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Abstract. Keyword-based searching services over XML streams are essential for widely used streaming applications,
such as dissemination services, sensor networks and stock market quotes. However, XML stream keyword search
algorithms are usually schema dependent and do not allow pure keyword queries. Furthermore, ranking methods are
still relatively unexploited in such algorithms. This paper presents an accuracy and performance study of two keyword-
based search algorithms for XML streams. Our study provides a comparison of these two algorithms by using an XPath
benchmark as source of data and queries. Moreover, we also consider a large collection of XML documents and a large
set of random queries, both based on DBLP dataset. Finally, we propose a strategy that combines both algorithms and
ranks the keyword-based search results.

Categories and Subject Descriptors: H.2.4 [Database Management]: query processing and textual database

Keywords: keyword search, ranking algorithm, XML streams

1. INTRODUCTION

XML has become the most successful and ubiquitous technology for Web data exchange [Wilde and
Glushko 2008]. So much has already been done on XML research that DBLP1 had over 5500 pa-
pers on XML in the beginning of 2009 [Moro et al. 2009]. The question then becomes: what else
can be done? And the answer, that keeps us moving, is simple: there is still interesting issues to
be solved. One of those was identified by Vagena and Moro [2008] as semantic search over XML
streams, i.e., keyword-based search over XML streams. This issue is motivated by three problems of
using structured XML query languages (e.g., XPath and XQuery) on stream environments: (i) these
languages require knowledge of the data structure in order to formulate meaningful queries; (ii) Web
XML documents have large amounts of plain text, which makes it hard for processing value-based
predicates with exact semantics; and (iii) those two issues are aggravated when we consider a Web
scale, distributed system with different data sources, since multiple data sources require structured
query rewriting. Furthermore, keyword-based search over XML streams is essential for widely used
streaming applications, such as dissemination services, sensor networks and stock market quotes.

1http://www.informatik.uni-trier.de/˜ley/db/
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The work by Vagena and Moro [2008] proposes a query language and two algorithms for semantic
search over XML streams. The query language allows users to specify a set of query terms that can
inform labels and keywords together (label::keyword) or individually (label::, ::keyword, keyword).
The two algorithms are based on node relatedness heuristics for searching over XML documents.
Note that there are other approaches for searching over stored XML documents (XRANK [Guo et al.
2003] and SLCA [Xu and Papakonstantinou 2005]). Such approaches rely heavily on full-text indexes,
which do not exist on XML stream environments. Although the authors propose a language and two
algorithms for keyword-based search over XML streams, they do not present any kind of evaluation
of such algorithms in terms of effectiveness and performance.

Moreover, once there is a keyword-based search algorithm for XML streams, a natural further step is
to present the results to the user ordered by their relevance. However, ranking has not been exploited
in such algorithms. Currently, keyword-based search algorithms that allow ranking use disk-based
structures, such as inverted lists or indexes to produce ranked results [Bao et al. 2009; Cohen et al.
2003; Guo et al. 2003; Li et al. 2010; Liu and Chen 2008; Zhou et al. 2010]. Thus, those algorithms
are not suitable for the stream environment that we consider.

This paper presents an evaluation study of two keyword-based search algorithms for XML streams
that employ the lowest common ancestor (LCA2) semantics (which were introduced in [Vagena and
Moro 2008]). This study is divided in two parts. The first one uses queries and dataset from XPath-
Mark [Franceschet 2005], a well known XPath benchmark, in order to fairly evaluate those algorithms
in terms of precision and recall. The second one simulates a real stream environment as it considers
a large collection of documents and a large set of random queries, both taken from DBLP.

Overall, our results show the effectiveness of those two algorithms for supporting XML keyword-
based queries. Moreover, based on such evaluation, we also propose a ranking strategy that combines
the two algorithms in order to improve query results. Our contributions can be summarized as follows:

(1) We present an effective and efficient implementation of the XRANK and SLCA algorithms for
keyword searching over XML streams.

(2) We perform an accuracy and performance study of these algorithms by using an XPath benchmark
as source of data and queries. We perform an accuracy and scalability study by using a large
collection of XML documents and a large set of random queries, both based on DBLP.

(3) We propose an algorithm, called LCARank, a simple, efficient and effective strategy for ranking
keyword-based search results.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 presents
background information on the XRANK and SLCA algorithms. Section 4 describes our empirical
study and discusses its results. Section 5 presents LCARank, our ranking algorithm for keyword
search results. Finally, Section 6 concludes the paper.

2. RELATED WORK

Our work addresses three topics: traditional XML search, XML search over streams, and XML search-
ing and ranking algorithms. This section summarizes related work on such topics and emphasizes how
our paper contributes to the state-of-the-art.

Traditional XML Search. XML search algorithms employ heuristics to decide whether a node3
is an answer to a query. There are many keyword-based algorithms for traditional XML search, which
considers persistent environments where XML documents can be permanently stored and indexed.

2The LCA of nodes u and v in a tree is the shared ancestor of u and v that is located farthest from the root.
3Node in an XML document refers to both elements and attributes.
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Fig. 1. XML document example: books, their chapters and authors.

Usually, the best answers for such queries are the most specific set of nodes containing the query terms
[Termehchy and Winslett 2009]. After applying some heuristic, the search algorithms return either
the identified sets or the document fragments containing such sets. The most employed heuristics
are based on the LCA semantics [Liu and Chen 2008; Sun et al. 2007; Vagena et al. 2007; Xu
and Papakonstantinou 2008; Zhou et al. 2010]. Current work mainly focuses on improving the
precision and performance of existing keyword search algorithms such as XRANK and SLCA. Xu
and Papakonstantinou [2008] propose the Indexed Stack algorithm, which presents precision and
performance improvements over XRANK. Zhou et al. [2010] present Hash Count, an algorithm that
outperforms Indexed Stack. Li and Chen [2008] present the Max-Match algorithm, which improves
SLCA precision. Although these algorithms enhance existing results, they do not provide any ranking.
Moreover, they use auxiliary structures such as inverted lists or B-tree indexes to improve performance
and precision. However, these structures are not supported when searching over XML streams.

XML Search over Streams. Different papers have proposed strategies to evaluate queries over
XML streams and can be divided in tow groups. The first one mainly addresses XPath processors for
XML streams [Chen et al. 2006; Onizuka 2010; Peng and Chawathe 2005; Ramanan 2009], where a
set of XPath queries is evaluated against a stream of documents to verify which documents satisfy
the queries. However, these papers do not address keyword queries and ranking strategies.

The second group focuses on keyword-based queries, such as Li et al. [2008]. Their strategy ranks
XML nodes whose leaves match keywords by using the distance between leaves as a ranking criterion.
However, it does not handle labels as keywords and, in some situations, produces unexpected results.
For example, consider the following user query based on Figure 1. Suppose a user wants an author
L2 who wrote a book or book chapter titled T2. Thus, according to their strategy, node book&2 will
be returned, since the leaves of title&4 and author&6 match the keywords. However, this result is
not correct because author L2 wrote a book chapter titled T1, not T2. Our work avoids this type of
problem, as we shall see later.

XML Search and Ranking Heuristics. There are many specialized XML search engines that
implement keyword searching with ranking heuristics [Bao et al. 2009; Cohen et al. 2003; Guo et al.
2003; Li et al. 2010]. Bao et al. [2009] present the XReal algorithm, which extends the TF-IDF
similarity scheme to handle XML documents, thus providing a relevance ranking for search results.
Cohen et al. [2003] present the XSearch algorithm that uses a simple TF-IDF ranking, involving tree
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sizes and node relationships. XRANK [Guo et al. 2003] extends Google’s PageRank [Brin and Page
1998] to XML element level to produce ranked LCA results. Li et al. [2010] propose a ranking function
that uses statistic information based on XML content and structure distributions. These distributions
help to evaluate correlations between possible results and keyword queries.

Inverted lists, indexes and statistic information cannot be used when searching over XML streams
because they are not supported in continuous streaming environments. Our work addresses this
problem by proposing a ranking strategy that combines the SLCA and XRANK algorithms, prioritizing
those nodes on the lowest subtrees.

3. KEYWORD SEARCHING CONCEPTS

This section summarizes the keyword query language and the search algorithms XRANK and SLCA.
It also describes a combination of these search algorithms, which will be used as a ranking strategy.

3.1 Search Language

Vagena and Moro [2008] propose a semantic query language (inspired by [Cohen et al. 2003] and
[Vagena et al. 2007]) and two algorithms for keyword search over XML streams. Specifically, a user
specifies a query as a set of terms that inform labels (l) and keywords (k) in two ways: (i) together
as l::k, or (ii) individually as l::, ::k and k. A node n within a document satisfies a query term when
its label is equal to l and its tokenized textual content contains the word k. Also, n satisfies a query
term of the form k if either its label is k or its tokenized textual content contains the word k. In
other words, this last form of query allows the user to match its keywords to the node structure or
to its value. Each query term results in a separate stream (S) that contains all the nodes that satisfy
that term. Since a query may be composed of many query terms, its complete result is formed by
the document fragments that contain nodes from S with the additional constraint that such nodes
are meaningfully related. This last constraint is processed by the relatedness heuristics, as explained
next.

3.2 Search Algorithms and Heuristics

After presenting the query language, the work in [Vagena and Moro 2008] introduced two algorithms
for keyword search over streams based on node relatedness heuristics: XRANK [Guo et al. 2003]
and SLCA [Xu and Papakonstantinou 2005]. Note that there are other approaches for searching over
stored XML documents, as mentioned in Section 2. Such approaches rely heavily on full-text indexes,
which do not exist on an XML stream environment. Furthermore, these approaches have employed
many different heuristics to decide when a group of nodes contains meaningfully related nodes. A
comparison survey of such heuristics [Vagena et al. 2007] has concluded that the heuristics described
in [Guo et al. 2003] and [Xu and Papakonstantinou 2005] (and their variants) are the ones that
return better quality results (less false positives and negatives). Those two heuristics are based on
the LCA semantics. They are defined in terms of two nodes, n1 and n2, as follows. Assume that
the XML semantic query Q={Q1,Q2} has produced two streams S1 and S2, for query terms Q1 and
Q2 respectively (note that the following definitions involve only two nodes, but they can handle any
number of nodes).

Definition 1. (XRANK Heuristic [Guo et al. 2003]) The XRANK heuristic asserts that two
nodes n1 and n2 in an XML document di, with n1 ∈ S1 and n2 ∈ S2, are meaningfully related if there
are no nodes n3 ∈ di and n4 ∈ di such that LCA(n1, n3) is descendant of LCA(n1, n2) or LCA(n2, n4)
is descendant of LCA(n1, n2).

To better illustrate the XRANK heuristic, we present Example 1, which is based on Figure 1.
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Example 1. Suppose a user wants to retrieve titles written by author L2. To do so, she issues
the keyword query Q={author::L2, tittle}, which has two terms, Q1={author::L2} and Q2={title}.
Initially, the set of nodes that match the two query terms are S1={author&3, author&6, author&9,
author&12} and S2={title&4, title&7, title&10, title&13}, respectively. The XRANK heuristic will ac-
cepted the pairs (author&3, title&4), (author&6, title&7), (author&9, title&10), (author&12, title&13).
Particularly, (author&3, title&4) will be accepted because LCA(author&3, title&4) = book&2 has no
LCA descendant with author&3 or title&4. For instance, LCA(author&3, title&7) = book&2 is not
descendant of LCA(author&3, title&4) = book&2. Therefore, the pair (author&3, title&4) will be ac-
cepted and (author&3, title&7) will not, even though author&3 ∈ S1 and title&7 ∈ S2. This explanation
applies to accepted and rejected pairs. As final result, the XRANK heuristic will return nodes book&2,
chapter&5, book&8and chapter&11, because they are the respective LCA nodes for the accepted pairs.

Definition 2. (SLCA Heuristic [Xu and Papakonstantinou 2005]) The SLCA heuristic states that
two nodes n1 and n2 that belong to the same document di, where n1 ∈ S1 and n2 ∈ S2, are meaningfully
related unless there exist two other nodes n3 and n4 that also belong to di such that the LCA(n3, n4)
is a descendant of the LCA(n1, n2).

Likewise, Example 2 illustrates the SLCA heuristic according to Figure 1.

Example 2. For the same query Q={author::L2, tittle}, presented in Example 1, the SLCA heuris-
tic works as XRANK. However, it also rejects the pairs (author&3, title&4) and (author&9, title&10),
because LCA(author&6, title&7) = chapter&5 is descendant of LCA(author&3,title&4) = book&2. Sim-
ilarly, LCA(author&12, title&13) = chapter&11 is descendant of LCA(author&9,title&10) = book&8.
Thus, it returns as result the document fragments rooted at chapter&5 and chapter&11, which are the
LCA nodes for the accepted pairs.

3.3 XRANK versus SLCA

The intuition behind the SLCA and XRANK heuristics is that smaller trees contain more meaningfully
related nodes. The difference between these two heuristics is that the first one disqualifies a pair of
nodes n1 and n2 if there exists any other pair (n3, n4) with LCA(n3, n4) being a descendant of
LCA(n1, n2). Consequentially, SLCA returns the smallest LCA nodes whose elements match the
query terms. Furthermore, SLCA establishes that appropriate result nodes are on the lowest XML
subtrees.

In practice, XRANK includes SLCA result nodes and their ancestors that match the query terms.
Particularly, only XRANK handles the ambiguity that might exist among XML labels, which has
been identified as a semantic problem in XML keyword-based queries [Bao et al. 2009]. For example,
in Figure 1, the keyword title occurs as book child and chapter child. Therefore, XRANK heuristic
returns book and chapter nodes for the query in Example 1. SLCA, on the other hand, ignores this
semantic aspect and returns only titles that appear as chapter child.

Therefore, by combining the XRANK and SLCA algorithms, we are able to handle any label ambi-
guity that might exist in the XML tree. In this way, because SLCA returns the smallest XML subtree
results that present no keyword ambiguity, they are delivered first. The remaining non-SLCA results,
generated exclusively by XRANK, are delivered subsequently. Our ranking algorithm, LCARank
presented in Section 5, is based on this strategy.

4. EXPERIMENTAL EVALUATION

This section presents our experimental study for comparing the accuracy of XRANK and SLCA.
Specifically, Section 4.1 compares the accuracy of XRANK and SLCA considering queries from an
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XPath benchmark and its dataset. Then, Section 4.2 extends the accuracy study by considering a
larger amount of documents and queries, both based on the DBLP dataset.

4.1 Accuracy on Benchmark Queries

The queries considered are the keyword versions of a subset of the XPath queries defined for the
XPathMark benchmark [Franceschet 2005]. This way, we were able to use the corresponding results
returned by a commercial XPath parser (Saxon [Kay 2010]) as a baseline. The queries were evaluated
over the XMark auction dataset [Schmidt et al. 2002], a well-known synthetic XML dataset. XMark
has important characteristics for our evaluation, since its documents present repetitive, recursive
elements and deep XML trees. These features define a complex, more consistent dataset for recall
and precision evaluations. In addition, its document generator allows creating XML documents of
different sizes, which is very important for performance analyses. As we shall see, our experimental
results show that XRANK and SLCA are suitable algorithms for keyword-based search over XML
streams.

The experimental evaluation considered the following steps:

Step 1: We analyzed the 47 XPath queries from the XPathMark benchmark and identified those
that could be expressed in the semantic query language described in Section 3. Notice that XPathMark
is an XPath benchmark and, therefore, its queries have been specifically designed to assess XPath
features.

Step 2: We processed the keyword version of these queries using the XRANK and SLCA algorithms
over the XMark dataset. Thus, we simulated a stream environment by processing each document as an
XML stream unit. The algorithms received these documents as input and processed them sequentially
without any temporary storage.

Step 3: We processed the corresponding XPath queries by using the Saxon parser. This way, we
were able to identify the relevant results that form our baseline, against which the keyword-based
algorithms may be evaluated for recall and precision.

Step 4: We compared the accuracy of the algorithms in terms of recall, precision and F1 measures.

Next, we present the experimental setup, the queries and the results of the accuracy evaluation.

Experimental Setup. We created a dataset with five XML documents by using the XMark
generator. The size of these documents in mega bytes were 0.116, 0.212, 0.468, 0.909 and 1.891. It is
important to notice that the sizes of these documents are close to the sizes of real documents usually
processed in XML stream environments [Lenkov 2003]. Each document was randomly generated
representing a single auction XML dataset. We implemented the XRANK and SLCA algorithms in
Java, by using Sun JDK version 1.6.0 and Saxon parser Java version 9.2. The experiments were
conducted on an Intel Core 2 Duo workstation with 2.53 GHz and 4GB memory.

Queries. We used 18 of the 47 XPath queries defined by the XPathMark benchmark. These 18
queries are those whose semantics could be expressed by the keyword query language we adopted.
Table I describes these 18 XPath queries and shows their corresponding keyword-based versions. For
instance, the XPath query Q1 (/site/regions/*/item) returns elements item that are descendent of
an element regions, child of site. In the keyword query language, the corresponding semantic is
expressed by the query regions:: item::, which returns subtrees with elements item that are children,
parents or brothers of elements regions. Hence, the keyword query language is more simple and
flexible but cannot always express the exact semantics of XPath.

As Table I shows, all 18 XPath queries are expressed in keywords, despite the use of different axes,
Boolean expressions and relational operators. Specifically, XPath queries with Boolean operations
(Q7, Q8 and Q18) are mapped to keywords without using any logical operator; queries with matching
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Table I. Selected XPath queries and their equivalent keywords.
Description XPath queries Keyword queries
Q1) All the items /site/regions/*/item regions:: item::
Q2) Keywords in annotations of closed auc-
tions

/site/closed_auctions/closed_auction/annotation/description/par-
list/listitem/text/keyword

closed_auction:: annotation::
description:: keyword::

Q3) All the keywords //keyword keyword::
Q4) Keywords in a paragraph item /descendant-or-self::listitem/descendant-or-self::keyword listitem:: keyword::
Q5) Paragraph items containing a keyword //keyword/ancestor::listitem listitem:: keyword::
Q6) Mails containing a keyword //keyword/ancestor-or-self::mail mail:: keyword::
Q7) North or South American items /site/regions/namerica/item | /site/regions/samerica/item namerica:: item:: samerica::
Q8) People having address and either phone
or homepage

/site/people/person[address and (phone or homepage)] person:: address:: phone::
homepage::

Q9) Initial and last bidder of all open auctions /site/open_auctions/open_auction/bidder[position()=1
and position()=last()]

open_auction:: bidder::

Q10) Items whose description contains ’gold’ /site/regions/*/item[contains(description,’gold’)] item:: description:: ::gold
Q11) People names starting with ’Ed’ /site/people/person[starts-with(name,’Ed’)] person:: name::Ed
Q12) Mails sent on the 10th /site/regions/*/item/mailbox/mail[substring-before(date,’/’)=’10’] mail:: date::10
Q13) Mails sent in September /site/regions/*/item/mailbox/mail[substring-before(substring-

after(date,’/’),’/’)=’09’]
mail date::09

Q14) Mails sent in 1998 /site/regions/*/item/mailbox/mail[substring-after(substring-
after(date,’/’),’/’)=’1998’]

mail:: date::1998

Q15) Mails sent in the 21st century /site/regions/*/item/mailbox/mail[substring(date,7,2)=’20’] mail:: date::20
Q16) Items with descriptions longer than 1000
characters

/site/regions/*/item[string-length(normalize-
space(string(description))) > 1000]

item:: description::

Q17) Person address longer than 30 characters /site/people/person[string-length(translate(concat(address/street,
address/city, address/country, address/zipcode)," ","")) > 30]

person:: address:: street::
city:: country::

Q18) People with both an email and a home-
page

/site/people/person[boolean(emailaddress)
= true() and not(boolean(homepage)) = false()]

person:: emailaddress::
homepage::

string functions (Q10 to Q15) are mapped to label::keyword (label and content together); and queries
with XPath relational filter operators (Q9, Q16 and Q17) are mapped without their filters. As the
keyword query language lacks support for all these operators, we adopted an expression as close as
possible to the semantics of the corresponding XPath query. Despite that, queries Q1, Q2, Q3, Q4,
Q5 and Q6 are fully expressed by our query language.

These 18 queries form a very consistent query set for our experimental evaluation. Previous work
evaluated simple keyword queries [Bao et al. 2008; Cohen et al. 2003; Ramanan 2009; Yang and Shi
2007; Zhou et al. 2010]. Comparing the power of XPath against keyword-based query languages is
beyond the scope of our study. Nonetheless, we employed an XPath benchmark to supply a set of
expressive queries and provide a baseline for a consistent accuracy evaluation.

Accuracy Evaluation. We evaluated the accuracy of the XRANK and SLCA algorithms in terms
of recall, precision and F1 measures, which are widely used in the information retrieval realm [Baeza-
Yates and Ribeiro-Neto 1999]. In our context, given the result of a query, precision measures the
percentage of the resulting nodes that are relevant, whereas recall measures the percentage of the
relevant nodes that are in the result. F1 is the weighted harmonic mean of precision and recall. We
used the default balanced F1 measure, which equally weights precision and recall.

In our evaluation, we used the set of nodes returned by the Saxon parser (for the XPath queries) to
determine the relevance of the nodes returned by the keyword queries. Thus, for calculating precision,
if the nodes returned by XRANK and SLCA were in the set of relevant nodes or in the set of their
ancestors, we considered them relevant nodes. If a relevant node is descendant of, or equal to, the
XRANK or SLCA nodes, we considered it for calculating the recall measure.

Table II presents precision, recall and F1 measures for each processed query using both algorithms.
The values correspond to averages and standard deviations of these measures considering the results
over the XMark dataset, which was composed of documents of different sizes.

Looking at the results, only very few queries present low precision. For example, queries Q9 and
Q16 are very selective ("Initial and last bidder of all open auction" and "Items with description longer
than 1000 characters"). Thus, when expressed in XPath, they return few nodes. On the other hand,
their respective keyword versions are unable to express the same restrictions and, therefore, return
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Table II. Average Measures for the Accuracy Evaluation
Query XRANK SLCA XRANK SLCA XRANK SLCA

precision precision recall recall F1 measure F1 measure
1 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

2 0.48± 0.18 0.44± 0.17 1.00± 0.00 1.00± 0.00 0.63± 0.17 0.60± 0.17

3 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

4 1.00± 0.01 0.99± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

5 1.00± 0.01 0.99± 0.01 1.00± 0.00 0.79± 0.03 1.00± 0.00 0.88± 0.02

6 0.79± 0.07 0.73± 0.11 1.00± 0.00 1.00± 0.00 0.88± 0.04 0.84± 0.07

7 1.00± 0.00 1.00± 0.00 0.91± 0.00 0.91± 0.00 0.95± 0.00 0.95± 0.00

8 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.78± 0.08 1.00± 0.00 0.87± 0.05

9 0.23± 0.08 0.23± 0.08 1.00± 0.00 1.00± 0.00 0.37± 0.11 0.37± 0.11

10 0.75± 0.23 0.73± 0.24 1.00± 0.00 1.00± 0.00 0.84± 0.16 0.82± 0.17

11 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

12 0.72± 0.25 0.67± 0.31 1.00± 0.00 1.00± 0.00 0.82± 0.18 0.76± 0.26

13 0.58± 0.37 0.55± 0.39 1.00± 0.00 1.00± 0.00 0.69± 0.27 0.66± 0.30

14 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

15 0.97± 0.03 0.97± 0.04 1.00± 0.00 1.00± 0.00 0.98± 0.02 0.98± 0.02

16 0.24± 0.01 0.24± 0.01 1.00± 0.00 1.00± 0.00 0.39± 0.02 0.39± 0.02

17 0.54± 0.15 0.54± 0.15 1.00± 0.00 1.00± 0.00 0.69± 0.14 0.69± 0.14

18 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Average 0.79± 0.27 0.78± 0.28 1.00± 0.00 0.97± 0.07 0.85± 0.21 0.82± 0.21

many more nodes. Regarding recall, both algorithms returned 100% of the relevant nodes for almost
all queries. This was due to the semantics of these algorithms that include in their results more nodes
than those for the XPath queries.

In Table II, an impact on accuracy evaluation would be expected if we used raw keywords instead
of explicit labels in queries. For example, Q14 could be “mailbox mail 1998”, instead of “mailbox::
mail::1998”. To address this issue, we run the SLCA algorithm with keyword queries without labels.
The accuracy results of this experiment, however, showed no difference for this type of query, because
the XMark dataset presents no ambiguity between labels and content.

4.2 Accuracy and Scalability on Random Queries

This section presents an accuracy study of XRANK and SLCA involving a dataset taken from DBLP,
which is quite different from the XMark dataset. The DBLP dataset has many repetitive elements
with no recursion, which is a key factor in XML schemas found on the Web [Laender et al. 2009].
We adapted the DBLP XML records for a stream environment by breaking it in a set of documents,
where each record is an individual XML document. We then performed different queries over the
DBLP dataset, considering one, two and three query terms, and different selectivity4 ranges. All
queries employed the keyword-based language presented in Section 3. The main goal of this study is
to validate the accuracy of both algorithms considering a huge quantity of documents and random
queries. Next, we present the experimental setup, the query definition process and the experimental
results.

Experimental Setup. We generated the DBLP dataset with 100,000 XML documents taken from
the DBLP XML records. Each document represents one single record, with 4KB on average, and was
extracted randomly. We used the same XRANK and SLCA implementations of the Section 4.1 and
the same runtime environment.

Query Definition. We analyzed the DBLP dataset and verified the kind of queries we could use.
For accuracy and scalability evaluation, we considered five ranges of query selectivity. Each range has

4By query selectivity we mean how many XML documents are expected to be returned as a result of a query.
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Table III. Selectivity Ranges for Queries Terms
Range Initial to Final (%) Min to Max Quant. Terms Quant.

1 0.01 – 0.20 10 – 200 14651
2 0.21 – 0.40 201 – 400 500
3 0.41 – 0.60 401 – 600 170
4 0.61 – 0.80 601 – 800 92
5 0.81 – 1.00 801 – 1000 52

50 queries with 1, 2 and 3 query terms. The query terms were randomly determined, but all involved
the form label::keyword.

In order to determine the ranges, we analyzed the selectivity of the single term queries and chose
those that could involve a reasonable number of documents. Specifically, during setup time, we built
inverted lists for single term queries and verified their sizes. This analysis demonstrated that the six
most frequent single term queries are meaningless (with non-expressive keywords: of , for, a, and, the,
and in). Moreover, most single term queries (approximately 96%) return no more than 10 documents.
This same behavior was observed in the original collection of DBLP XML records.

From this analysis and considering the usual high query selectivity submitted by users, we employed
selectivity ranges varying from 0.01% to 0.10%, as shown in Table III. According to the first selectivity
range, each one of the 14,651 single term queries returns from 0.01% to 0.20% of the dataset documents.
Likewise, each of the 52 single term queries in the fifth range returns from 0.81% to 1.00% of the
documents. Consequentially, for fair comparison, every selectivity range involved only 50 randomly
chosen terms.

Experimental Results. Initially, we evaluated the five selectivity ranges using five groups of
50 single term queries, one group for each range. We executed the five groups against the dataset
with 100,000 randomly selected documents. Each query returned the correct set of documents, as
found in the inverted list from Query Definition. This fact confirms the correct execution of both
algorithms. In this evaluation, we also calculated the mean response time per each selectivity range,
which were practically the same for both the XRANK and SLCA algorithms. Due to lack of space
and the triviality of such results, we do not show them. We also evaluated queries with two terms for
both algorithms, using the same five selectivity ranges. We generated a two-term query group for each
selectivity range, resulting in five groups (each one with 50 queries). Again, both algorithms returned
the correct answers. Finally, we evaluated three-term queries only for the first selectivity range
(0.01% to 0.20%). For other selectivity ranges, obtaining 50 three-term queries proved unfeasible.
Thus, we built a single group of 50 three-term randomly selected queries and processed them by using
the XRANK and SLCA algorithms. Both algorithms returned the correct answer again, which was
confirmed by matching their results to the inverted list entries.

Regarding scalability, we compared the mean response time for both algorithms when using one,
two, and three-term queries. In this evaluation, we only considered the first selectivity range. Figure 2
shows these results. Note that both algorithms present practically the same mean time regardless the
number of terms. This corroborates our claim that in keyword search over streams, performance time
is not an issue when using both algorithms. In fact, what really matters is the result accuracy.

5. LCARANK ALGORITHM

As discussed in Section 3.3, SLCA nodes and their ancestors are within XRANK result nodes, which we
call non-SLCA nodes. However, the XRANK algorithm returns SLCA and non-SLCA results without
any order. Hence, our algorithm LCARank suggests a simple ranking strategy by combining XRANK
and SLCA algorithms. LCARank works with two result lists, one for SLCA nodes and another one
for non-SLCA nodes. When LCARank identifies a result node as SLCA, the node must stay in the
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Algorithm 1 LCARank - main()
1: {Input: Set of Query Terms Qt}
2: { Stream of XML documents Sd}
3: {Output: Set of result XML nodes Rt}
4: Rt := ∅ {initialize result set}
5: {process each document d in Sd}
6: for d ∈ Sd do
7: s.clear() {initialize node stack}
8: Rt := Rt∪SAX_Parse(d, Qt, s, Rt) {merge new results with previous ones}
9: end for

10: return Rt

SLCA result list, otherwise it goes to the non-SLCA result list. As final result, LCARank returns the
SLCA nodes first and then the non-SLCA ones. The LCARank intuition is that the algorithm now
returns the smallest common lowest result elements and then their ancestors, in this order.

5.1 The Algorithm.

The general operation of LCARank is described by Algorithm 1. It evaluates a query Qt over a
stream of documents Sd. It uses internally a global node stack s (explained later) and a list Rt.
Each document in Sd is sequentially processed by a SAX parser (line 8). This parser traverses an
XML document tree and generates three events for each visited node, which are startElement(),
characters() and endElement(). When the parser opens an XML node tag, it generates the event
startElement(), which triggers Algorithm 2. Likewise, when the parser closes an XML node tag,
it generates the event endElement(), triggering Algorithm 4. For XML text contents (enclosed by
the opening and closing node tags) the SAX parser generates the characters() event, which triggers
Algorithm 3. As an example, suppose the parser visits the leaf node author&3 in Figure 1. In this
situation, it generates sequentially the events startElement(), characters() and endElement(), which
then trigger respectively Algorithms 2, 3 and 4.
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Algorithm 2 LCARank - startElement()
1: {Input: Accessed Document Node n}
2: { Set of Query Terms Qt}
3: { Node Stack s}
4: {create new stack node, whose label is equal to the started new XML node}
5: sn.label := n.label
6: {consider the current node potentially as SLCA}
7: sn.CAN_BE_SLCA := TRUE
8: {set its query term bitmap to 0 (each bit maps a query term)}
9: sn.term_instances := ∅

10: {test if current node matches query terms with l:: or k}
11: if ∃ l:: ∈ Qt : l == n.label then
12: {current node matches query term l::, set query term bit to 1}
13: sn.term_instances(l::) := FOUND
14: else if ∃ k ∈ Qt : k == n.label then
15: {current node matches query term k, set query term bit to 1}
16: sn.term_instances(k) := FOUND
17: end if
18: s.push(sn)

Algorithm 3 LCARank - characters()
1: {Input: Textual Content text}
2: { Node Stack s}
3: {process each word(token) in current text node}
4: for word ∈ tokenize(text) do
5: {test if current word matches query terms with l::k or ::k or k}
6: if ∃ ::k ∈ Qt : k == word then
7: {current word matches query term ::k, set query term bit to 1}
8: s.top().term_instances(::k) := FOUND
9: else if ∃ k ∈ Qt : k == word then

10: {current word matches query term k, set query term bit to 1}
11: s.top().term_instances(k) := FOUND
12: else if ∃ l ::k ∈ Qt : (l == s.top().label AND k == word) then
13: {current word matches query term l::k, set query term bit to 1}
14: s.top().term_instances(l::k) := FOUND
15: end if
16: end for

Algorithms 2, 3 and 4 access the global node stack s, which maintains the opened nodes during the
document processing. The top of the stack maintains the most recent node. Thus, each input stack
corresponds to a node and has its label, its attributes and its bitmap for the query terms, whose bits
individually map each user query term.

Algorithm 2 pushes the current node into the stack (line 5). It also verifies if the current node label
matches a keyword with k or k:: (lines 11 to 17). In this case, the respective query term bit in its
bitmap is set to 1 (line 13 or 16). For simplicity, we omitted the code that handles XML attributes,
as the corresponding process is identical to visiting a leaf node. In this case, the node’s label and its
textual values are equivalent to the attribute name and value, respectively.

Algorithm 3 accesses the top node on the stack and verifies if its text tokens match query terms
with k, ::k or l::k (lines 4 to 15). Similarly, the matched query terms have their respective bits set to
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1 in the current bitmap (lines 8, 11 or 14).

Algorithm 4 LCARank - endElement()
1: {Input: Set of result XML nodes Rt}
2: {get the top node of the stack, which is being finalized}.
3: rn := s.pop()
4: {test if current node matches all query terms}
5: if rn.term_instances == COMPLETE then
6: {test if current node adheres to SLCA node}
7: if sn.CAN_BE_SLCA == TRUE then
8: {current node matches all query terms and adheres to SLCA}
9: {semantics, then it is included in the SLCA result list}

10: Rt.slca := Rt.slca∪{rn}
11: else
12: {current node matches all query terms, but does not adhere to SLCA}
13: {semantics, then it is included in the non-SLCA result list}
14: Rt.no_slca := Rt.no_slca∪{rn}
15: end if
16: {since current node matches all query terms,}
17: {its parent does not adhere to SLCA semantics}
18: s.top().CAN_BE_SLCA := FALSE
19: else
20: {test if current node does not adhere to SLCA node}
21: if sn.CAN_BE_SLCA == FALSE then
22: {since current node does not match all query terms and}
23: {does not adhere to SLCA semantics, its parent also does not}
24: {adhere to SLCA semantics}
25: s.top().CAN_BE_SLCA := FALSE
26: end if
27: {process each bit in current node bitmap}
28: {since current node does not match all query terms,}
29: {1 bits of node are copied to the its parent node}
30: for tk ∈ rn.term_instances.keys do
31: {test if current bit, corresponding to a query term, is true}
32: if rn.term_instances(tk) == FOUND then
33: {copy current bit 1 to respective bit in parent node}
34: s.top().term_instances(tk) := FOUND
35: end if
36: end for
37: end if

Finally, Algorithm 4 finishes the current node and removes it from the node stack (line 3). If its
bitmap has only 1′s, then that node satisfies all query terms and therefore is a result node, SLCA or
non-SLCA (lines 5 to 19). Otherwise, its bit 1′s are copied to the node on top of the stack, which is
the parent of the popped node in the XML tree (lines 30 to 36). Algorithm 4 ranks the result nodes
by using two internal lists in Rt: Rt.slca that groups SLCA results and Rt.non_slca that groups other
results, the non-SLCA ones (lines 7 to 15).

When Algorithm 4 finds a result node, if its SLCA flag (CAN_BE_SLCA) is set to TRUE (line 7),
it is an SLCA result node (line 10). According to SLCA semantics, its parent is therefore non-SLCA.
Algorithm 4 then sets the SLCA flag of its XML parent node (the next on top the stack) to FALSE
(line 18). Nodes with incomplete bitmap and FALSE SLCA flag have the SLCA flags of their parent
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Fig. 3. LCARank algorithm example

nodes set to FALSE (lines 21 to 26). Every new visited node is potentially an SLCA node, thus
Algorithm 2 always sets the new node SLCA flag to TRUE (line 9). The following example illustrates
how these algorithms work.

Example 3. We use again the query “author ::L2 tittle” and the XML document in Figure 1.
Upon receiving the input document, the search procedure invokes the SAX parser and starts scanning
the XML document. Figure 3a presents the stack contents and the bitmaps after the Bib&1, book&2

and author&3 start tags nodes have been visited and the textual content of author has been processed.
These three nodes currently reside in the stack and have their SLCA flags as TRUE. In addition, the
bit corresponding to the author element has been updated, reflecting that the token L2 satisfies the
term author::L2. In the next step, the author&3 end tag is visited, so that element is popped from the
stack. As its bitmap is incomplete with 1′s, the 1′s in the bitmap are copied to their respective places
in the book&2 node bitmap. The same happens when the node title&4 is popped. The bitmap and stack
current configurations are illustrated in Figure 3b. At this point, node book&2 is a query result whose
bitmap is composed only of 1′s. A similar copy of 1′s also happens in node chapter&5, after node
title&7 is popped, as shown in Figure 3c. Node chapter&5 is a query result as its bitmap is complete
with 1′s. In the next step, node chapter&5 is popped and included as an SLCA result node in list
Rt.slca because its SLCA flag is TRUE. The new top, book&2 node, has its SLCA flag set to FALSE
(Figure 3d). When this node is popped, it is included in list Rt.non_slca as its bitmap is complete with
1′s and its SLCA flag is FALSE. At this point, the new top Bib&1 has its SLCA flag set to FALSE,
(Figure 3e). As result, the query answers are Rt.slca = {chapter&5} and Rt.non_slca = {book&2}
(Figure 3f). The algorithm continues operating in this fashion until all tags within the document have
been visited. Finally, we have Rt.slca = {chapter&5, chapter&11} and Rt.non_slca = {book&2, book&8}.
Considering original and separated implementations of XRANK and SLCA in [Vagena and Moro
2008], the final result would be Rt = {chapter&5, book&2, chapter&11, book&8}, without ranking, and
Rt = {chapter&5, chapter&11}, respectively.

5.2 Discussion on Precision

We run the LCARank algorithm for processing the keyword queries described in Table I. As expected,
we obtained the same precision, recall and F1 values shown for the XRANK algorithm. SLCA nodes
involve smaller result subtrees than non-SLCA nodes and present no keyword ambiguity. Hence,
they have relevance weight greater than non-SLCA ones. LCARank improves the original XRANK
algorithm ranking as their internal SLCA nodes are always returned before the others, the non-SLCA.

To demonstrate this improvement, we calculated the normalized discounted cumulative gain (DCG)
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Table IV. Mean Normalized DCG per file
Document Size (MB) Mean XRANK nDCG

0.12 0.98
0.21 0.95
0.47 0.96
0.91 0.96
1.89 0.97

[Järvelin and Kekäläinen 2002] between XRANK and LCARank algorithms, considering LCARank
ranking as ideal. Particularly, DCG evaluates a ranking metric for a result list, summing up the
document relevance values in a result list. Each document in the result list has a relevance value
based on its position in the list. The premise of DCG is that highly relevant documents appearing
lower in a result list should be penalized as the relevance value is reduced logarithmic proportionally to
the position of the result. DCG measure is calculated using Equation 1, where p is a particular ranking
position, reli is the relevance weight for the document in the position p and rel1 is the relevance weight
for first document.

DCGp = rel1 +
p∑

i=2

reli
log2 i

(1)

The DCG comparison for XRANK and LCARank algorithms has clear interpretation if we use the
normalized DGC, which is done assuming one of these algorithms as ideal. In this case, LCARank is
ideal as their smaller subtrees are returned first. For a query, the normalized discounted cumulative
gain (nDCG) is calculated using the Equation 2, where IDCGp is LCARank DCG, given as ideal.

nDCGp =
DCGp

IDCGp
(2)

In our context, we adapted the DCG metric to consider retrieved nodes in a single XML document
instead of a document list. For each query, we calculated its DCG based on retrieved nodes in a single
XML document. As relevance weights we used 1.0 for SLCA nodes, 0.5 for non-SCLA nodes and zero
for irrelevant nodes. Even if XRANK returned an SCLA node as non-SLCA, its relevance weight was
set to 1.0, in order to keep the results fair.

Table IV presents the mean normalized DCG for XRANK and LCARank algorithm considering
the five documents used in the first accuracy study, presented in Section 4.1. For all documents
and regardless of their sizes, XRANK accuracy is inferior to LCARank accuracy, considered in this
experiment as ideal, which means LCARank DCG is 1.0. Thus, we demonstrated experimentally
that LCARank and its simple strategy improves the raking when compared to the original XRANK
algorithm. As future work, we plan to develop a more fine-grained ranking strategy for SLCA nodes
that are internally returned by the LCARank algorithm.

5.3 Discussion on Performance.

To evaluate the performance of the LCARank algorithm, we compared their mean elapsed time with
that of the XRANK and SLCA algorithms. Although we used the Saxon parser to build our baseline
for the first accuracy study (Section 4.1), it cannot be considered for evaluating the performance of
these algorithms since they involve different semantics. Furthermore, the Saxon parser probably has
been optimized for performance tuning.

Regarding performance, we evaluated the 18 keyword-based queries against the same XMark dataset
and measured the mean elapsed time for each document. Figure 4 presents the respective mean elapsed
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times, which involve the parsing and matching processes. The results show that XRANK, SLCA
and LCARank algorithms have similar response time, however only LCARank implements a ranking
strategy. This result is acceptable considering that typical XML streaming applications manipulate
small documents.

6. CONCLUDING REMARKS

This paper presented an evaluation study of keyword-based search algorithms for XML streams.
Specifically, it addressed two keyword search algorithms based on related node heuristics, XRANK
and SLCA, and adopted a semantic keyword search language. The study consisted of an accuracy
and performance evaluation for these algorithms and was divided in two parts. The first part used
the queries and a dataset provided by the XPathMark benchmark, in order to fairly evaluate those
algorithms in terms of precision and recall. The second part simulated a real stream environment as
it considered a large collection of documents and a large set of random queries, taken from DBLP.
The results showed that both algorithms are effective for implementing searching services over XML
streams. The results of the study also led us to propose a simple but effective ranking algorithm
(LCARank), that combines the two search algorithms. Its performance is equivalent to that of the
original algorithms (do not consider any ranking strategy). For future work, we plan to deploy the
LCARank algorithm in a real streaming application and develop more fine-grained ranking heuristics
for XML stream environments, aiming at superior accuracy results.
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