

Revista do Programa de Pós-graduação Interdisciplinar em Estudos do Lazer - UFMG

TUTORIAL PARA REALIZAÇÃO DO TESTE DO QUI-QUADRADO DE PEARSON NO EXCEL E IBM SPSS: EXEMPLOS DA ÁREA DO LAZER

Recebido em: 07/12/2023 **Aprovado em**: 13/08/2024 Licença:

Claudio Damião Rosa¹ Universidade Estadual de Santa Cruz (UESC) Ilhéus – BA – Brasil http://orcid.org/0000-0002-1939-2716

David Ohara² Universidade Estadual de Santa Cruz (UESC) Ilhéus – BA – Brasil https://orcid.org/0000-0003-0477-8234

Marcos Rodrigo T. Pinheiro Menuchi³ Universidade Estadual de Santa Cruz (UESC) Ilhéus – BA – Brasil https://orcid.org/0000-0003-2833-7070

RESUMO: Os testes do Qui-Quadrado de adequação ao ajuste e de independência são dois dos mais utilizados com dados categóricos. Contudo, esses testes são por vezes erroneamente interpretados. Além disso, não há nenhum tutorial publicado em português sobre como realizar e interpretar esses testes. Para preencher essa lacuna na literatura, apresentamos um tutorial para a realização dos testes do Qui-Quadrado de adequação ao ajuste e de independência, no Excel e IBM SPSS. Utilizamos como exemplos artigos publicados e dados fictícios relacionados a área do lazer. Esperamos com isso facilitar a utilização e interpretação correta de testes do Qui-Quadrado por pesquisadores.

PALAVRAS-CHAVE: Atividades de lazer. Estatística. Qui-quadrado. Recreação.

TUTORIAL FOR CARRYING OUT THE PEARSON CHI-SQUARE TEST IN EXCEL AND IBM SPSS: EXAMPLES FROM THE LEISURE AREA

ABSTRACT: The Chi-Square goodness-of-fit and independence tests are two of the most used with categorical data. However, these tests are sometimes misinterpreted. Furthermore, there is no tutorial published in Portuguese on how to perform and

¹ Mestre em Desenvolvimento Regional e Meio Ambiente, Universidade Estadual de Santa Cruz. GEPECOM.

² Doutor em Educação Física, Universidade Estadual de Santa Cruz. GEPAFCSS.

³ Doutor em Ciências do Movimento, Universidade Estadual de Santa Cruz. GEPECOM.

interpret these tests. To fill this gap in the literature, we present a tutorial for carrying out the Chi-Square goodness-of-fit and independence tests in Excel and IBM SPSS. We used published articles and fictitious data related to the leisure area as examples. We hope to facilitate the use and correct interpretation of Chi-Square tests by researchers.

KEYWORDS: Leisure activities. Statistics. Chi-Squared. Recreation.

Introdução

Realizar um teste de uma hipótese nula continua sendo a principal forma de analisar se há diferenças entre grupos ou correlação entre variáveis na população, utilizando dados amostrais (AMRHEIN; GREENLAND; MCSHANE, 2019; CUMMING, 2014; MUFF *et al.*, 2022). Nesse contexto, o valor obtido na amostra é uma estimativa do valor a ser encontrado na população, isto é, o parâmetro. Por exemplo, no teste do Qui-Quadrado de Pearson, ou só Qui-Quadrado, as proporções observadas na amostra são estimativas das proporções da população (FRANKE; HO; CHRISTIE, 2012; MCHUGH, 2013; RANA; SINGHAL, 2015; SHARPE, 2015).

O teste do Qui-Quadrado compara frequências esperadas (FEs) com frequências observadas (FOs). Dois testes do Qui-Quadrado utilizados em pesquisas científicas são (Tabela 1): (1) teste de adequação ao ajuste dos dados ou aderência (do inglês, *Goodness of Fit Test*) e (2) teste de independência. Exemplos de trabalhos na área do lazer que utilizaram o teste do Qui-Quadrado incluem Oliveira *et al.* (2021) e Rosa *et al.* (2023). O primeiro estudo utilizou o teste do Qui-Quadrado de independência para analisar a relação entre atividades físicas de lazer e diversas variáveis sociodemográficas (OLIVEIRA *et al.*, 2021). Como outro exemplo, Rosa *et al.* (2023) utilizaram o teste do Qui-Quadrado para avaliar se havia uma relação entre gênero e participação em atividades recreativas na natureza.

utilizados na interatura científica					
Atributo do teste do	Teste de adequação ao ajuste	Teste de independência			
Qui-Quadrado					
Tipo de amostragem	Amostra da população	Única amostra dependente			
Interpretação da	Falsa: Diferença entre a distribuição	Falsa: Associação entre variáveis na			
hipótese nula	dos dados da amostra e da	população			
	população				

 Tabela 1: Características dos dois tipos do teste do Qui-Quadrado frequentemente utilizados na literatura científica

Nota: Adaptado de Franke et al. (2012).

Fonte: elaborada pelos autores

Apesar de ser um dos testes estatísticos mais utilizados para analisar dados categóricos (SHARPE, 2015), o teste do Qui-Quadrado é, por vezes, erroneamente interpretado (FRANKE; HO; CHRISTIE, 2012). Diante desse fato e da carência de artigos científicos em português descrevendo como realizar e interpretar esse teste, desenvolvemos o presente texto. Nosso objetivo é apresentar informações relevantes para realização e interpretação do teste do Qui-Quadrado de adequação ao ajuste e de independência. Nesse sentido, descrevemos mais detalhadamente esses dois tipos do teste do Qui-Quadrado (Tabela 1). Para facilitar a realização desses testes pelo leitor, elaboramos um tutorial de como executá-los no Excel e IBM SPSS, duas ferramentas populares para análise de dados.

Dois Tipos do Teste do Qui-Quadrado de Pearson

Antes de descrevermos mais detalhadamente os dois testes do Qui-Quadrado abordados nesse tutorial (Tabela 1), nós salientamos que esses testes exigem que as observações sejam independentes e que as categorias sejam mutuamente exclusivas (FRANKE; HO; CHRISTIE, 2012; MCHUGH, 2013; THOMAS; NELSON; SILVERMAN, 2007). Além disso, há recomendações de que a FE em cada célula não seja inferior a 1 e que em tabelas 2x2 o número de participantes não seja inferior a 20 (FRANKE; HO; CHRISTIE, 2012; MCHUGH, 2013; THOMAS; NELSON; SILVERMAN, 2007). Ainda, se o teste do Qui-Quadrado for realizado no IBM SPSS, é preciso que a frequência esperada em cada uma das células não seja inferior a cinco.

Teste do Qui-Quadrado de Adequação ao Ajuste ou Aderência

O teste do Qui-Quadrado de adequação ao ajuste dos dados é realizado quando se deseja comparar FEs com FOs em uma variável. Esse teste é comumente utilizado para checar se as características da amostra (por exemplo, sexo) correspondem com as características da população (FRANKE; HO; CHRISTIE, 2012). Em um exemplo hipotético, poderia haver interesse em analisar se as diferenças observadas entre a amostra e a população, na proporção de pessoas do sexo feminino, ocorreram ao acaso. Tal análise ajudaria a avaliar quão representativa é a amostra em relação à respectiva população. Suponha que, de acordo com dados de um censo, na população de interesse a porcentagem de pessoas do sexo feminino é 50%. Nesse contexto, a hipótese nula testada (H0), com os dados da amostra, é de que 50% da população é do sexo feminino (FRANKE; HO; CHRISTIE, 2012). O curioso desse teste é que sabemos que H0 é verdadeira, então, evidências contra H0 podem indicar algum problema durante a amostragem da população. O teste de adequação ao ajuste ou aderência irá verificar quão prováveis são os resultados observados na amostra, considerando que H0 seja verdadeira.

Na Tabela 2, organizamos um exemplo fictício com dados sobre o sexo das pessoas, considerando um n = 100. Utilizaremos os dados dessa tabela para explicar os cálculos envolvidos no teste de adequação ao ajuste e em nossos exemplos no Excel e

IBM SPSS. A equação para encontrar o valor do Qui-Quadrado é a seguinte (FRANKE; HO; CHRISTIE, 2012; THOMAS; NELSON; SILVERMAN, 2007): $X^2 = \sum [(FO - FE)^2 / FE]$. Considerando os valores da Tabela 2, obtemos um $X^2 = 4$. Utilizando a distribuição do Qui-Quadrado para um grau de liberdade (gl = número de fileiras – 1), encontramos que um $X^2 = 4$ é associado a um valor de p de 0,046. Isso significa que a probabilidade de as FOs terem ocorrido, considerando que HO seja verdadeira (50% da população é do sexo feminino), é de 4,6 em 100. Como sabemos que HO é verdadeira, esses resultados colocam em dúvida a qualidade do processo de amostragem, em termos de cobertura da população (BIFFIGNANDI; BETHLEHEM, 2021).

Tabela 2: Frequência esperada (FE) e frequência observada (FO) de pessoas do sexo
feminino e masculino. n = 100

Preferência	FE	FO	FO-FE	(FO-FE) ²	(FO-F2) ² /FE	
Masculino	50	60	10	100	2	
Feminino	50	40	10	100	2	
Fonte: elaborada pelos autores						

Para realizar o teste de adequação ao ajuste no Excel, podemos organizar os dados igual a Tabela 2. O valor de *p* pode ser calculado utilizando a fórmula =TEST.QUIQUAD(valor observado; valor esperado). Utilizando nosso exemplo, a fórmula ficou da seguinte forma =TEST.QUIQUAD(C2:C3;B2:B3). As células C2 e C3 são as células onde estão as FOs e em B2 e B3 encontram-se as frequências esperadas (Figura 1).

No IBM SPSS, o teste de adequação ao ajuste ou aderência pode ser feito clicando-se em Analisar \rightarrow Testes não paramétricos \rightarrow Caixas de diálogo legadas \rightarrow Quiquadrado (Figura 2). Duas caixas aparecerão. Na caixa da esquerda, estarão as variáveis que estão no banco de dados. No nosso caso, a variável sexo. Para realizar a análise, deve-se clicar na variável sexo e em uma seta para direita que está entre as duas caixas (Figura 2). Após movimentar a variável sexo para caixa da direita, basta clicar

em "OK". Um *output* será apresentado com informações sobre FO, FE e diferenças entre elas (isto é, resíduos). Além disso, serão exibidos o valor de X^2 , os graus de liberdade da análise e o valor de *p* (Figura 2).

Figura 1	: Organização	dos dados,	no Excel	, para	realização	do teste o	de adequa	ção ao
		aj	uste ou a	derên	cia			

	Α	В	с	D	E	F
1	Sexo	FE	FO	FO-FE	(FO- FE) ²	(FO- F2)²/FE
2	Masculino	50	60	10	100	2
3	Feminino	50	40	-10	100	2
4						
5						
6	X²	Gl	Valor de p)		
7	4	1	0,0455			

Nota: FE = Frequência esperada; FO = Frequência observada; Gl = Grau de liberdade Fonte: elaborada pelos autores

	Observed N	Expected N	Resíduos
Masculino	60	50,0	10,0
Feminino	40	50,0	-10,0
Total	100		

Sexo

Test Statistics

	Sexo
Qui-quadrado	4,000ª
df	1
Significância Assintótica	,046

 a. 0 células (0,0%) têm frequências esperadas menores que 5. A frequência de célula mínima esperada é 50,0.

Fonte: elaborada pelos autores

Teste do Qui-Quadrado de Independência

O teste de independência, por sua vez, é realizado quando deseja-se verificar a associação entre duas variáveis categóricas (FRANKE; HO; CHRISTIE, 2012). Mantendo-se o exemplo do sexo, o teste de independência poderia ser utilizado para verificar se há diferenças na frequência de participação em atividades físicas de lazer entre pessoas do sexo masculino e feminino (ROSA; YAMADA; MENUCHI, 2023). Para realizar o teste de independência no Excel, podemos organizar os dados igual a Tabela 3. O valor de p pode ser calculado utilizando a fórmula =TEST.QUIQUAD (valor observado; valor esperado). Utilizando nosso exemplo, a fórmula ficou da seguinte forma =TESTE.QUIQUA(B5:C6;B10:C11). Nas células B5 a C6 estão as FOs e de B10 a C11 encontram-se as frequências esperadas (Figura 3).

No IBM SPSS, o teste de independência pode ser feito clicando-se em Analisar \rightarrow Estatísticas descritivas \rightarrow Tabela de referência cruzada (Figura 4). Duas caixas aparecerão. Na caixa da esquerda, estarão as variáveis que estão no banco de dados. No nosso caso, a variável sexo e a variável prática de atividades de lazer. Para realizar a análise, deve-se selecionar as variáveis e movimentá-las para as suas respectivas caixas (Figura 4). Por convenção, a variável dependente é colocada na coluna e a variável independente na linha. Após movimentar as variáveis, pode-se clicar na opção "Estatísticas" para selecionar as informações que se deseja analisar no *output*. Entre essas opções encontram-se razão de prevalência, razão de *odds* e o V de Cramer. Ainda, clicando-se na opção "Células" pode-se solicitar informações sobre as frequências esperadas em cada célula. Após selecionar as métricas de interesse, basta clicar em "OK". Um *output* será apresentado com as informações requeridas cujas incluem o valor de X^2 , os graus de liberdade da análise e o valor de *p* (Figura 4).

Tabela 3: Número de pessoas que praticam atividade física de lazer de acordo com o
sexo. n = 100

Frequências observa	idas	
	Prática atividade física de lazer	Não prática atividade física de lazer
Masculino	32	18
Feminino	28	22
Frequências esperadas		
	Prática atividade física de lazer	Não prática atividade física de lazer
Masculino	30	20
Feminino	30	20
	F (11 1 1	

Fonte: elaborada pelos autores

Figura 3: Organização dos dados, no Excel, para realização do teste de independência

	Α	В	С	D				
1	Te	este de independência						
2								
3		Obervado						
4		Pratica	Não pratic	a				
5	Masculino	32	18					
6	Feminino	28	22					
7								
8		Esperado						
9	Pratica	30	20					
10	Não pratic	30	20					

Fonte: elaborada pelos autores

INdependente.sav [Conjunto_de_dados2] - IBM SPSS Statistics Editor de dado ta •spss-٥ Arquivo Editar Visualizar Dados Transformar Analisar Marketing direto Gráficos Utilitários Janela Ajuda Relatórios 🖻 🗄 🖨 🛄 🗠 🛥 🦉 ABC Estatísticas descritivas 123 <u>F</u>requências Ta<u>b</u>elas Visível: 3 de 3 variáve Bescritivos.. ID Atividade Fís Sexo Comparar médias A Explorar... var var var var va var var var ca_de_Laze Modelo linear <u>g</u>eral Tabela de referência cruzada. 1.00 1.00 Modelos lineares generalizados 2,00 1,00 Razão.. Modelos mistos 3.00 1.00 🛃 Gráficos P-P., Correlacionar 1,00 4,00 🛃 Gráficos Q-Q. Regressão 5,00 1,00 1. Log linear 6.00 1,00 Redes neurais 7,00 1,00 1, Classificar 1,00 1,00 8.00 1,0 1,0 Redução de dimensão 9,00 Esc<u>a</u>la 10 10 00 1,00 1, 11 1,00 Testes não paramétricos 11,00 <u>P</u>revisão 12 13 12.00 1,00 1, 1,00 <u>S</u>obrevivência 13,00 Múltiplas respostas 14 14.00 1.00 15 16 17 15,00 1,00 Análise de valor ausente 16,00 1,00 1,0 Impu<u>t</u>ação múltipla 1,00 1,00 17 00 Amostras complexas 18 18,00 📳 Simulação... 19 19.00 1.00 Controle de gualidade 20,00 1,00 20 Curva ROC.. 21 22 21.00 1.00 1,00 22,00 1,00 Visualização de dados Visualização da varia Tabela de referência cruzada IBM SPSS Statistics O processador está pronto 스 26°C · 스 섬 🛱 후 🧟 여) POR 18:40 21/08/2023 👫 ₫i 🔼 🙆 🛤 Pesquisar Π. i 🖉 🖬 😭 👊 G 2 🝓 Tabulações cruzadas × Linha(s) 🔄 Tabulações cruzadas: Estatísticas \times Exato.. Exato. 🔗 ID 🔏 Sexo + Estatísticas. Estatísticas. Quiquadrado 🔲 Co<u>r</u>relações Células.. Células... -Nominal--Ordinal Coluna(s) Eormato... Formato. Coeficiente de contingência 🔲 <u>G</u>ama Atividade Física de Lazer • Bootstrap.. **V** de Cramer e Fi 📃 d de <u>S</u>omers Bootstr<u>a</u>p 📃 Lambda 📃 Tau-<u>b</u> de Kendall -Camada1 de 1 Coeficiente de incerteza 📃 Tau-<u>c</u> de Kendall Nominal por intervalo 🔲 <u>C</u>apa 📃 <u>E</u>ta Risco . McNemar 📃 Estatísticas de Cochran e Mantel-Haenszel 🔳 Exibir variáveis de camada nas camadas da tal Exibir gráficos de barra agrupados Continuar Cancelar Ajuda 📃 Suprimir tabelas OK Colar Redefinir Cancelar Ajuda

Figura 4: Caixas de diálogo e output do IBM SPSS relativo ao teste de independência

Sexo * Atividade_Física_de_Lazer Tabulação cruzada

Contagem

		Atividade_Fís		
		Prática atividade física de lazer	Não prática atividade física de lazer	Total
Sexo	Masculino	32	18	50
	Feminino	28	22	50
Total		60	40	100

	T	estes de qu	ii-quadrado			
	Valor	df	Sig. Assint. (2 lados)	Sig exata (2 lados)	Sig exata (1 Iado)	
Qui-quadrado de Pearson	,667 ^a	1	,414			(
Correção de continuidade ⁶	,375	1	,540			A
Razão de verossimilhança	,668	1	,414			e fi
Fisher's Exact Test				,541	,270	р
Associação Linear por Linear	,660	1	,417			A
N de Casos Válidos	100					fí
a. O células (0,0%) esper	am contage	m menor do	que 5. A contage	m mínima espera	da é 20,00.	

Estimativa de Risc

		l intervalo de contrança 95	
	Valor	Inferior	Superior
Odds Ratio for Sexo (Masculino / Feminino)	1,397	,626	3,119
para coorte Atividade_Física_de_Laz er = Prática atividade física de lazer	1,143	,828	1,577
para coorte Atividade_Física_de_Laz er = Não prática atividade física de lazer	,818	,504	1,328
N de Casos Válidos	100		

b. Computado apenas para uma tabela 2x2

Fonte: elaborada pelos autores

Interpretando o *output* do teste de independência (Figura 4), um valor de X^2 = 0,667 foi obtido cujo corresponde a um p valor de 0,414. Isso indica que a probabilidade de ter observado as frequências na Tabela 3, considerando que não há diferenças entre pessoas do sexo feminino e masculino quanto a prática de atividade física de lazer na população, é de 41 em 100. Ou seja, as diferenças observadas na amostra são relativamente prováveis de ocorrer, ainda que não haja diferença na população. Desse modo, não é possível afirmar com convicção que há diferenças na prática de atividades físicas de lazer entre pessoas do sexo feminino e masculino, na população. Uma métrica interessante de ser interpretada, a qual pode ser solicitada ao realizar o teste do Qui-Quadrado no IBM SPSS, é a razão de prevalência (Figura 4). No caso da presente análise, essa razão foi de 1,14, sugerindo que as pessoas do sexo masculino foram 14% mais prováveis de participarem em atividades de lazer que as pessoas do sexo feminino. Contudo, em termos de inferência para a população, o intervalo de confiança (de 95%) para essa razão variou de 0,83 a 1,58. Enquanto a estimativa (14%) sugere a maior prática de atividade de lazer entre pessoas do sexo masculino na população, uma menor prática entre as pessoas desse sexo também é plausível. Isto é, uma razão de prevalência de 0,83 é abrangida pela margem inferior do intervalo de confiança de 95% (AMRHEIN; GREENLAND; MCSHANE, 2019; CUMMING, 2014).

Conclusão

Cada um dos dois testes do Qui-Quadrado tem sua utilidade para pesquisas científicas (Tabela 1). O teste de adequação ao ajuste ou aderência pode ser utilizado para analisar se as características da amostra são similares as características da população (FRANKE; HO; CHRISTIE, 2012). O teste de independência, por sua vez, permite verificar se há associação entre duas variáveis categóricas (MCHUGH, 2013). Nesse texto, interpretamos esses dois tipos de teste do Qui-Quadrado e apresentamos um tutorial sobre como realizá-los em duas ferramentas populares para análise de dados (isto é, Excel e IBM SPSS). Com isso, esperamos colaborar com a execução e interpretação apropriada desses testes por pesquisadores interessados(as), em especial, pesquisadores da área do lazer.

Estudos futuros poderiam discutir em maior detalhe aspectos que não foram abordados no presente texto, mas que também são importantes para compreensão do Qui-Quadrado. Entre esses aspectos destacamos a distribuição do Qui-Quadrado, formação dos graus de liberdade, pressupostos do teste, variáveis com mais de duas categorias e possíveis análises alternativas. Finalmente, estudos futuros podem apresentar tutorias para realização do teste do Qui-Quadrado em outros softwares estatísticos como o R.

REFERÊNCIAS

AMRHEIN, Valentin; GREENLAND, Sander; MCSHANE, Blake. Scientists rise up against statistical significance. **Nature**, v. 567, n. 7748, p. 305–307, 20 mar. 2019.

BIFFIGNANDI, Silvia; BETHLEHEM, Jelke. **Handbook of web surveys**. Second ed. NJ: John Wiley & Sons, Inc., 2021.

CUMMING, Geoff. The new statistics: Why and how. **Psychological Science**, v. 25, n. 1, p. 7–29, jan. 2014.

FRANKE, Todd Michael; HO, Timothy; CHRISTIE, Christina A. The chi-square test: Often used and more often misinterpreted. **American Journal of Evaluation**, v. 33, n. 3, p. 448–458, 8 set. 2012.

MCHUGH, Mary L. The Chi-square test of independence. **Biochemia Medica**, v. 23, n. 2, p. 143–149, 2013.

MUFF, Stefanie et al. Response to 'Why P values are not measures of evidence' by D. Lakens. **Trends in Ecology & Evolution**, v. 37, n. 4, p. 291–292, abr. 2022.

OLIVEIRA, Késsia Mirian Jesus De et al. Atividades de Lazer em Adultos Quilombolas de uma Região Baiana. LICERE - Revista do Programa de Pósgraduação Interdisciplinar em Estudos do Lazer, v. 24, n. 3, p. 251–268, 27 set. 2021.

RANA, Rakesh; SINGHAL, Richa. Chi-square test and its application in hypothesis testing. Journal of the Practice of Cardiovascular Sciences, v. 1, n. 1, p. 69–71, 2015.

ROSA, Claudio D. et al. Gender Differences in Connection to Nature, Outdoor Preferences, and Nature-Based Recreation Among College Students in Brazil and the United States. Leisure Sciences, v. 45, n. 2, p. 135–155, 17 fev. 2023.

ROSA, Claudio D.; YAMADA, André Katayma; MENUCHI, Marcos R. T. P. Atividade Física de Lazer e seu Relacionamento com Gênero e Tempo de Caminhada até o Parque ou Academia. LICERE - Revista do Programa de Pós-graduação Interdisciplinar em Estudos do Lazer, v. 26, n. 3, p. 78–92, 2023.

SHARPE, Donald. Chi-Square Test is Statistically Significant: Now What? **Practical** Assessment, Research, and Evaluation, v. 20, n. 8, p. 1–10, 2015.

THOMAS, Jerry R; NELSON, Jack K; SILVERMAN, Stephen J. **Métodos de pesquisa** em atividade física. 5. ed. Porto Alegre: Artmed, 2007.

Endereço dos Autores:

Claudio Damião Rosa Endereço eletrônico: claudio2008ilheus@hotmail.com

David Ohara Endereço eletrônico: dohara@uesc.br

Marcos Rodrigo T. Pinheiro Menuchi Endereço eletrônico: mmuesc@gmail.com