
Order-Aware Twigs:
Adding Order Semantics to Twigs

M. Abdul Nizar1, P. Sreenivasa Kumar2

1 College of Engineering Trivandrum, India- 695016
nizar@cet.ac.in

2 Indian Institute of Technology Madras, Chennai, India-600036
psk@iitm.ac.in

Abstract. Although many algorithms have been proposed for evaluating XPath queries containing child and descen-
dant axes and predicates (XPATH/,//,[]) against XML data, there are very few efforts towards developing algorithms
for processing path expressions with other axes namely, following, preceding, following-sibling and preceding-sibling. In
this article, we demonstrate that the conventional twig-structure, which is used to represent expressions in the subset
XPATH/,//,[], has no order information built into it and hence fails to model XPath expressions with ordered axes.
This motivates us to introduce a new type of twig-structure, which we call Order-aware Twig, to effectively represent
XPath expressions with ordered axes.

Categories and Subject Descriptors: H.3 [Information Storage and Retrieval]: Query Formulation; H.2.4 [Sys-
tems]: Query Processing

Keywords: Information Storage and Retrieval, Query Formulation, XML, XPath, Ordered Axes, Twig Query, Order-
aware Twig

1. INTRODUCTION

Due to the wide-spread use of XML data, especially in the web context, many query processing sys-
tems have been developed to operate on indexed XML document collections and XML streams. These
systems use XPath[Berglund et al. 2007] as the query specification component either independently
or as part of languages like XQuery[Boag et al. 2007]. Complex queries can be expressed in XPath
using path expressions consisting of axis specifiers and predicates. For instance, the path expres-
sion /descendant::section[child::name = “Motivation”]/child::figure returns all figure elements present
in the section titled Motivation in an XML document representing a journal article or book. Such
path expressions consisting of child and descendant axes and predicates (‘[...]’) are conventionally
represented using tree structures known as twig queries or Tree Pattern Queries (TPQs). Twig repre-
sentation of XPath expressions is quite convenient for query processing as the process is closely tied to
the representation scheme adopted for the XML data. Naturally enough, the majority of XML query
processing algorithms ([Bruno et al. 2002; Lu et al. 2005; Chen et al. 2005; Moro et al. 2005; Chen
et al. 2006; Chen et al. 2006; Gou and Chirkova 2007a; Mandreoli et al. 2009]) use twig structure to
encode the query expression.

There are four ordered axes in XPath namely, following, following-sibling, preceding, preceding-
sibling which can effectively express retrievals satisfying order among the chosen elements of XML
data. In the context of stored and streaming data, there are very few efforts towards developing
systems for processing XPath expressions with ordered axes. Conventional twig structures fail to
capture the meaning of ordered axes (detailed analysis is given later in the article). Hence twig-based

Copyright c©2012 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012, Pages 3–17.

4 · A. Nizar and P. S. Kumar

algorithms can not be directly extended to handle ordered axes. However, for path expressions having
only child and descendant axes, twig-based algorithms ([Chen et al. 2006; Bruno et al. 2002; Gou and
Chirkova 2007a; Chen et al. 2006]) have been shown to outperform systems based on other approaches
and formalisms ([Li and Moon 2001; Olteanu 2007]), particularly when the data is recursive. Thus,
it would be interesting to investigate if conventional twig representation can be extended to represent
path expressions with ordered axes.

In this article, we introduce a new kind of twig structure called Order-aware Twig (OaT) which
is capable of effectively representing XPath expressions with ordered axes, in addition to child and
descendant axes. Our contributions are summarized below:

(1) We provide a detailed analysis that brings out the difference between un-ordered processing of
twigs, ordered processing of twigs and processing of XPath expressions having ordered axes.

(2) We show how conventional twigs can be extended to Order-aware Twigs by incorporating con-
straint edges that capture the meaning of ordered axes.

(3) We introduce an algorithm for producing order-aware twigs from XPath expressions with ordered
axes and argue the equivalence of Order-aware Twigs and path expressions containing ordered
axes.

We have already established that the framework of Order-aware Twigs is in fact leading to better
algorithms for stream processing of XPath queries with ordered axes. Based on this framework, we
have proposed a stream processor for the XPath subset containing forward axes [Nizar and Kumar
2008] whose performance is better than the existing algorithm. We have also demonstrated the
effectiveness of the framework by developing a stream processor for backward ordered axes [Nizar and
Kumar 2009] which also improves on the existing algorithm. While these works use some aspects
OaT, the present work formally discusses the framework in full detail with encoding algorithm and
proof of correctness.

The rest of the article is organized as follows: Section 2 motivates the work. Section 3 formally
introduces the concept of ordering and shows how ordering constraints can be effectively represented.
Section 3.3 distinguishes between OaT matches and ordered twig matches. In Section 3.4, we discuss
the algorithm for translating path expressions to OaTs and prove the equivalence of a path expression
and the corresponding OaT generated by the algorithm.

2. BACKGROUND, RELATED WORK AND MOTIVATION

An XML document is a nested collection of elements. Each element is described by a pair of tags
— an open tag (<element-name>) and a close tag (</element-name>), where element-name is a
user-defined tag name. An element can have other elements, text or a mix of elements and text defined
inside it. Elements with empty contents are also supported. The nesting of elements can be arbitrarily
deep. The element within which all other elements are nested in is called the document element. The
logical model of XML document recommended byW3C(World Wide Web Consortium) [Berglund et al.
2007] is an ordered node-labelled tree where tree nodes are labelled with tag names. The element-
subelement relationship is depicted using edges between nodes. Order among children of a node
represents the sequential order of corresponding elements in the document. The node corresponding
to the document element becomes root node of the tree. The root node is also known as document
node. W3C standard assumes presence of a ‘cosmic’ root node with the document node as the only
child.

2.1 Twigs and Twig Match

Conventionally, XPath queries with child and descendant axes and predicates are effectively mod-
elled as twig queries. A twig is an unordered tree where nodes are labelled with node tests and

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 5

Fig. 1. Sample Twig Structures

directed edges are used to represent axes. Figure 1(a) shows twig T1a representing the path expres-
sion /desc::d[ch::b]/desc::c /ch::d1. In the figure, edges without labels are called P-C (Parent-Child)
edges and they represent child axes. Edges with ‘//’ as label are called A-D (Ancestor-Descendant)
edges and represent descendant axes. There is a root node labelled nr which always corresponds to
the cosmic ‘root’ node of any XML document tree. The node in black represents the result node, that
is, the node corresponding to node test of the last axis step of path expression. According to XPath
semantics, the result of a path expression is the result of evaluating the last axis step.

Twig processing algorithms identify subtrees in the XML document tree matching the twig where
twig match is formally defined as follows:

Definition 1. Given a twig Q and a document D, a match µ of Q in D is a mapping from
nodes of Q to the nodes of D respecting the following constraints:

(1) The root node nr is mapped to the cosmic root node of D.
(2) A node with label l in Q is mapped to a node with label l in D.
(3) A node with label ‘*’ is mapped to any node in D.
(4) The parent-child(P-C) and ancestor-descendant(A-D) relationships between nodes in Q are satis-

fied by the mapped nodes. That is, if there is a P-C (resp., A-D) edge from twig node n1 to twig
node n2, µ(n2) is a child (resp., descendant) of µ(n1) in D.

For example, twig T1a in Figure 1(a), which represents the path expression /desc::d[ch::b]/desc::c
/ch::d, has two matches in the document D1 of Figure 2(a) – (d1, b1, c1, d3) and (d1, b2, c1, d3) while T2b

(Figure 1(c)) representing the expression /ch::a[desc::b/ch::c]/desc::d has five matches – (a1, b2, c1, d1),
(a1, b2, c1, d2), (a1, b2, c1, d3), (a1, b2, c1, d4), (a1, b2, c1, d5). Note that twig T1b (Figure 1(b)), which is
isomorphic to T1a represents the same path expression and has the same set of matches. Similarly,
twig T2b of Figure 1(d) is isomorphic to T2a and has the same matches as the latter in document D1.

Note that, each match according to Definition 1 is a structural match, that is, set of document
nodes that satisfy node labels and inter-node relationships of the twig. However, XPath’s evaluation
model follows navigational semantics and returns the node set after evaluation of the last axis step
of the path expression. To be consistent with this XPath evaluation model, we define an evaluation
function ε for twigs as follows:

Definition 2. Let Q be a query twig and s be its result node. Let {µ1, µ2, . . . , µn} be the set of
mappings of Q against some document tree D. Then ε(Q,D) =

⋃n
i=1{µi(s)}

We overload ε to represent the evaluation of path expressions also.

1In this article we use ch, desc, fl, fs, pr and ps as abbreviations for child, descendant, following, following-sibling, preceding
and preceding-sibling, respectively. Also we don’t use the abbreviated syntax of XPath to avoid any possible ambiguities.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

6 · A. Nizar and P. S. Kumar

Fig. 2. Sample Document and Twig Matches

For instance,
ε(/desc::d[ch::b]/desc::c /child::d,D1) = ε(T1a, D1) = ε(T1b, D1) = {d3} and,
ε(/ch::a[desc::b/ch::c]/desc::d) = ε(T2a, D1) = ε(T2b, D1) = {d1, d2, d3, d4, d5}.

It may be noted that a twig can have more than one structural match which leads to the same
result node. For instance, the twig T1a has two matches in the document D1 – – (d1, b1, c1, d3) and
(d1, b2, c1, d3) – and they lead to the evaluation {d3}. From a database point of view, the users are
interested in the results, i.e, evaluation, and not in the structural matches that lead to them.

2.2 Related Work and Motivation

XPath expressions containing ordered axes – (following, following-sibling, preceding, preceding-sibling)
– can be used to effectively identify data satisfying ordering constraints. Queries with ordered axes
assume special relevance in document-centric XML documents. Such documents are characterized
by irregular recursive structure and mixed content. Examples are user’s manuals and marketing
brochures, wordnet collections, news articles, medical information records, to name a few.

Example 1. In the context of surgical procedures which consist of a number of procedures, actions,
observations etc., the order in which events take place is important. For instance the query “Actions
taken after it was found that there is a lesion in the bowel” can be expressed as /desc::observations
[ch::obs =‘lesion in the bowel’]/fl::action.
As a more concrete example, in the context of the XML document representing a journal article, the
path expression /desc::section[ch::name= ‘Motivation’]/fl::figure returns all figure elements
that appear in the article after the section titledMotivation, Similarly, the expression /desc::section
[ch:: name = ‘Datasets’]/pr::section returns all sections that appear before the section titled
‘Datasets’ excluding sections in which the ‘Datasets’ section is nested in.

Conventional twig structures fail to convey the semantics of ordered axes as they do not impose any
order on the selected nodes. Note that the relative order among children of a node in the twig does not
specifically say anything about the order of occurances of nodes in the document. When we consider
XPath expressions that do constrain the order of the selected nodes, twigs would be inadequate to
model such expressions. For instance, we can not represent the XPath query /ch::a/desc::b/ch::c/fl::d
as twig of Figure 1(c) as the twig retrieves d -nodes in the document irrespective of their position with
respect to b-node or c-node.

There is a wide array of proposals for processing XPath expressions consisting of child and de-
scendant axes and predicates containing these axes against streaming and stored data. Interestingly
enough, the majority of these algorithms represents the path expression as twig and systematically
finds matches ([Bruno et al. 2002; Lu et al. 2005; Chen et al. 2005; Moro et al. 2005; Chen et al.
2006; Chen et al. 2006; Gou and Chirkova 2007a; Mandreoli et al. 2009]). Twig encoding is quite
convenient for query processing as the process is closely tied to the tree model of XML. As twigs are

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 7

tree structures, query matching boils down to finding subtrees in the XML tree. A detailed account
of twig-based processing of XPath expressions on XML repositories is given in [Gou and Chirkova
2007b].

The research efforts towards handling ordered axes are limited to systems such as [Grust et al. 2004],
[Olteanu 2007] and [Onizuka 2010]. These systems do not use twig encoding of XPath expressions.
The system proposed in [Grust et al. 2004] is built on the top of a relational engine. Each element
in the XML document is encoded as a tuple along with its depth in the document tree and position
in the mapping of the document into a (pre-order, post-order) plane. The system constructs an
index structure known as XPath accelerator, closely tracking the semantics of XPath and taking into
consideration the inherent tree-topology of XML document. XPath queries are transformed into SQL
expressions that use joins to retrieve results from the relational database. SPEX [Olteanu 2007] is
a stream query processing system which compiles the XPath query into a network of push down
transducers. The transducer system responds to the events from the input XML stream to find
matches for the path expression. The system proposed in [Onizuka 2010] uses a double layer NFA.

Systems like [Chan et al. 2002; Wang et al. 2003; Rao and Moon 2004; Lu et al. 2005; Prasad and
Kumar 2005; Kwon et al. 2005; Raj and Kumar 2007; Jiang et al. 2008; Mandreoli et al. 2009] propose
ordered matching of twig queries. In an ordered twig match, the matched nodes should respect the
left-to-right order of children of a given twig node. Formally, it is a twig match as per Definition 1
with the following additional constraint:

5. If a twig node b appears after node a in preorder, then µ(b) should appear, in document order,
after µ(a) and postorder rank of µ(b) in the document tree is greater than postorder rank of µ(a).

For instance, ordered match of the twig query T2a of Figure 1 yields one match – (a1, b2, c1, d5) –
in document D1 (Figure 2(a)) while ordered match of T2b, which is isomorphic to T2a, returns no
matches.

Thus, ordered twig query processing refers to a way of processing twig representation of a path
expression, where the matching algorithm, in addition to considering the node labels and inter-node
relationships in the twig, respects the topology of the twig.

Such naive extensions of twig processing do not hold an integrated view of ordered axes processing.
Note that XPath queries can have axis steps appearing in a sequence in all possible combinations
and query processors need to use such path expressions as starting points for query evaluation. The
extended twig processors do not consider all the ordering constraints that ordered axes might bring
in. They operate in special ways on twigs which were originally introduced as an encoding for path
expressions with unordered forward axes. We will elaborate on this in Section 3.3.

Twig-based algorithms rely on the accuracy and compactness with which twigs encode the con-
straints imposed by path expressions with child and descendant axes and predicates. These algo-
rithms, particularly those for stream processing, effectively use twig encoding and semantics of path
expressions the twigs represent for pruning out execution paths and quickly identifying of result node
matches. We believe that a compact and accurate encoding of path expressions with ordered axes
built on the top of twigs can lead to algorithms for ordered axes processing that can make effective
use of conventional twig processing strategies and semantics of ordered axes to achieve efficiency.

3. ORDER-AWARE TWIGS

In this section, we formally introduce OaTs and their matching. We assume that the path expressions
do not contain disjunctions and negations of predicates. We believe that, as in the case of un-ordered
twigs, these cases can be handled by extending the basic algorithms with the support for boolean
evaluation of predicates. Note that, without loss of generality, conjunction of predicates in path

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

8 · A. Nizar and P. S. Kumar

expressions can be replaced by a sequence of individual predicates. Given below is the (abstract)
syntax of the expressions we consider in this article. The subset is denoted as XPATHch,desc,→,[].
We have excluded value based comparisons as they have no effect on the concepts developed.
pathExpr ::= startExpr expr
startExpr ::= startAxis::nodeTest |

startAxis::nodeTest ‘[’pred‘]’
expr ::= axisStep expr | axisStep
axisStep ::= axis::nodeTest |

axis::nodeTest‘[’pred‘]’
startAxis ::= ‘child’ | ‘descendant’
axis ::= ‘child’ | ‘descendant’ |

‘following’ | ‘following-sibling’ |
‘preceding’ | ‘preceding-sibling’

nodeTest ::= tagname | ‘*’
pred ::= expr

3.1 LR and SLR Orderings

In order to represent XPATHch,desc,→,[]–expressions, we generalize twigs by adding additional or-
dering constraints. Each such constraint is specified either between a pair of nodes appearing in two
distinct downward paths from the twig root nr (LR (Left-to-Right)-Ordering) or between a pair of
nodes which are P-C children (i.e., twig nodes connected to their parent node using P-C edges) of
branching nodes (SLR (Sibling Left-to-Right)-Ordering).

3.1.1 LR Ordering

Definition 3. Let x and y be nodes in a twig T and are descendants of the nr along two distinct
downward paths P1 and P2, respectively. Let p and q be the nodes corresponding to x and y in a match
of T in some document tree D as per Definition 1. An LR ordering from x to y is an ordering constraint
specifying that q should appear after p in document order in D, but should not be a descendant of p.

Intuitively, LR ordering from node x to node y specifies y-descendants of the root which are neither
appearing in preorder before x nor are descendants of x. LR ordering from node x to node y is
denoted as x�y. x is called the tail of LR ordering and y is called the head of LR ordering. In
graphical notation, LR ordering from node x to be node y is denoted using a dotted arrow from x to
y.

LR ordering can effectively represent the semantics of following and preceding axes.

Example 2. Figure 3 illustrates how LR ordering can be used to represent following and preceding
axes. The XPath expression /ch::a/desc::b/ch::c/fl::d looks for d-nodes which are appearing after the

Fig. 3. Illustrating LR ordering

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 9

Fig. 4. Document and Evaluations of OaTs in Figures 3 and 5

close-tag2 of c-node child of a b-node descendant of the document node a. OaT T3 of Figure 3(a)
represents this path expression. In T3 there is an LR ordering from node c to node d indicating that in
a structural match of T3, a d-node should appear after close-tag of c-node. It is clear that semantics
of T3 is the same as that of the expression. For instance, /ch::a/desc::b/ch::c/fl::d when evaluated on
document D1 of Figure 4(a) (which is the same as Figure 2(a)) leads to the node set {d4, d5}. Twig T3

has two structural matches in D1 – (a1, b2, c1, d4) and (a1, b2, c1, d5) leading to the evaluation {d4, d5}.
Thus, ε(/ch::a/desc::b/ch::c/fl::d, D1) = ε(T3, D1).
Similarly, /ch::a/desc::b/ch::c/pr::d looks for d-nodes preceding, in document order, a c-node child of
b-node descendant of the root. This means that a valid result node should have a c-node (with a parent
node b, which is also descendant of the document node with label a) appearing after it, but not as a
descendant. Twig T4 (Figure 3(b)) with the LR ordering has the same interpretation. In document
D1, both the path expression and twig T4 have the same evaluation – {d2}.
Twig T5 in Figure 3(c) represents the path expression /desc::b/ch::c/fl::d. Note that twig T6 (Fig-
ure 3(d)) represents the expression /ch::a/desc::b[ch::c]/fl::d and is different from twig T3.

Note that T3a (Figure 3(e)) is an alternate representation of T3 (Figure 3(a)) where node d is connected
to node a. This is correct as node a will invariably match with the document node, the only element
node child of the ’cosmic’ root node of the document tree (since there is a P-C edge from nr to node
a) and therefore every other node in the twig can match with descendants of the document node only.
Following a similar argument, T4a (Figure 3(f)) is equivalent to T4 (Figure 3(b)).

3.1.2 SLR Ordering

Definition 4. Let x and y be sibling nodes in a twig T connected to its common parent b by a
P-C edge (that is, x and y are P-C children of their parent). Let p and q be nodes corresponding to
x and y in a match of T in some document tree D as per Definition 1. An SLR ordering from x to y
specifies that p and q are siblings in D and q appears after p in document order.

SLR ordering from node x to node y is denoted as x<y. x is called the tail of SLR ordering and y is
called the head of SLR ordering. In graphical notation, SLR ordering from node a to be node b is
denoted using a solid arrow from x to y.

SLR ordering can effectively represent the constraints of following-sibling and preceding-sibling axes.

Example 3. Figure 5 shows how SLR ordering is used to represent the ordering constraints of
following-sibling and preceding-sibling axes. /desc::b/ch::c/fs::d looks for d-nodes which are children of
b-node but appear after a c-child. Twig T7 of Figure 5(a) with an SLR ordering from c to d has the

2Here ‘close-tag’ means close-tag of the element denoted by the node in the textual representation of the document tree.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

10 · A. Nizar and P. S. Kumar

Fig. 5. Illustrating SLR ordering

same semantics. Similarly, twig T8 (Figure 5(b)) represents the path expression /desc::b/ch::d/ps::c
while T9 of Figure 5(c) represents /desc::b/ch::e/fs::c[fs::d].

The examples above illustrate that both forward ordered axes (following and following-sibling) and
backward ordered axes (preceding, preceding-sibling) can be represented effectively using LR- and SLR
edges. Later, in Section 3.5, we claim that twig structures augmented with LR edges, SLR edges and
closure edges (to be introduced shortly) can be used to correctly represent the constraints of XPath
expressions with ordered axes.

3.2 Closure Edges

The basic twigs need to be further extended to handle XPath expressions containing an axis step with
following-sibling or preceding-sibling axis that appears (inside predicate or otherwise) immediately
after an axis step with descendant axis. For example, in the query /ch::a/desc::f/fs::h axis step fs::h
appears immediately after /desc::f. Here h can be a right-sibling of an f-child of a or right-sibling
of f-child of descendant of a. A straightforward way to represent the query is to extend the twig in
Figure 6 (a), which represents the expression /ch::a/desc::f, to two twigs in Figure 6(b). The downside
of this approach is that the number of twigs for a query increases exponentially with such sibling
axis occurrences and it can lead to a proportional increase in time and space requirements of query
evaluation. As the OaTs representing the query are structurally the same except for the deviation
due to the sibling axis occurrences, the same matching steps need to be repeated extensively for all
the twigs. Further, additional union operation is needed to get the final results. We circumvent this
problem by introducing a new type of edge known as closure edge which is defined below:

Definition 5. A closure edge from node n1 to n2, where n2.label =‘*’ represents the relation-
ship constraint that the data node dn2 matching n2 is the same as the data node dn1 that matches n1

or any descendant node of dn1 . Node n2 is called the closure node.

The twig in Figure 6(c) shows how a closure edge can be used to represent the path expression
/ch::a/desc::f /fs::h using a single twig. Here the zig-zag edge from the a-node to the *-node (that is
closure node) is the closure edge. Note that, only the first sibling axis that appears after descendant
axis raises the need for closure edge. For instance, if we extend the path expression /ch::a/desc::f/fs::h
to /ch::a/desc::f/fs::h[fs::g], the equivalent twig can be obtained by extending the twig in Figure 6(c)
to the one shown in Figure 6(d).

Fig. 6. Illustrating Closure-Edge

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 11

Fig. 7. Cases where closure edge is not needed

Recall from Section 3.1 that corresponding to a following or preceding axis, an A-D edge is added to
the root node nr. However, there is no need of a closure edge when a following-sibling or preceding-
sibling axis appears immediately after one of the above axes. This can be best explained using an
example. Figure 7(a) shows twig for the path expression /desc::a/desc::b/fl::c. If the expression is
extended to /desc::a/desc::b/fl::c/fs::d, it can be represented using the twig in Figure 7(b). Note that
the root node nr is connected to the *-node using an A-D edge, not using a closure edge for, the root
node of the document has only one child – the document node.
A similar situation arises if the path expression starts with a descendant axis and followed by a
following-sibling or preceding-sibling axis as illustrated using twig in Figure 7(c) which represents the
path expression /desc::c/fs::d.

To summarize, an Order-aware Twig is a tree structure rooted at a node labelled nr known as the
root of the OaT. There are three types of relationship edges – P-C edge, A-D edge and closure edge
– and two types of constraint edges – LR edge and SLR edge.

We now define OaT matching by extending Definition 1

Definition 6. Given a twig Q and a document D, a match µ of Q in D is a mapping from
nodes of Q to the nodes of D respecting the following constraints:

(1) The root node nr is mapped to the cosmic root node of D.
(2) A node with label l in Q is mapped to a node with label l in D.
(3) A node with label ‘*’ is mapped to any node in D.
(4) The parent-child(P-C) and ancestor-descendant(A-D) relationships between nodes in Q are satis-

fied by the mapped nodes. That is, if there is a P-C (resp., A-D) edge from OaT node n1 to OaT
node n2, µ(n2) is a child (resp., descendant) of µ(n1) in D.

(5) LR ordering and SLR ordering constraints specified on nodes in Q are satisfied by the mapped
nodes. That is, if there is an LR edge from OaT node n1 to OaT node n2, µ(n2) appears in
document order after µ(n1) in D but not as a descendant of µ(n1). Similarly, if there is an SLR
edge from OaT node n1 to OaT node n2, µ(n2) appears in document order after µ(n1) in D and
µ(n1) and µ(n2) have a common parent.

Definition of evaluation function ε (Definition 2) can be similarly extended.

3.3 OaT Match vs Ordered Twig Match

In this section, we illustrate how the constraints captured by OaTs are different from the constraints
maintained by ordered twig matching. Figure 8 shows a twig and three OaTs. Note that all the twigs
have the same P-C and A-D constraints.

Ordered Match of Twig T10 (Figure 8(a)) leads to one structural match in documentD2(Figure 8(b))
– a1b1c1d2e2. OaT T11 (Figure 8(c)) with an LR edge from node b to d represents the same constraint
as the one ordered twig match of T10 maintains and hence returns the same structural match as result.
However, the constraints imposed by OaTs T12 and T13 (Figures 8(d)&(e)) can not be maintained by
ordered match of twig T10. OaT T12 has two structural matches in document D2 – a1b1c1d1e1 and

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

12 · A. Nizar and P. S. Kumar

Fig. 8. OaT Match and Ordered Twig Match

a1b1c1d2e2. Similarly, OaT T13 has two matches – a1b1c1d2e2 and a1b2c2d2e2. This clearly illustrates
that ordering constraints imposed by OaTs can not always be maintained by ordered matching of
conventional twigs.

3.4 Translating XPATHch,desc,→,[] to OaTs

In this section we present a systematic way of translating an XPATHch,desc,→,[]–expression to an
OaT. Algorithm 1 performs the translation process. Intuitively the algorithm accepts a partial OaT
which is the translation of the expression up to certain position and extends the OaT by translating
the next predicate or axis step to generate a new OaT. expr is the expression to be translated. Recall
that an expression consists of a sequence of axis steps and each axis step consists of an axis with
node-test and an optional list of predicates following it. Each axis step is chopped into units where
a unit is either (i) an axis with node-test (a simple step) or (ii) a predicate. The translation process
is done one unit at a time. The OaT T is assumed to be global to the translation algorithm. The
argument cNode of translateExpr() represents the node in the current OaT from where extension
should start by translating the next unit in expr. We call this node the context node of T . rNodetest
represents the node-test in expr corresponding to the result node. It is the node-test of the last axis
step that appears outside any predicate.

Algorithm 1: Translating Path Expression to OaT
Input: expr: path expression, cNode: context node, rNodetest: result node-test, nr: root of the

OaT T
translateExpr(expr, cNode, rNodetest, nr)1
begin2

nextUnitBegin← 0;3
<nextUnit,nextUnitBegin> ← getNextUnit(expr,nextUnitBegin)4
c← cNode5
while (nextUnit 6= NULL) do6

if nextUnit is a predicate then7
Strip off ‘[’ and ’]’ from nextUnit8
translateExpr(nextUnit, c, “ ”, nr)9

else //A simple Step10
c ← processSimpleStep(nextUnit, c, rNodetest,nr)11

<nextUnit,nextUnitBegin> ← getNextUnit(expr,nextUnitBegin)12

Return13

end14

The translation process first constructs an initial OaT consisting of the root node nr. The algorithm
invokes the function getNextUnit() that accepts a path expression and the beginning of the next unit
in the expression. It returns the next unit and beginning of the subsequent unit.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 13

translateExpr() needs slightly different processing depending on whether the next unit is a predicate
or a simple step, because new context node of the OaT after extension can be different in each case.
For example, suppose that T represents the partial OaT after processing an expression up to X :: N
and that the context node c of T is the node representing N . After processing every predicate in the
predicate list, if any, that is associated to X : N , c continues to be the context node. In case the next
unit is an axis step, say Y :: P , after processing the unit, the node in T corresponding to P becomes
the new context node.

Algorithm 2: Axis Step Translation
Input: X :: N : axis step, c: context node, rNodetest: result node-test, nr: root of T
processSimpleStep(X :: N , c, rNodetest, nr)1
begin2

n ← newNode(N)3
if N = rNodetest then mark n as resultnode4
switch (X) do5

case child6
Add P-C edge from c to n7

case descendant8
Add A-D edge from c to n9

case following-sibling,preceding-sibling10
p← parent(T , c)11
if there is a P-C edge from p to c then12

Add P-C edge from p to n13
else14

n1 ← newNode(‘*’)15
Add P-C edges from n1 to c and n1 to n16
if p = nr then17

Add an A-D edge from p to n118
else19

Add a closure edge from p to n120

if X is following-sibling then21
Add an SLR ordering c < n22

else23
Add an SLR ordering n < c24

case following25
Add A-D edge from nr to n; Add LR ordering c� n26

case preceding27
Add A-D edge from nr to n; Add LR ordering n� c28

Return n29

end30

A predicate (after stripping off ‘[]’) is a path expression that is a sequence of axis steps, with
arbitrarily deep nesting due to presence of other predicates. Thus translateExpr() can be invoked
recursively on the path expression representing the predicate (line 9). Since a result node-test is not
relevant for a predicate, we pass a dummy value for this invocation. Note that, the context node of the
OaT will not change after processing a predicate and hence the recursive invocation of translateExpr()
need not return infomation about the new context node.

The simple step processing routine (Algorithm 2) accepts as input the next axis step of the form
X :: N , the current context node, root of the OaT T and rNodeTest. It returns the new node added
in T to the calling routine. It uses an auxiliary routine parent() which returns parent of the a given

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

14 · A. Nizar and P. S. Kumar

Fig. 9. Translating /ch::a/desc::b[ch::e]/ch::c[fs::d]/fl::f/fs::h[pr::g] to OaT

node in the OaT T . Processing of child and descendant axes are straightforward. In the case of
following axis, the new node is added as a descendant of nr and an LR ordering is set up from context
node to the new node. Processing of preceding axis is done symmetrically.

Processing of following-sibling and preceding-sibling axes involves handling the special case where
the axis appears immediately after descendant axis or following and preceding axes. Lines 15–20 show
steps for handling the special case for following-sibling and preceding-sibling axes.

Figure 9 shows snapshots of translating the path expression, /ch::a/desc::b[ch::e]/ch::c[fs::d]/fl::f
/fs::h[pr::g] to OaT. In each snapshot, the node with thick border represents the context node at that
point during processing.

The time requirement of the translation process is linear on the number of axis steps including those
appearing in predicates. Note that, for child and descendant axis, the mapping involves setting up a
P-C edge or A-D edge between the context node and the new node, as the case may be. For following,
and preceding axes the algorithm establishes an LR ordering in addition to setting up an A-D edge
from the root of the OaT to the newly created node. The sibling axis mapping is done by setting
up SLR ordering. For the special case of sibling axes, the algorithm adds a new ‘*’-node, a closure
edge/A-D edge and SLR ordering. Thus the translation time remains linear.

3.5 Equivalence of XPATHch,desc,→,[], and OaT

We now establish the equivalence between an XPATHch,desc,→,[]–expression and its OaT using se-
mantics of P-C, A-D and closure edges and LR and SLR orderings, and steps of the algorithm.

Lemma 1. Let T be the OaT generated by Algorithm 1 from the XPATHch,desc,→,[]–expression
P . Let D be an arbitrary XML document and ε(P,D) and ε(T,D) are evaluation functions for P and
D, respectively. Then ε(P,D) = ε(T,D).

Proof (by induction on number of axis steps): As predicates are path expressions, the equiva-
lence established for a linear path expression (i.e., expression without predicates) can be extended to
a path expression with predicates. Thus, without loss of generally, we can assume that P is a linear
path expression. Let Pm represent a linear path expression with m axis steps and let Tm represent
the OaT obtained by translating Pm. We assume that na denotes the OaT node corresponding to
node-test a.

Basis: If m = 1, Pm can be /child::a or /descendant::a only. /child::a returns maximum one match
which is the document node of D, if its label is the same as a. For /child::a, the while loop in
TranslateExpr() iterates once and invokes processSimpleStep (Algorithm 2). The routine stops at
line 6 and returns T1 which is the root node nr connected to na by a P-C edge. By the semantics of
P-C edge, this OaT has one structural match (according to Definition 6) containing the root of the
document and document node if the document node’s label is a leading to the evaluation containing
the document node only. Similar arguments hold for /descendant::a except that evaluation of T1

contains all tree nodes labelled a. Hence ε(P1, D) = ε(T1, D).

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 15

Induction Step: A path expression Pm can be written in the form Pm−1/X :: b where X can be one
of child, descendant, following, preceding, following-sibling and preceding-sibling.

Let a represent node-test of the last axis step in Pm−1 and Tm−1 be the OaT equivalent to Pm−1.
Then by induction hypothesis, ε(Pm−1, D) = ε(Tm−1, D).

The first two cases (child and descendant) can be argued in a way similar to the basis step.

—following : X :: b uses each node t ∈ ε(Pm−1, D) as context node to get matches u for ε(Pm, D) such
that u.label = b and u is descendant of the root node and appears after t in document order, but
not a descendant t. The algorithm generates Tm by extending the OaT Tm−1 by adding nb as a
descendant of nr and adding an LR ordering from na to nb (Line 26, Algorithm 2). Tm returns all
structural matches such that each match will contain a node t ∈ ε(Tm−1, D) and satisfies the newly
added L-R ordering. By the semantics of LR ordering and A-D edge ε(Pm, D) = ε(Tm, D).

—preceding : Similar to the above.
—following-sibling : Let the last two axis steps in Pm−1 be U::p and W::a. If W is child, each t in
the node set ε(Pm−1, D) is a child of some u ∈ ε(Pm−2, D). Thus, for each new node v identified by
X :: b using t as context node, v is a right sibling of t and u is the parent of v also. In the algorithm,
a P-C edge is added from np to nb and an SLR ordering na < nb is introduced. Tm returns all
structural matches such that each match will contain a node t ∈ ε(Tm−1, D) and satisfies the newly
added constraints. Therefore, ε(Pm, D) = ε(Tm, D).
If W is descendant, each t in the node set ε(Pm−1, D) is at an arbitrary depth from the some
u ∈ ε(Pm−2, D). Thus, for each new node v identified by X :: b using t as context node, v is a right
sibling of t and the common parent of t and v can be a node in the path from u to t, excluding
t. In the algorithm, the A-D edge from np and na is replaced by a closure edge from np to a new
wildcard (‘*’) node and na and nb are connected to the new node with P-C edges. An SLR ordering
na < nb is also introduced. Tm returns all structural matches such that each match will contain a
node t ∈ ε(Tm−1, D) and satisfies the newly added constraints. By the semantics of closure-edges
and SLR ordering, ε(Pm, D) = ε(Tm, D).
If W is following, each t ∈ ε(Pm−1, D), appears after some u ∈ ε(Pm−2, D) at an arbitrary depth
from the root of D but not below u. Thus, for each node v identified by X :: b, the common parent
for t and v is a node in the path from root to t excluding t and excluding the cosmic root as it has
no child other than the document node. The algorithm, while mapping W::a, had introduced an
A-D edge from nr to na. Now, the algorithm replaces the A-D edge from nr and na by an A-D
edge from nr to a new wildcard (‘*’) node (line 15) and na and nb are connected to the new node
with P-C edges. An SLR ordering na < nb is also introduced. And each structural match of Tm

contains a node t ∈ ε(Tm−1, D) and satisfies the newly added constraints. By semantics the of SLR
ordering, P-C and A-D edges, ε(Pm, D) = ε(Tm, D). A symmetric case holds if W is preceding.
Also, the cases where W is either following-sibling or preceding-sibling can be argued is way similar
to the one for child.

—preceding-sibling : Similar to the above.

Hence the claim.

4. CONCLUSION

In this article, we analyze the issues arising out of representing XPath queries with ordered axes
using tree structures. We establish that conventional twig structures are not capable of capturing the
constraints involved. While there are some attempts to evaluate twig patterns by taking their topology
into account, none of them propose an integrated view of modelling and evaluating XPath expressions
with ordered axes. In this scenario, the new type of twig structures called Order-aware Twigs (OaTs),
proposed in this article, are capable of effectively representing path expressions with ordered axes.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

16 · A. Nizar and P. S. Kumar

We introduce two types of ordering constraints namely, LR ordering and SLR ordering and a new
relationship constraint called closure relationship which together can encode any path expression with
ordered axes. We also formally prove the equivalence of path expressions and their representation in
the new framework. We have already proposed algorithmic solutions for processing XPath subsets
containing ordered axes based on the new framework. The results show that the approach of holistic
evaluation of XML queries with ordered axes built around the proposed model is promising.

REFERENCES

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., and Siméon, J. XML Path
Language (XPath) 2.0, 2007. available at http://www.w3.org/TR/2007/REC-xpath20-20070123/.

Berglund, A., Fernández, M., Malhotra, A., Marsh, J., Nagy, M., and Walsh, N. XQuery 1.0 and XPath
2.0 Data Model (XDM), 2007. available at http://www.w3.org/TR/xpath-datamodel/.

Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J., and Siméon, J. XQuery 1.0: An XML
Query Language, 2007. available at http://www.w3.org/TR/2007/REC-xquery-20070123/.

Bruno, N., Koudas, N., and Srivastava, D. Holistic twig joins: Optimal XML pattern matching. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. Madison, Wisconsin, USA, pp. 310–321,
2002.

Chan, C. Y., Felber, P., Garofalakis, M. N., and Rastogi, R. Efficient filtering of xml documents with xpath
expressions. VLDB Journal 11 (4): 354–379, 2002.

Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., and Candan, K. S. Twig2stack: Bottom-up
processing of generalized-tree-pattern queries over XML documents. In Proceedings of the International Conference
on Very Large Data Bases. Seoul, Korea, pp. 283–294, 2006.

Chen, T., Lu, J., and Ling, T. W. On boosting holism in XML twig pattern matching using structural indexing
techniques. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Baltimore,
Maryland, USA, pp. 455–466, 2005.

Chen, Y., Davidson, S. B., and Zheng, Y. An efficient xpath query processor for XML streams. In Proceedings of
the International Conference on Data Engineering. Atlanta, Georgia, USA, pp. 79–91, 2006.

Gou, G. and Chirkova, R. Efficient algorithms for evaluating XPath over streams. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. Beijing, China, pp. 269–280, 2007a.

Gou, G. and Chirkova, R. Efficiently querying large xml data repositories: A survey. IEEE Trans. on Knowl. and
Data Eng. 19 (10): 1381–1403, 2007b.

Grust, T., van Keulen, M., and Teubner, J. Accelerating xpath evaluation in any rdbms. ACM Trans. Database
Syst. 29 (1): 91–131, 2004.

Jiang, J., Chen, G., Shou, L., and 0005, K. C. Otjfast: Processing ordered xml twig join fast. In Proceedings of
the IEEE Asia-Pacific Services Computing Conference. Yilan, Taiwan, pp. 1289–1294, 2008.

Kwon, J., Rao, P., Moon, B., and Lee, S. FiST: Scalable XML document filtering by sequencing twig patterns. In
Proceedings of the International Conference on Very Large Data Bases. Trondheim, Norway, pp. 217–228, 2005.

Li, Q. and Moon, B. Indexing and querying xml data for regular path expressions. In Proceedings of the International
Conference on Very Large Data Bases. Roma, Italy, pp. 361–370, 2001.

Lu, J., Chen, T., and Ling, T. W. Tjfast: Effective processing of xml twig pattern matching. In Proceedings of the
International Conference on World Wide Web (Special interest tracks and posters). Chiba, Japan, pp. 1118–1119,
2005.

Lu, J., Ling, T. W., Yu, T., Li, C., and Ni, W. Efficient processing of ordered xml twig pattern. In Proceedings
of the International Conference on Database and Expert Systems Applications. Copenhagen, Denmark, pp. 300–309,
2005.

Mandreoli, F., Martoglia, R., and Zezula, P. Principles of holism for sequential twig pattern matching. The
VLDB Journal 18 (6): 1369–1392, 2009.

Moro, M. M., Vagena, Z., and Tsotras, V. J. Tree-pattern queries on a lightweight xml processor. In Proceedings
of the International Conference on Very Large Data Bases. Trondheim, Norway, pp. 205–216, 2005.

Nizar, A. and Kumar, P. S. Efficient evaluation of forward xpath axes over xml streams. In Proceedings of the
International Conference on Management of Data. Mumbai, India, pp. 222–233, 2008.

Nizar, A. and Kumar, P. S. Ordered backward xpath axis processing against xml streams. In Proceedings of the
International VLDB XML Database Symposium. Lyon, France, pp. 1–16, 2009.

Olteanu, D. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans. Knowl. Data Eng. 19 (7): 934–949,
2007.

Onizuka, M. Processing xpath queries with forward and downward axes over xml streams. In Proceedings of the
International Conference on Extending Database Technology. Lausanne, Switzerland, pp. 27–38, 2010.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

Order-Aware Twigs: Adding Order Semantics to Twigs · 17

Prasad, K. H. and Kumar, P. S. Efficient indexing and querying of XML data using modified prufer sequences.
In Proceedings of the International Conference on Information and Knowledge Management. Bremen, Germany, pp.
397–404, 2005.

Raj, A. and Kumar, P. S. Branch sequencing based XML message broker architecture. In Proceedings of the
International Conference on Data Engineering. Istanbul, Turkey, pp. 217–228, 2007.

Rao, P. and Moon, B. PRIX: Indexing and querying XML using prüfer sequences. In Proceedings of the International
Conference on Data Engineering. Boston, MA, USA, pp. 288–300, 2004.

Wang, H., Park, S., Fan, W., and Yu, P. S. ViST: a dynamic index method for querying XML data by tree
structures. In Proceedings of the ACM SIGMOD International Conference on Management of Data. San Diego,
California, USA, pp. 110–121, 2003.

Journal of Information and Data Management, Vol. 3, No. 1, February 2012.

