi
h is

a set of 3,280 images. In this study, we use the well-known SIFT method [Lowe 2004℄, whi
h is the

most popular approa
h for extra
ting lo
al features from images. The resulting 
olle
tion 
ontains a

total of 134,173 SIFT des
riptors. Ea
h SIFT des
riptor 
onsists of a 128-dimensional feature ve
tor.

The distan
e fun
tion used to 
ompare the feature ve
tors is the Eu
lidean (l2) distan
e.

Fig. 4 shows the distan
e density fun
tions of both databases. Observe the di�eren
es in densities of

the individual data 
olle
tions. It is worth noting that those databases are 
hara
terized by di�erent

distan
e distributions.

PSfrag repla
ements

D
en
si
ty

Distan
e
0

0

0.005

0.01

0.015

0.02

0.025

0.03

200 400 600 800 1000 1200 1400 1600 1800

(a) ALOI Dataset

PSfrag repla
ements

D
en
si
ty

Distan
e
0

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

100 200 300 400 500 600700
800

(b) ETH-80 Dataset

Fig. 4. Distan
e density fun
tions of the data set used in the experiments.

We randomly sele
ted about one per
ent of ea
h 
olle
tion to be used as queries (700 images for the

ALOI dataset and 1,300 SIFT des
riptors for the ETH-80 dataset). Five repli
ations were performed

for ea
h 
orpora to ensure statisti
ally sound results. For both the datasets, we performed range

queries, with a sear
h radius that retrieved, on average, 0.05 per
ent of the database (i.e., 36 images

for the ALOI dataset and 67 SIFT des
riptors for the ETH-80 dataset). The ground-truth were

obtained by an exhaustive sequential s
an over those 
olle
tions.

The measurement taken at ea
h experiment were the re
all (i.e, the ratio between the number of

qualifying obje
ts retrieved and the total number of qualifying obje
ts) and the average number of

distan
e 
al
ulations. We performed �ve repli
ations for ea
h test in order to guarantee statisti
ally

signi�
ant results.

1http://staff.s
ien
e.uva.nl/~aloi/
2http://tahiti.mis.informatik.tu-darmstadt.de/oldmis/Resear
h/Proje
ts/
ategorization/eth80-db.html
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Our experiments are intended to answer the following questions:

• How do �xed-sized partitions a�e
t the re
all of an approximate sear
h?

• How do the parameters of DAHC-tree a�e
t its performan
e?

• How does the performan
e of DAHC-tree 
ompare to LSH?

• How does the performan
e of DAHC-tree 
ompare to exa
t sear
h algorithms?

In the following, we report and dis
uss the results obtained for ea
h question above.

5.1 Fixed-Sized versus Variable-Sized Partitions

In this se
tion, we study how the relationship between the geometry of the data and the organization

of an index stru
ture may greatly a�e
t the sear
h performan
e. For this purpose, we 
ompare two

di�erent approa
hes. The �rst is the algorithm presented in Se
tion 4.2, that divides the data a

ording

to their distribution, allowing for partitions with di�erent sizes. The other is a simple modi�
ation

of the previous te
hnique, in whi
h the data set is divided into even sized partitions, ignoring the

inherent grouping of data. This is obtained by eliminating the stop 
ondition implemented in the

lines 7-9 of the Algorithm 1.

In those experiments we have evaluated the interplay between three parameters:

• The number f of partitions sele
ted for 
reating a new level: the larger this parameter, the more

the intensity of repli
ated obje
ts on the DAHC-tree. Thus, it tends to improve the quality of the

results at the 
ost of 
reating larger trees. We tried the fa
tors 3, 5, and 8.

• The page 
apa
ity K: larger disk pages tend to improve the quality of the results at the 
ost of more

pro
essing time (sin
e more data gets to be examined). It also tends to lessen the spa
e overhead

(sin
e the trees tend to be shallower). We tried disk pages with a 
apa
ity to store 100 and 300

obje
ts.

• The leaf size poli
y: with �xed-sized partitions, the leaves are for
ibly divided in order to �t in

the spe
i�ed size, even when all data belongs to tight 
luster. With variable-sized partitions we

authorize the 
reation of �big leaves� in order to avoid breaking up inherent grouping of data.

The experiment 
onsisted in testing exhaustively the 
ombinations of all sele
ted parameter lev-

els. The results are shown in Figure 5, where ea
h axis of the 
ube represents variation in a single

parameter. The value parentheses is the re
all a
hieved by ea
h 
ombination of those parameters.

The analysis of the experiment is interesting, for it shows that when the leaf is �xed (bottom fa
e),

the 
ombination of adja
ent partitions does not help to improve the results. This happens be
ause

data whi
h will be grouped for geometri
al reasons will be later separated be
ause of the ex
essively

restraining impositions of the data stru
ture. When the leaf is variable, however, the results improve

as more partitions are 
ombined, as we had expe
ted. In both 
ases, larger leaves tend to give better

results.

Those results demonstrate the strong intera
tion between the geometri
 and data stru
ture 
on-

straints, showing that when those are not 
ompatible, the index as a whole su�ers. Fig. 6 shows

a di�erent view of the results in
luding an additional level for the parameter f (2, 3, 5, 8). If the

parameter f is equals to 2, DAHC-tree plays a spe
ial 
ase, sin
e the distan
es between obje
ts are

symmetri
 in metri
 spa
es. Otherwise, the results 
on�rm that the variable strategy 
onsistently

outperforms the �xed one, with a high statisti
al signi�
an
e (
on�den
e higher than 0.99).

Fig. 7 shows the spa
e o

upation (in terms of the number of disk pages) by the index stru
ture for

di�erent 
ombinations of those parameters. We use log s
ale in order to highlight the behavior of ea
h


hoi
e. Noti
e that the spa
e requirements are redu
ed by 
hanging the leaf size poli
y from �xed to

variable. One of the reasons is the better o

upation of the nodes. It is noteworthy, therefore, that,

only by organizing the index stru
ture in a di�erent way, we signi�
antly improved the sear
h results

and the storage utilization.
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Fig. 6. The re
all a
hieved by di�erent 
ombinations of the levels sele
ted for the parameter f , the page 
apa
ity K,
and the leaf size poli
y.
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Fig. 7. The spa
e o

upation by the index stru
ture for di�erent 
ombinations of the levels sele
ted for the parameter
f , the page 
apa
ity K, and the leaf size poli
y.

5.2 Exploration of the Parameter Spa
e

In this se
tion, we explore the parameter spa
e of DAHC-tree by performing a full fa
torial design.

The fa
torial design reveals the relative importan
e of ea
h parameter of DAHC-tree, in
luding 
ross-
Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



14 · Jurandy Almeida et al.

e�e
ts. We have 
overed the four most important parameters, the page 
apa
ity K, the number f of

partitions sele
ted for 
reating a new level, the strategies for 
hoosing referen
e obje
ts in the Split

algorithm, and the strategies for the Combine algorithm.

Table II summarizes the results of the fa
torial analysis of varian
e (ANOVA) in the ALOI dataset.

We separately analyzed the in�uen
e of the parameters of DAHC-tree for both the e�e
tiveness (qual-

ity of sear
h results) and the e�
ien
y (number of distan
e 
al
ulations). The per
entages indi
ate

the relative 
ontribution of ea
h parameter to the observed variation in ea
h analyzed response. For

instan
e, a simple 
hange of strategy in the Split algorithm explains 4.73% of the variation observed

in the e�e
tiveness of DAHC-tree. The models p-values indi
ate high statisti
 signi�
an
e. Noti
e

that both the e�e
tiveness and the e�
ien
y of DAHC-tree is higher dependent to the 
hoi
e of the

parameters K and f .

Table II. ANOVA results for ea
h parameter of DAHC-tree in the ALOI dataset.

Fa
tors Explanatory Power
Parameter Levels E�e
tiveness E�
ien
y

K 200 400 53.24% 88.39%
f 3 5 38.91% 9.90%

Split kmedoids random 4.73% 0.21%
Combine mindistan
e maxoverlap 0.90% 0.04%

Model p-values: < 0.0001 < 0.0001

The summary results obtained by the analysis of DAHC-tree in the ETH-80 dataset are presented

in the Table III. As in the ALOI dataset, the parameters K and f were the most responsible for

the observed variations. A few 
ross-e�e
ts were found statisti
ally signi�
ant, but their individual


ontributions were always less than 3%.

Table III. ANOVA results for ea
h parameter of DAHC-tree in the ETH-80 dataset.

Fa
tors Explanatory Power
Parameter Levels E�e
tiveness E�
ien
y

K 200 400 47.51% 78.04%
f 3 5 45.29% 19.00%

Split kmedoids random 5.12% 0.00%
Combine mindistan
e maxoverlap 0.21% 0.01%

Model p-values: < 0.0001 < 0.0001

One of the drawba
ks of DAHC-tree relies on the fa
t that its parameters K and f must be tuned to

obtain quality results. Although the proper values of K and f are data set dependent, we empiri
ally

found the following rules of thumb to be useful for �nding good values:

• Choose a reasonable page 
apa
ity K. On
e a leaf node may hold several disk pages, their size

must be large enough to avoid breaking up inherent grouping of data. It must also 
ontain enough

obje
ts so that if a query obje
t is near to a partition, then the probability that a signi�
ant number

of quali�ed obje
ts are in the partition is high. On the other hand, a partition should not be so

large as to prolong query time unne
essarily.

• Determine the number f of partitions sele
ted for 
reating a new level. The f value must be at

least three, so that obje
ts may be 
ombined. On
e a page 
apa
ity K is 
hosen, one 
an 
ompute

how many partitions the data set will be divided. If the number of partitions is too small, we may

redu
e the page 
apa
ity K in order to in
rease the number of partitions.
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5.3 Comparison with LSH

In this se
tion, we 
ompare DAHC-tree with LSH, the most popular approa
h for 
ondu
ting approx-

imate similarity sear
h in high-dimensional spa
es. One major drawba
k of LSH is its ne
essity of the

data be represented as ve
tors and, hen
e, it 
annot be dire
tly applied to generi
 metri
 spa
es. In

those 
ases, a natural approa
h is to embed the feature spa
e into a ve
tor spa
e, so that the distan
es

of the embedded obje
ts approximate the a
tual distan
es [Hjaltason and Samet 2003℄. Re
ent stud-

ies, however, have shown that using su
h embedding over high-dimensional metri
 spa
es is sometimes

not very e�e
tive, in
urring in a high approximation error, so that pra
ti
ally all distan
e information

is lost [Khot and Naor 2005℄.

As we have explained in Se
tion 3, LSH relies on three parameters: the �ngerprint length k, the

number of hash tables L, and the sear
h radius R. For our experimental evaluation, we adopted the

original LSH implementation3. It is optimized to estimate the best 
hoi
e for both parameters k and

L based on the data distribution and a given radius R. In order to guarantee a fair 
omparison, we


reated a new index stru
ture for ea
h radius R. The parameters used to build a DAHC-tree were:

�mindistan
e� for the Combine algorithm, the �kmedoids� strategy for referen
e obje
ts, disk pages

with a page 
apa
ity K equals to 300, and f set to 3.

Fig. 8 presents a 
omparison of the re
all of LSH and DAHC-tree for di�erent query radii (in terms

of the average per
entage of the database retrieved by the sear
h radius). Note that, for the ALOI

dataset, by in
reasing the sear
h radius, DAHC-tree performs better than LSH, with a high statisti
al

signi�
an
e (
on�den
e higher than 0.99). For instan
e, 
onsidering a sear
h radius that retrieves, on

average, 0.03 per
ent of the database (i.e., 21 images), DAHC-tree is ≈30% (22 per
entual points)

better than LSH. One of the reasons is a 
onsequen
e of the de�nition of LSH: the larger the radius

R, the smaller the gap between the probabilities of 
ollision for 
lose points and far points [Andoni

and Indyk 2008℄. On the other hand, for the ETH-80 dataset, LSH outperforms DAHC-tree. This

happens be
ause the hash fun
tions for the Eu
lidean spa
e (l2) are more stable than for Manhanttan

distan
es (l1).
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Fig. 8. Re
all for LSH and DAHC-tree as a fun
tion of the query radius (in terms of the average per
entage of the
database retrieved by the sear
h radius).

5.4 Comparison with exa
t sear
hing algorithms

In this se
tion, we 
ompare DAHC-tree with MVP-tree [Bozkaya and Özsoyoglu 1999℄, SAT [Navarro

2002℄, List of Clusters [Chávez and Navarro 2005℄, M-tree [Cia

ia et al. 1997℄, Slim-tree [Traina Jr.

et al. 2002℄, and DBM-tree [Vieira et al. 2006℄, whi
h are the most popular approa
hes for exa
t

similarity sear
h in generi
 metri
 spa
es.

3http://www.mit.edu/~andoni/LSH/
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For our experimental evaluation, we adopted the implementation of MVP-tree, SAT, and List of

Clusters from the Metri
 Spa
e Library4 and the implementation of M-tree, Slim-tree, and DBM-

tree from the GBDI Arboretum Library5. In order to guarantee a fair 
omparison, all the 
ompared

methods were 
on�gured using their best re
ommended setup. DAHC-tree was built using the same

parameters reported in Se
tion 5.3.

Fig. 9 presents a 
omparison of the e�
ien
y (number of distan
e 
al
ulations) of DAHC-tree and

the exa
t te
hniques for di�erent query radii (in terms of the average per
entage of the database

retrieved by the sear
h radius). The results are plotted in log s
ale to minimize the large di�eren
e

resulting from queries with small and large radii, whi
h makes the 
omparison easier.
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Fig. 9. The query performan
e (given by the average number of distan
e 
al
ulations) for DAHC-tree and the exa
t
methods as a fun
tion of the query radius (in terms of the average per
entage of the database retrieved by the sear
h
radius).

Clearly, DAHC-tree is more e�
ient than the exa
t methods for performing similarity queries, with

a high statisti
al signi�
an
e (
on�den
e higher than 0.99). This e�e
t is visible for both databases.

Noti
e that DAHC-tree saves at least 50% of distan
e 
al
ulations when 
ompared to the best exa
t

te
hnique.

It 
an be seen from the plots in Fig. 8 and Fig. 9 that DAHC-tree improves the e�
ien
y on

similarity queries by orders of magnitude while in
urring in small loss of e�e
tiveness (typi
ally 5-

15%) regardless the database. For instan
e, 
onsidering the ETH-80 dataset and a sear
h radius that

retrieves, on average, 0.03 per
ent of the database (i.e., 40 SIFT des
riptors), DAHC-tree a
hieves

≈90% of re
all (i.e., 36 SIFT des
riptors). However, the e�e
tiveness loss is small when 
ompared to

its e�
ien
y gain. For the same settings, DAHC-tree saves more than 98% of distan
e 
al
ulations

when 
ompared to the best exa
t algorithm.

6. CONCLUSIONS

In this paper, we have shown how the relationship between the geometry of the data and the organiza-

tion of an index stru
ture may greatly a�e
t the sear
h performan
e of both disjoint and non-disjoint

te
hniques des
ribed in the literature.

Furthermore, we have presented DAHC-tree, a new approa
h for performing approximate similarity

sear
h in high-dimensional metri
 spa
es. It is an index stru
ture that 
ombines the advantages of

both disjoint and non-disjoint strategies. DAHC-tree is 
onstru
ted by dividing and grouping the data

set into 
ompa
t 
lusters by respe
ting its distribution. This strategy redu
es the e�e
ts imposed by

the above liability.

4http://www.sisap.org/Metri
_Spa
e_Library.html
5http://www.gbdi.i
m
.usp.br/arboretum/
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Our experiments have demonstrated the strong intera
tion between the geometri
 and data stru
ture


onstraints, showing that when those are not 
ompatible, the index as a whole su�ers. Through

experiments we also have learned that DAHC-tree is higher dependent to the 
hoi
e of the parameters

K and f . In spite of that, the 
ondu
ted analysis and the reported 
omparative test results have

shown that DAHC-tree signi�
antly improves the performan
e in pro
essing similarity queries.

Finally, we summarize the limitations of DAHC-tree and our future resear
h plan.

• Control parameter tuning. As we dis
ussed in Se
tion 5.2, the e�e
tiveness and the e�
ien
y of

DAHC-tree is higher dependent to the 
hoi
e of the parameters K and f . We have provided some

parameter-tuning guidelines in the paper. We plan to investigate a mathemati
al model whi
h

allows dire
tly to determine the parameters.

• In
remental partitioning. In addition, most top-down approa
hes are o�ine algorithms and the

partitions 
an be sensitive to insertions and deletions. We plan to extend DAHC-tree to perform

regional repartitioning for supporting insertions and deletions after the initial 
reation of the index

stru
ture.

• Measuring performan
e using other metri
s. In this study, we use only the re
all to measure the

performan
e of similarity queries. We plan to employ other metri
s (e.g., [Zezula et al. 2005℄) to


ompare the performan
e between di�erent indexing s
hemes.
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