Bacia precursora versus bacias orogênicas: exemplos do Grupo Andrelândia

com base em datações U-Pb (LA-ICP-MS) em zircão e análises litoquímicas

Juliane Belém^{1*}, Antônio Carlos Pedrosa-Soares¹, Carlos Maurício Noce^{1**}, Luiz Carlos da Silva², Richard Armstrong³, André Fleck¹, Camila Gradim¹, Gláucia Queiroga⁴

1. CPMTC-IGC-UFMG, Campus Pampulha, Belo Horizonte, MG. * Doutoranda em Geologia, UFMG, julianebelem@yahoo.com.br. ***In memoriam.* 2. Serviço Geológico do Brasil-CPRM, Belo Horizonte, MG.

3. Australian National University, Canberra, Australia.

4. DEGEO-Escola de Minas-UFOP, Ouro Preto, MG

Recebido em 10/10/2011; aceito em 21/11/2011

RESUMO: Resultados de datações U-Pb (LA-ICP-MS) sobre zircões e análises litoquímicas de amostras de paragnaisse e xisto do Grupo Andrelândia, coletadas desde sua área-tipo até a região de alto grau metamórfico do sistema orogênico Araçuaí-Ribeira, evidenciam que esta extensa unidade estratigráfica inclui representantes de bacia precursora de margem continental passiva, representada pelo Grupo Andrelândia Inferior (paragnaisse de Madre de Deus, Seqüência Carrancas), com idade máxima em *ca.* 950 Ma e fontes sedimentares diversificadas, datadas do Toniano ao Neoarqueano; e de bacias orogênicas, representadas pela Unidade Santo Antônio do Grupo Andrelândia Superior e paragnaisses de alto grau metamórfico da região de Ubá-Carangola, com idade máxima em torno de 640 Ma e extrema concentração de áreas-fontes neoproterozóicas. As análises litoquímicas apontam para larga predominância de fontes sedimentares situadas em arcos magmáticos, mas a amostra que melhor indica a bacia precursora (o paragnaisse de Madre de Deus, Seqüência Carrancas) tem assinatura similar a depósitos de margem continental passiva. Amostras de paragnaisse migmatítico revelam a idade de *ca.* 565 Ma para o clímax metamórfico-anatético na zona de fronteira Araçuaí-Ribeira. Destaca-se que o Grupo Andrelândia Superior, na forma como é representado em mapas atuais, incluiria pelo menos duas bacias orogênicas, *i.e.*, uma, na Faixa Brasília e, outra, no sistema Araçuaí-Ribeira.

Palavras-chave: geocronologia U-Pb, litoquímica, Grupo Andrelândia

ABSTRACT: PRECURSOR BASIN *VERSUS* OROGENIC BASINS: EXAMPLES FROM THE ANDRELÂNDIA GROUP BASED ON ZIRCON U-Pb (LA-ICP-MS) AND LITHOCHEMICAL ANALYSIS. Results from zircon U-Pb (LA-ICP-MS) and lithochemical analysis on samples from the Andrelândia Group, collected from its type-area to the high grade core of the Araçuaí-Ribeira orogenic system, suggest that this extensive stratigraphic unit includes a precursor passive margin basin, represented by the Lower Andrelândia Group (Madre de Deus paragneiss, Carrancas sequence), with maximum depositional age around 950 Ma and diversified sediment sources dated from the Tonian to Neoarchean; and orogenic basin(s), represented by the Santo Antônio unit of the Upper Andrelândia Group and high grade paragneisses of the Ubá-Carangola region, with a maximum depositional age around 640 Ma and provenance extremely restricted to Neoproterozoic sources. Lithochemical analysis point to a large predominance of sediment sources located in magmatic arcs, but the sample representing the precursor basin shows signature similar to passive margin deposits. High grade paragneisses reveal the age of *ca*. 565 Ma to the metamorphic-anatectic climax in the Araçuaí-Ribeira boundary zone. It is important to notice that the Upper Andrelândia Group, as represented in current maps, includes at least two orogenic basins, *i.e.*, the older, to the west, in the Brasília belt, and the younger, to the east, in the Araçuaí-Ribeira system.

Keywords: U-Pb geochronology, lithochemistry, Andrelândia Group.

1. INTRODUÇÃO

O estudo aqui apresentado aborda um conjunto de amostras de rochas atribuídas ao Grupo (ou Megasseqüência) Andrelândia, desde sua área-tipo, situada na zona de interferência entre as faixas Brasília e Ribeira (*e.g.*, Trouw *et al.* 2000, Ribeiro *et al.* 2003), até a região de alto grau metamórfico da fronteira Araçuaí-Ribeira, cujos paragnaisses têm sido correlacionados a este grupo (*e.g.*, Noce *et al.* 2003, 2006, 2010; Pedrosa-Soares *et al.* 2003; Heilbron *et al.* 2004, 2008). Tem como objetivo contribuir para a verificação da consistência desta correlação estratigráfica, por meio de análises geocronológicas U-Pb (LA-ICP-MS) em zircão e estudos litoquímicos.

As amostras analisadas distribuem-se por ampla área que apresenta metamorfismo genericamente crescente de oeste para leste, desde a fácies anfibolito baixo a médio, na região de AndrelândiaMadre de Deus, até a transição de fácies anfibolitogranulito e fácies granulito, com intensidades variadas de migmatização, no setor oriental da região enfocada (Fig. 1).

2. CONTEXTO GEOLÓGICO REGIONAL

Um quadro geral da geologia da região focalizada, representado em mapa simplificado (Fig. 1), foi obtido pela compilação dos mapas geológicos em escala 1:100.000 publicados pelo Projeto Sul de Minas (contrato CODEMIG-UFMG, Pedrosa-Soares *et al.* 2003) e folhas mapeadas, na mesma escala, no âmbito de contratos CPRM-UFMG-Programa Geologia do Brasil (Noce *et al.* 2006, 2010).

O embasamento regional é representado pelos complexos paleoproterozóicos Mantiqueira, Juiz de Fora e Quirino (Noce *et al.* 2007, Heilbron *et al.* 2010). O limite entre os complexos Mantiqueira e Juiz de Fora é balizado pela Zona de Cisalhamento de Abre Campo, que marca o contato entre os

Figura 1. Mapa geológico simplificado com destaque para o Grupo Andrelândia no sul e sudeste de Minas Gerais, e localização das amostras analisadas (compilado de mapas em escala 1:100.000 dos projetos Sul de Minas e CPRM-UFMG-PRONAGEO).

ortognaisses bandados do Complexo Mantiqueira, a oeste, com os ortognaisses enderbíticos do Complexo Juiz de Fora, a leste (Peres *et al.* 2004, Alkmim *et al.* 2007, Noce *et al.* 2007). Entretanto, a cobertura neoproterozóica de ambos os domínios é representada pelas rochas metassedimentares atribuídas ao Grupo (ou Megasseqüência) Andrelândia (*e.g.*, Trouw *et al.* 2000, Ribeiro *et al.* 2003; Heilbron *et al.* 2004; Noce *et al.* 2003, 2006).

De modo simplificado, o Grupo Andrelândia é subdividido nas unidades inferior e superior (Fig. 1). A unidade inferior representa a sucessão metassedimentar basal e média do Grupo Andrelândia (a Seqüência Deposicional Carrancas; *e.g.*, Ribeiro *et al.* 2003) que inclui paragnaisses bandados com intercalações de anfibolitos, quartzitos e filitos/xistos cinzentos com quartzitos na base (Unidade São Vicente), sucedida por quartzitos com micas esverdeadas (Unidade São Tomé das Letras) e filitos/xistos cinzentos (Unidade Campestre).

A unidade superior do Grupo Andrelândia é constituída, a oeste, por biotita xisto feldspático (Unidade Santo Antônio), seguido por biotitamuscovita xisto/gnaisse grosso com intercalações de quartzito e quartzo xisto, rocha calcissilicática e anfibolito (Unidade Arantina), que passa, rumo a leste, para uma extensa e espessa sucessão composta por paragnaisses aluminosos a peraluminosos (i.e., semipelíticos a pelíticos) que podem exibir intercalações de gnaisses quartzofeldspáticos (arenosos) com menor conteúdo de biotita e granada, com raras lentes delgadas de rocha calcissilicática (metamarga) e de ortoanfibolito (e.g., Ribeiro et al. 2003, Heilbron et al. 2004). Nesta unidade superior, em geral, as intercalações de gnaisse mais quartzoso e/ou feldspático (menos aluminoso, i.e., com maior quantidade da fração areia no protolito) tendem a ser mais abundantes a

oeste, ao passo que a sucessão oriental tende a ser mais pelítica (peraluminosa) devido ao largo predomínio de sillimanita-granada-biotita gnaisses comumente mais ricos em plagioclásio do que em feldspato potássico. O processo de migmatização afeta todo o grupo no setor leste da área amostrada.

Além das unidades acima, o mapa geológico simplificado ilustra suítes ígneas plutônicas (Fig. 1): a suíte G1 engloba plútons cálcio-alcalinos de arco magmático de margem continental, ediacarano (*ca*. 630-585 Ma); a suíte G2 inclui granitos sincolisionais formados em *ca*. 585-560 Ma; e a suíte G5 compreende as intrusões pós-colisionais cambrianas (Heilbron *et al*. 2008, Pedrosa-Soares *et al*. 2011;).

3. GEOCRONOLOGIA U-Pb

Quatro amostras foram selecionadas para extração de grãos de zircão que foram analisados pela técnica U-Pb (LA-ICP-MS) em laboratório da Australian National University, Canberra, Austrália. Os concentrados de zircão foram obtidos no LOPAG-UFOP. Em ambos os casos foram aplicadas as rotinas convencionais destes laboratórios.

As amostras datadas, cuja localização se encontra no mapa geológico (Fig. 1), são:

- JB-04 (LC12), paragnaisse listrado, fino, de Madre de Deus (Seqüência Carrancas), Grupo Andrelândia Inferior, Folha Madre de Deus (Fig. 2A);

- JB-05 (LC13), granada-biotita xisto da Unidade Santo Antônio, Grupo Andrelândia Superior, Folha Andrelândia (Fig. 2B);

- UB-03 (LC41), sillimanita-granada-biotita gnaisse bandado, migmatítico, dos arredores de Cataguases, Folha Ubá (Fig. 2C);

- F-111 (LC40), sillimanita-granada-biotita gnaisse bandado, migmatítico, da Serra do Brigadeiro, Folha Carangola (Fig. 2D).

Nos dois últimos casos (amostras UB-03 e F-111), como as rochas amostradas são de alto grau metamórfico (transição de fácies anfibolitogranulito) e estão intensamente migmatizadas, buscou-se separar apenas as bandas escuras que corresponderiam ao paleossoma (embora seja muito difícil eliminar completamente a grande quantidade de vênulas quartzo-feldspáticas leucossomáticas). Por isto, uma discussão mais segura sobre os resultados destas amostras somente será possível quando se tiver as imagens de catodo-luminescência dos grãos de zircão analisados. As amostras JB-04 e JB-05, que são rochas de grau metamórfico bem mais baixo em relação às demais amostras datadas, foram limpas de todo sinal de veios e alteração.

Figura 2. Fotos dos afloramentos das amostras datadas: A, paragnaisse de Madre de Deus (JB-04); B, granada-biotita xisto da Unidade Santo Antônio (JB-05); C, paragnaisse de Cataguases (UB-03); D, paragnaisse da Serra do Brigadeiro (F-111).

Figure 2. Photos from outcrops of the dated samples: A, Madre de Deus paragneiss (JB-04); B, Santo Antônio garnet-biotite schist (JB-05); C, Cataguases paragneiss (UB-03); D, Serra do Brigadeiro paragneiss (F-111).

3.1 - Resultados U-Pb da amostra JB-04, paragnaisse do Grupo Andrelândia Inferior

Foram datados 72 *spots* em 72 grãos detríticos de zircão, arredondados a sub-arredondados, dentre os quais, após eliminadas as análises com alta discordância e/ou altos valores de Pb comum, restaram 55 análises com idades praticamente concordantes (Tabela 1, Fig. 3). As razões Th/U dessas análises, associadas às características da rocha, são indicativas de zircões magmáticos.

O histograma de idades e probabilidades relativas indica uma idade máxima de sedimentação em torno de 950 Ma, para os protolitos

sedimentares do paragnaisse de Madre de Deus (Següência Carrancas) do Grupo Andrelândia Inferior (Fig. 3). A distribuição dos valores sugere fontes de sedimentos situadas no sistema de riftes do limiar Neoproterozóico-Mesoproterozóico (idades no intervalo 940-1010 Ma) que deu origem às margens passivas em torno da região paleocontinental do São Francisco (Valeriano et al. 2004, 2008), em todo o sistema Espinhaço-Araí desde o Esteniano ao Estateriano (idades no intervalo de 1140 a 1800 Ma; cf. Brito-Neves et al. 1996, Chemale-Júnior et al. 2011, Pedrosa-Soares & Alkmim 2011) e em unidades paleoproterozóicas e neoarquenas do embasamento sanfranciscano (Teixeira et al. 2000).

Figura 3. Histograma das idades U-Pb (LA-ICP-MS) obtidas de grãos detríticos de zircão extraídos da amostra do paragnaisse de Madre de Deus (JB-04), Seqüência Carrancas, Grupo Andrelândia Inferior.

Figure 3. Histogram for U-Pb (LA-ICP-MS) ages of detrital zircon grains extracted from the Madre de Deus paragneiss (JB-04), Carrancas sequence, Lower Andrelândia Group.

Tabela 1. Dados isotópicos U-Pb (LA-ICP-MS) de grãos detríticos de zircão extraídos do paragnaisse de Madre de Deus (amostra JB-04), Seqüência Carrancas, Grupo Andrelândia Inferior. Erros em 1 sigma. Pb comum corrigido usando Pb²⁰⁴ medido.

Table 1. Isotopic U-Pb (LA-ICP-MS) data for detrital zircon grains extracted from the Madre de Deus paragneiss (sar	nple JB-04), Carrancas
sequence, Lower Andrelândia Group. Errors are 1-sigma. Common Pb corrected using measured ²	⁰⁴ Pb.

Amostra JB-04, paragnaisse de Madre de Deus, Seqüência Carrancas, Grupo Andrelândia Inferior									
Th/U	Idade ²⁰⁶ Pb/ ²³⁸ U	± (Ma)	Idade ²⁰⁷ Pb/ ²³⁵ U	± (Ma)	Idade ²⁰⁷ Pb/ ²⁰⁶ Pb	± (Ma)	% conc.	Idade	± (Ma)
0,33	940	21	946	29	960	28	97,96	940	21
0,43	963	19	978	22	1011	23	95,24	963	19
0,37	1004	20	1006	21	1010	20	99,40	1010	20
0,45	1118	22	1126	22	1140	22	98,13	1140	22
0,44	1152	24	1162	25	1180	24	97,67	1180	24
0,49	1177	26	1156	30	1117	28	105,38	1117	28
0,40	1221	24	1214	25	1202	25	101,64	1202	25
0,21	1231	24	1260	25	1311	26	93,88	1311	26
0,84	1235	26	1235	28	1233	27	100,21	1233	27
1,21	1252	31	1222	30	1171	27	106,95	1171	27
0,25	1265	25	1306	26	1375	27	91,96	1375	27
0,73	1281	25	1287	26	1298	26	98,73	1298	26
0,28	1297	26	1314	27	1342	27	96,63	1342	27
0,50	1308	26	1317	28	1332	28	98,19	1332	28
0,10	1318	26	1307	26	1289	26	102,24	1289	26
0,29	1376	27	1395	27	1423	28	96,70	1423	28
0,32	1379	27	1378	28	1376	28	100,23	1376	28
0,62	1395	27	1427	28	1474	29	94,67	1474	29
0,51	1447	28	1460	29	1480	29	97,77	1480	29
0,58	1464	29	1483	30	1511	30	96,88	1511	30
0,58	1502	29	1481	29	1450	28	103,60	1450	28
0,35	1537	36	1538	35	1539	33	99,88	1539	33
0,57	1593	33	1679	34	1789	36	89,00	1789	36
0,61	1718	36	1740	36	1766	36	97,27	1766	36
0,86	1722	34	1729	34	1736	34	99,21	1736	34
0,73	1740	34	1768	35	1801	35	96,62	1801	35
0,94	1742	36	1743	37	1745	36	99,85	1745	36
0,92	1752	35	1774	35	1801	35	97,31	1801	35
0,65	1757	35	1746	35	1732	34	101,42	1732	34
0,27	1774	35	1805	36	1841	36	96,35	1841	36
0,50	1783	35	1810	35	1842	36	96,80	1842	
0,22	1852	41	1954	41	2064	42	89,74	2064	42
0,94	1856	37	1843	37	1828	36	101,50	1828	36
0,35	1897	37	1886	37	1874	37	101,22	1874	37
0,84	1933	39	1955	38	1979	38	97,70	1979	38
0,85	1959	38	2003	39	2048	40	95,68	2048	40
0,48	1965	40	2003	40	2042	40	96,22	2042	40
0,62	2002	39	2055	40	2108	40	94,93	2108	40
1,05	2027	40	2027	40	2026	40	100,09	2026	40
0,60	2029	41	2090	42	2151	42	94,31	2151	42
0,48	2048	40	2021	39	1993	39	102,73	1993	39
0,67	2049	40	2106	41	2162	42	94,76	2162	42
0,54	2060	42	2113	44	2166	44	95,07	2166	44
0,27	2131	42	2162	43	2192	43	97,20	2192	43
0,49	2147	44	2199	47	2249	48	95,46	2249	48
0,59	2157	46	2207	46	2253	45	95,76	2253	45
0,45	2333	47	2394	47	2446	47	95,37	2446	47
0,37	2499	54	2588	52	2659	52	93,99	2659	52
0,54	2550	50	2645	51	2718	52	93,83	2718	52
0,70	2555	53	2606	52	2646	52	96,56	2646	52
0,52	2568	52	2649	52	2711	53	94,71	2711	53
0,44	2603	55	2669	52	2720	52	95,68	2720	52
0,41	2635	51	2657	51	2673	51	98,57	2673	51
0,97	2718	59	2718	56	2718	55	100,02	2718	55
0,47	2740	54	2777	54	2805	54	97,69	2805	54

3.2 - Resultados U-Pb da amostra JB-05, Xisto Santo Antônio, Grupo Andrelândia Superior

Foram datados 68 *spots* em 68 grãos detríticos de zircão, arredondados a sub-arredondados, dentre os quais, após eliminadas as análises com alta discordância e/ou altos valores de Pb comum, restaram 53 análises com idades praticamente concordantes (Tabela 2, Fig. 4). As razões Th/U dessas análises, associadas às características da rocha, são indicativas de zircões magmáticos.

Em contraste com a amostra do paragnaisse de Madre de Deus (JB-04), o histograma de idades e probabilidades relativas para a amostra do granadabiotita xisto da Unidade Santo Antônio (JB-05) mostra grande concentração de valores do Criogeniano (635-850 Ma), um pico menor no Toniano (em torno de 960 Ma) e apenas oito resultados (15%) mais velhos que 1000 Ma (Fig. 4,

Tabela 2). Ou seja, 85% das idades obtidas da Santo Antônio amostra do xisto são neoproterozóicas e. dentre estas. 55% dos valores situam-se entre 635 Ma e 800 Ma. Esta distribuição é uma forte evidência da importante contribuição de fontes de sedimentos situadas nos arcos magmáticos do sistema orogênico Brasília (Pimentel et al. 1999, 2000). As demais idades indicam discreta contribuição dos riftes tonianos, um quase insignificante aporte de sedimentos vindos do embasamento paleoproterozóico e a ausência de contribuição do sistema Espinhaço-Araí (Valeriano et al. 2004, 2008). A despeito de alguns grãos um pouco mais jovens (mas, praticamente equivalentes, na faixa de erro, ao valor médio adotado), a idade máxima de sedimentação para os protolitos sedimentares da Unidade Santo Antônio está em torno de 645 Ma (Fig. 4).

Figura 4. Histograma das idades U-Pb (LA-ICP-MS) obtidas de grãos detríticos de zircão extraídos de granada-biotita xisto (JB-05) da Unidade Santo Antônio, Grupo Andrelândia Superior.

Figure 4. Histogram for U-Pb (LA-ICP-MS) ages of detrital zircon grains extracted from a garnet-biotite schist (JB-05) of the Santo Antônio unit, Upper Andrelândia Group. Tabela 2. Dados isotópicos U-Pb (LA-ICP-MS) de grãos detríticos de zircão extraídos do granada-biotita xisto (amostra JB-05) da Unidade Santo Antônio, Grupo Andrelândia Superior. Erros em 1 sigma. Pb comum corrigido usando Pb²⁰⁴ medido.

Table 2. Isotopic U-Pb (LA-ICP-MS) data for detrital zircon grains extracted from a garnet-biotite schist (sample JB-05) of the Santo Antô	nio
unit, Upper Andrelândia Group. Errors are 1-sigma. Common Pb corrected using measured ²⁰⁴ Pb.	

Amostra JB-05, granada-biotita xisto da Unidade Santo Antônio, Grupo Andrelândia Superior									
Th/U	Idade 206 Pb/238 U	± (Ma)	Idade ²⁰⁷ Pb/ ²³⁵ U	± (Ma)	Idade ²⁰⁷ Pb/ ²⁰⁶ Pb	± (Ma)	% conc.	Idade	± (Ma)
0,46	928	20	960	22	1032	22	89,98	928	20
0,47	635	13	650	15	704	16	90,16	635	13
0,30	722	15	741	18	799	19	90,29	722	15
0,74	624	13	636	17	680	17	91,72	624	13
0,74	665	14	678	15	722	15	92,14	665	14
0.74	1001	20	1028	21	1086	22	92,17	1086	22
0.37	688	14	701	16	744	17	92,50	688	14
0.66	961	19	982	20	1028	21	93,45	961	19
0.64	792	16	807	18	847	18	93,55	792	16
0.31	656	14	666	19	700	19	93,69	656	14
0.88	2086	43	2158	46	2227	46	93,70	2227	46
0.64	699	15	710	18	744	19	93,95	699	15
0,04	772	16	785	20	821	20	93.99	772	16
0,05	769	16	781	18	817	18	94.16	769	16
0,52	898	19	914	20	953	20	94.17	898	19
0,45	641	13	649	14	677	15	94.68	641	13
0,95	1875	38	1925	30	1979	39	94 74	1979	30
0,65	813	17	825	18	857	18	0/ 02	813	17
0,58	1900	27	1027	20	1097	20	05 11	1097	20
0,56	054	10	967	35 21	1987	35 21	95,11	05/	10
0,85	504	13	700	15	557	15	95,04 05.05	602	13
0,65	2026	14	2066	13	2105	13	95,95	2105	14
0,47	2020	43 1F	2000	42	2105	42	90,20	2105	42
0,31	/55	15	762	10	/81	10	96,63	/55	15
0,72	1038	21	1049	21	1072	21	96,89	1072	21
0,40	684	14	689	14	706	14	96,90	684	14
0,38	908	18	916	19	936	19	97,02	908	18
0,25	936	19	945	19	965	19	97,03	936	19
0,42	6/1	14	6/5	16	690	16	97,18	6/1	14
0,56	1003	20	1012	22	1031	22	97,37	1031	22
0,65	613	13	617	14	629	14	97,45	613	13
0,93	644	13	647	14	659	14	97,63	644	13
0,64	803	17	808	18	822	18	97,64	803	17
1,06	609	16	611	25	620	24	98,15	609	16
1,20	667	14	669	20	677	20	98,43	667	14
0,43	706	14	708	14	715	14	98,76	706	14
0,77	787	16	788	21	791	20	99,52	787	16
0,67	982	20	982	21	985	21	99,70	982	20
0,44	985	21	985	23	987	22	99,80	985	21
0,65	642	13	642	17	643	16	99,82	642	13
0,15	682	14	682	14	682	14	100,01	682	14
0,39	658	13	658	13	656	13	100,25	658	13
0,87	666	14	665	18	663	17	100,36	666	14
1,82	1970	40	1963	40	1956	40	100,70	1956	40
0,16	710	15	708	15	700	14	101,43	710	15
0,38	967	20	963	21	953	21	101,54	967	20
0,57	642	13	640	15	632	14	101,57	642	13
0,78	859	18	855	18	843	18	101,91	859	18
0,53	704	18	695	27	666	25	105,67	704	18
0,32	766	16	754	18	718	17	106,75	766	16
0,48	971	20	952	24	907	23	107,06	971	20
0,62	766	16	753	17	714	16	107,41	766	16
0,79	974	20	951	22	896	20	108,72	974	20
0,54	646	15	634	17	590	15	109,48	646	15

3.3 - Resultados U-Pb da amostra UB-03, paragnaisse migmatítico de Cataguases

Foram datados 63 *spots* em 63 cristais, mas, eliminadas as análises com alta discordância e/ou altos valores de Pb comum, 47 análises fornecem idades praticamente concordantes (Tabela 3, Fig. 5).

Dezenove análises apresentam razões Th/U inferior a 0,2, indicadoras de zircão metamórfico, a mesma quantidade possui razão entre 0,2 e 0,8, e nove *spots* apresentam razões Th/U altas (> 0,8) que são típicas de zircão magmático. Na avaliação dos dados é possível identificar que a maioria das idades U^{238} -Pb²⁰⁶ dos grãos ediacaranos é praticamente concordante (< 10%), mas o arranjo delas ao longo da concórdia descreve nitidamente uma curva de perda de Pb (Fig. 5). Os únicos dois grãos mais antigos, ca. 2100-2150 Ma, representam aporte sedimentar proveniente do embasamento do sistema orogênico Araçuaí-Ribeira (Noce et al. 2007, Heilbron et al. 2010). Os grãos com razões Th/U acima de 0,2 e idades entre ca. 585 Ma e ca. 642 Ma (sombreados na Tabela 3) são candidatos a representar a contribuição de arco magmático do sistema orogênico Aracuaí-Ribeira, em particular do arco do Orógeno Araçuaí (Pedrosa-Soares et al. 2011). A maioria dos cristais com idades abaixo de ca. 585 Ma têm razões Th/U de zircão metamórfico ou anatético e fornecem uma idade média de ca. 569 Ma, interpretada como a idade do metamorfismo de alto grau e migmatização associada. Este valor situa-se, perfeitamente, no estágio sincolisional do Orógeno Araçuaí (Pedrosa-Soares et al. 2011).

Figura 5. Histograma e diagrama concórdia das idades U-Pb (LA-ICP-MS) obtidas de grãos de zircão extraídos do paragnaisse de Cataguases (amostra UB-03).

Figure 5. Histogram and Concordia diagram for U-Pb (LA-ICP-MS) ages of zircon grains extracted from the Cataguases paragneiss (sample UB-03).

Tabela 3. Dados isotópicos U-Pb (LA-ICP-MS) de grãos de zircão extraídos do paragnaisse de Cataguases (amostra UB-03). Erros em 1 sigma. Pb comum corrigido usando Pb²⁰⁴ medido.

 Table 3. Isotopic U-Pb (LA-ICP-MS) data for zircon grains extracted from the Cataguases paragneiss (sample UB-03). Errors are 1-sigma.Common Pb corrected using measured ²⁰⁴Pb.

	Amostra UB-03, sillimanita-granada-biotita gnaisse de Cataguases, Folha Ubá 1:100.000								
Th/U	Idade ²⁰⁶ Pb/ ²³⁸ U	± (Ma)	Idade ²⁰⁷ Pb/ ²³⁵ U	± (Ma)	Idade ²⁰⁷ Pb/ ²⁰⁶ Pb	± (Ma)	% conc.	Idade	± (Ma)
0,08	548,21	9,22	551,54	10,23	565,13	10,10	97,01	548	9
0,05	550,04	9,27	559,42	11,10	597,48	11,42	92,06	550	9
0,04	552,95	9,14	549,96	9,85	537,94	9,38	102,79	553	9
1,11	555,51	9,40	552,21	11,12	538,84	10,53	103,09	556	9
0,05	556,05	9,82	560,76	10,14	579,69	9,77	95,92	556	10
0,03	556,54	9,94	561,39	11,57	580,83	11,25	95,82	557	10
0,03	558,50	9,10	567,75	10,35	604,67	10,78	92,37	559	9
0,04	558,60	9,25	559,59	9,91	563,37	9,69	99,15	559	9
0,17	561,89	9,43	568,29	11,31	593,80	11,43	94,63	562	9
1,15	564,64	9,68	563,04	11,30	556,85	10,75	101,40	565	10
0,04	565,15	9,28	560,26	9,75	540,79	9,19	104,50	565	9
0,13	565,54	9,29	569,38	10,44	584,56	10,46	96,75	566	9
0,24	565,68	9,25	570,37	11,30	588,88	11,43	96,06	566	9
0,07	566,07	10,22	567,87	10,85	574,84	10,19	98,47	566	10
0,94	566,84	9,70	572,66	12,83	595,54	12,88	95,18	567	10
0,53	567,06	9,67	559,47	12,04	528,96	11,09	107,20	567	10
0,04	568,34	9,27	568,10	9,68	567,45	9,46	100,16	568	9
0,10	568,95	9,37	559,60	10,32	522,08	9,44	108,98	569	9
0,22	569,51	9,61	564,62	11,39	545,29	10,69	104,44	570	10
1,28	570,94	9,53	583,19	11,34	631,01	11,85	90,48	571	10
1,11	571,76	9,57	574,40	10,86	584,63	10,71	97,80	572	10
0,62	571,80	9,71	571,68	11,09	571,47	10,69	100,06	572	10
0,47	572,11	9,76	565,15	12,49	537,53	11,59	106,43	572	10
0,59	573,60	9,58	570,68	12,21	559,34	11,72	102,55	574	10
0,92	573,82	9,56	568,74	11,09	548,79	10,44	104,56	574	10
0,20	575,12	9,58	583,02	11,97	613,73	12,24	93,71	575	10
0,04	578,64	10,06	582,15	10,34	595,69	9,96	97,14	579	10
0,72	579,42	9,70	585,52	11,96	608,99	12,07	95,14	579	10
0,34	581,40	10,07	587,47	13,12	610,72	13,10	95,20	581	10
0,13	582,99	9,60	580,09	10,34	569,03	9,90	102,45	583	10
0,24	583,96	9,60	592,01	11,17	622,78	11,45	93,77	584	10
0,64	585,09	9,85	593,51	13,54	625,64	13,86	93,52	585	10
1,01	585,15	9,89	586,79	12,15	592,95	11,90	98,69	585	10
0,43	587,30	9,89	580,98	12,34	556,58	11,57	105,52	587	10
0,34	588,07	9,75	583,68	10,64	566,92	10,06	103,73	588	10
0,18	588,18	9,61	582,20	11,39	559,20	10,79	105,18	588	10
0,42	589,19	9,73	596,16	12,48	622,48	12,72	94,65	589	10
0,62	590,88	9,80	592,51	11,08	598,43	10,89	98,74	591	10
0,06	592,68	10,70	596,46	10,92	610,57	10,31	97,07	593	11
0,58	593,97	9,88	589,87	12,30	574,34	11,75	103,42	594	10
0,04	597,27	10,19	598,51	11,02	603,00	10,63	99,05	597	10
0,03	601,67	10,21	613,54	10,39	657,35	10,61	91,53	602	10
0,43	608,45	10,06	622,32	12,35	672,89	12,97	90,42	608	10
0,60	630,44	10,78	634,92	12,77	650,69	12,60	96,89	630	11
2,00	642,23	10,51	648,79	13,02	671,55	13,21	95,63	642	11
1,16	2038,71	33,41	2068,64	33,48	2098,56	33,60	97,15	2099	34
0,41	2160,34	37,80	2153,11	38,15	2146,27	37,17	100,66	2146	37

3.4 - Resultados U-Pb da amostra F-111, paragnaisse migmatítico da Serra do Brigadeiro

Foram datados 69 *spots* em 69 grãos, mas, eliminadas as análises com alta discordância e/ou altos valores de Pb comum, restaram 44 *spots* com resultados praticamente concordantes (Tabela 4, Fig. 6).

Vinte análises mostram razão Th/U inferior a 0,2 indicativas de zircão metamórfico, mas, no conjunto, todas as análises (Th/U inferior a 0,8) sugerem processo metamórfico-anatético. Contudo, oito grãos com idades entre *ca*. 585 Ma e *ca*. 632 Ma (sombreados na Tabela 4) são candidatos a representar uma população herdada, ainda que

isotopicamente modificada pelo processometamórfico anatético que afetou o paragnaisse migmatítico, ou mesmo de grãos metamórficos originados no estágio pré-colisional (como já foi constatado em outras amostras da região; Noce et al., inédito). A representação das idades U²³⁸-Pb²⁰⁶ em diagrama concórdia mostra um arranjo decrescente ao longo da curva, descrevendo nitidamente um processo de perda de Pb. A distribuição das idades em histograma mostra uma média da moda em ca. 564 Ma, interpretada como a idade do pico metamórfico-anatético, perfeitamente de acordo com o intervalo de tempo do estágio sincolisional do Orógeno Araçuaí (Pedrosa-Soares et al. 2011, Silva et al. 2011).

Figura 6. Histograma das idades U-Pb (LA-ICP-MS) obtidas de grãos de zircão extraídos do paragnaisse da Serra do Brigadeiro (amostra F-111).

Figure 6. Histogram for U-Pb (LA-ICP-MS) ages of zircon grains extracted from the Serra do Brigadeiro paragneiss (sample F-111).

Tabela 4. Dados isotópicos U-Pb (LA-ICP-MS) de grãos de zircão extraídos do paragnaisse da Serra do Brigadeiro (amostra F-111). Erros em 1 sigma. Pb comum corrigido usando Pb²⁰⁴ medido.

Table 4. Isotopic U-Pb (LA-ICP-MS) data for zircon grains extracted from the Serra do Brigadeiro paragneiss (sample F-111). Errors are 1-
sigma. Common Pb corrected using measured ²⁰⁴ Pb.

	Amostra F-111, sillimanita-granada-biotita gnaisse da Serra do Brigadeiro, Folha Carangola 1:100.000								
Th/U	Idade 206 Pb/ 238 U ± (Ma)		Idade ²⁰⁷ Pb/ ²³⁵ U	± (Ma)	Idade ²⁰⁷ Pb/ ²⁰⁶ Pb	± (Ma)	% conc.	Idade	± (Ma)
0,61	544,68	9,45	549,45	12,95	569,02	12,92	95,72	545	9
0,28	545,73	9,35	543,11	11,77	532,41	11,17	102,50	546	9
0,03	545,77	9,17	548,70	11,00	560,57	10,89	97,36	546	9
0,67	552,35	9,53	549,31	14,25	537,04	13,63	102,85	552	10
0,59	553,54	9,56	562,21	13,92	597,16	14,25	92,70	554	10
0,89	556,07	9,37	564,08	11,55	596,24	11,79	93,26	556	9
0,03	556,75	9,41	561,47	12,00	580,35	12,02	95,93	557	9
0,83	557,55	9,55	557,53	13,89	557,51	13,55	100,01	558	10
0,25	558,81	9,29	568,71	12,43	608,20	12,92	91,88	559	9
0,21	558,83	9,24	563,42	10,78	581,78	10,85	96,06	559	9
0,36	560,38	9,35	553,32	11,65	524,62	10,84	106,82	560	9
0,28	560,51	9,47	571,10	12,51	613,28	12,98	91,40	561	9
0,08	561,53	9,27	569,60	10,10	601,73	10,36	93,32	562	9
0,61	561,54	9,92	566,14	14,78	584,42	14,70	96,08	562	10
0,01	561,93	9,27	569,76	11,54	600,90	11,86	93,52	562	9
0,21	562,15	9,40	560,29	12,27	553,02	11,86	101,65	562	9
0,44	563,86	9,65	573,86	12,58	613,43	12,93	91,92	564	10
0,17	565,44	9,51	555,93	12,87	517,49	11,82	109,27	565	10
0,02	565,63	9,33	571,48	10,16	594,54	10,27	95,14	566	9
0,63	565,76	9,67	565,62	14,28	565,36	13,95	100,07	566	10
0,27	565,99	9,75	568,08	13,09	576,18	12,85	98,23	566	10
0,44	567,36	9,55	576,58	13,03	612,84	13,42	92,58	567	10
0,35	568,12	9,71	564,69	13,41	551,12	12,78	103,08	568	10
0,17	568,16	9,35	565,90	10,96	557,05	10,58	101,99	568	9
0,27	568,88	9,89	559,19	12,32	520,28	11,12	109,34	569	10
0,61	569,38	9,78	569,00	14,24	567,67	13,86	100,30	569	10
0,01	570,68	9,64	566,73	11,06	551,17	10,42	103,54	571	10
0,01	571,17	9,63	577,35	10,37	601,47	10,37	94,96	571	10
0,34	571,22	10,79	572,98	21,19	579,71	20,83	98,54	571	11
0,35	572,32	9,85	581,90	14,71	619,23	15,12	92,42	572	10
0,02	572,55	9,52	572,96	10,10	574,39	9,80	99,68	573	10
0,54	573,87	9,75	578,44	13,33	596,23	13,34	96,25	574	10
0,43	574,07	9,68	577,64	12,18	591,44	12,10	97,06	574	10
0,15	574,69	9,46	567,14	11,09	537,32	10,34	106,96	575	9
0,36	576,41	10,25	575,64	14,06	572,85	13,48	100,62	576	10
0,04	577,78	9,44	577,22	10,57	575,29	10,33	100,43	578	9
0,14	582,92	9,92	578,72	12,45	562,47	11,77	103,64	583	10
0,00	586,24	9,67	593,89	10,15	623,02	10,33	94,10	586	10
0,00	589,00	9,62	590,87	9,83	597,84	9,71	98,52	589	10
0,01	600,62	9,87	603,84	10,37	615,72	10,31	97,55	601	10
0,05	606,99	11,13	605,89	14,40	601,96	13,59	100,83	607	11
0,00	608,29	10,31	615,27	10,96	640,80	10,94	94,93	608	10
0,00	624,48	10,50	624,82	10,99	625,82	10,60	99,79	624	11
0,00	631,78	10,47	641,10	11,29	673,83	11,50	93,76	632	10

4. LITOQUÍMICA

Análises litoquímicas podem ser empregadas como ferramenta para elucidar a natureza prémetamórfica das rochas metassedimentares psamopelíticas, ou seja, discriminar protolitos e buscar subsídios para interpretar seus ambientes genéticos primários. Neste sentido, o estudo litoquímico das amostras estudadas foi empregado devido às modificações tectono-metamórficas que obliteraram as feições sedimentares primárias destas rochas, dificultando as interpretações quanto à sua gênese e seu contexto geotectônico. Desta forma, este estudo litoquímico visa caracterizar a natureza e proveniência das rochas mais comuns no Grupo Andrelândia e verificar se estas características se mantêm em toda a região coberta por esta extensa unidade estratigráfica. Trata-se, entretanto, de um estudo ainda preliminar, em decorrência do número relativamente pequeno de amostras.

Foram selecionadas dezessete amostras de xisto e paragnaisse do Grupo Andrelândia para análises litoquímicas (Tabela 5, Fig. 1). Treze delas estão localizadas no mapa geológico regional, mas as amostras com sigla GQ situam-se imediatamente a oeste do limite ocidental da Folha Manhuaçu (que contém a amostra CN-08, Fig. 1). Quatro das amostras analisadas apresentam metamorfismo da fácies anfibolito (amostras JB-03, JB-04, JB-05, JB-06), e as demais, localizadas no setor leste da região enfocada, situam-se na transição de fácies anfibolito-granulito com intensidades variadas de migmatização (amostras UB-18A, B e C, UB-85, UB-03, MU-11, MU-15A, MU-165, CE-33, F-111 e CN-08).

Os critérios seguidos para esta seleção de amostras se basearam na ausência de efeitos intempéricos, homogeneidade textural, ausência (ou mínima quantidade observável) de veios e vênulas (leucossomáticos ou hidrotermais) e de fraturas preenchidas, e representatividade geológica na área da coleta. As amostras foram preparadas e analisadas para elementos maiores e traços no ACME Analytical Laboratories, pelos métodos de rotina destinados a estudos petrológicos.

A composição química de rochas sedimentares terrígenas é função de complexa interação entre relevo, clima, composição da área-fonte, intemperismo, transporte e diagênese, mas o ambiente geotectônico representaria o controle primário dos processos, de tal modo que autores diversos propuseram critérios geoquímicos para discriminar os ambientes geotectônicos a partir dos atributos geoquímicos de rochas sedimentares e metassedimentares (*e.g.*, Bhatia 1983, Bhatia & Crook 1986, Wronkiewicz & Condie 1987, Floyd *et al.*

1991, Cox & Lowe 1995). Estes critérios serão aplicados e discutidos adiante.

Nos diagramas em que as amostras estão representadas em cores, a cor azul indica as amostras coletadas a oeste da Zona de Cisalhamento de Abre Campo, ou seja, no setor que tem o Complexo Mantiqueira como embasamento e grau metamórfico geralmente mais baixo (Fig. 1). As amostras que estão em vermelho representam as rochas coletadas a leste desta zona de cisalhamento, ou seja, no setor de mais alto grau metamórfico onde o embasamento é composto por granulitos do Complexo Juiz de Fora. Estes setores serão tratados como oeste e leste, respectivamente, para não serem eventualmente confundidos com terrenos e domínios tectônicos referidos na literatura (*e.g.*, Trouw *et al.* 2000).

Um diagrama discriminador de protolitos (Wronkiewicz & Condie 1987) indica que a maioria das amostras analisadas é representante de grauvacas (*s.l.*), mas duas amostras caem no campo dos folhelhos e outras três plotam na superposição dos campos (Fig. 7).

Figure 7. Samples of the Andrelândia Group plotted in a protolith discrimination diagram (Wronkiewicz & Condie 1987).

Os dados litoquímicos apontam para uma mistura de áreas-fontes, sendo que a maioria se situa no campo de proveniência (gnea (Fig. 8), mas um terço delas plota no campo de proveniência sedimentar, indicando diferentes contribuições de fontes primárias (ígneas) е secundárias (sedimentares). A grande maioria das amostras do setor oeste tem protolito ígneo, mas as amostras do setor leste não mostram tendência bem definida (Fig. 8). Especificamente, as amostras datadas (JB-04, JB-05 e UB-03) revelam proveniência de fontes essencialmente ígneas (a amostra F-111 ainda não tem análise litoquímica).

Figura 8. Amostras do Grupo Andrelândia em diagrama de proveniência de associações arenito-pelito. Os campos indicam proveniência de fontes ricas em rochas ígneas (acima) ou rochas sedimentares (abaixo). Em azul, amostras do setor oeste, em vermelho, amostras do setor leste.

Figure 8. Samples from the Andrelândia Group plotted in a provenance diagram for sandstone-pelite assemblages. The upper field indicates provenance from sources rich in igneous rocks, and the lower field from sources rich in sedimentary rocks. Blue squares, samples for the western sector; red squares, samples for the eastern sector.

As variações químicas das amostras do Grupo Andrelândia podem ser apreciadas em diagramas de Harker (Fig. 9). Foram inseridas nestes diagramas, para fins comparativos, as curvas de variações químicas dos sedimentos terrígenos das suítes Tamworth (Devoniano), Hill End (Siluriano-Devoniano), Hodgkinson (Devoniano), Bendigo e Cookman (Ordoviciano) (Siluriano), que representam grauvacas finas provenientes de ambientes tectônicos bem estudados do leste da Austrália (Bhatia 1983). As curvas representadas nos diagramas representam a variação composicional de sedimentos gerados em arcos de ilhas oceânicos, com baixa maturidade, até sedimentos de margens passivas, com elevada maturidade composicional, passando por arcos de ilhas continentais e margens continentais ativas. A maioria das amostras analisadas situa-se entre os valores das suítes Tamworth e Hill End, as quais representam ambientes de arco-de-ilha oceânico e arco continental, respectivamente. Mas, as amostras de ambos os setores, oeste e leste, se misturam e não revelam tendências bem definidas (Tabela 5, Fig. 9).

As amostras datadas, entretanto, se diferenciam bem nos diagramas de Harker (Fig. 9), sendo que a amostra do paragnaisse de Madre de Deus (JB-O4) mostra nítida tendência para depósito ou herança de margem continental passiva, ao passo que as amostras do xisto Santo Antônio (JB-O5) e do paragnaisse de Cataguases (UB-O3) caem na zona intermediária dos diagramas, indicando herança ou depósito relacionado a arcos magmáticos.

Os dados também foram avaliados em diagramas de proveniência por ambiente geotectônico (Fig. 10, Em diagramas bivariantes, Tabela 5). 05 componentes maiores e suas razões que são melhores discriminantes ambientes de geotectônicos são o TiO₂, AI_2O_3/SiO_2 , K_2O/Na_2O , e $Al_2O_3/(CaO + Na_2O)$ versus $Fe_2O_3 + MgO$, onde Fe_2O_3 representa ferro total (Bathia 1983). Nos respectivos diagramas verifica-se que os protolitos sedimentares amostradas das rochas são derivados, predominantemente, de arcos-de-ilhas oceânicos (altos conteúdos de TiO₂ e de Fe₂O₃ + MgO), com tendência para arcos magmáticos continentais (Fig. 10). Este espalhamento também pode indicar misturas de sedimentos de fontes de estágios diversos (imaturo a maduro) de um arco magmático, seia ele continental ou oceânico, ou, simplesmente. a interveniência de fontes de arcos diferentes, independentemente da idade (por exemplo, arco oceânico do embasamento e arco continental nele intrudido).

Enfatiza-se, entretanto, que a amostra do paragnaisse de Madre de Deus (JB-04) se destaca das demais e tende a depósito ou herança de margem continental passiva (Fig. 10). Neste sentido, é importante avaliar outros componentes da amostra JB-04, tais como maior maturidade (SiO₂ = 80,7%), baixa soma de álcalis (Na₂O + K₂O = 3,16%) e baixo CaO (1,4%), em relação a outras amostras datadas (JB-05 e UB-03) que mostram nítida derivação de arco magmático (Tabela 5).

Bhatia & Crook (1986) e Floyd *et al.* (1991) propõem critérios para aplicação dos elementos traços na discriminação de áreas-fontes de sedimentos clásticos. A abundância de Sc, V, Co, Zn e Ga, a exemplo de Al, Ti, Fe, Mg e Na, é um indicador de fontes ricas em rochas vulcânicas máficas a intermediárias. Por sua vez, a abundância dos elementos Ba, La, Ce, Nd, Th, U, Nb, Zr, Rb, Pb, B e P, assim como o K, está relacionada às micas comuns (biotita e moscovita) e feldspato potássico, e a minerais pesados (*e.g.*, zircão, turmalina, apatita, monazita), portanto, a fontes ricas em rochas graníticas (*s.s.*) ou detritos reciclados.

As amostras do Grupo Andrelândia representadas em diagramas de elementos traços discriminantes de ambientes geotectônicos mostram tendência similar a dos diagramas de elementos maiores, ou seja, no conjunto apontam para áreasfontes situadas em arcos magmáticos (Fig. 11). Mas, novamente, a amostra do paragnaisse de Madre de Deus (JB-04) se destaca e revela tendência para herança ou depósito de margem continental passiva.

Tabela 5. Análises litoquímicas das amostras do Grupo Andrelândia (elementos maiores em % peso; traços em ppm; pgn, paragnaisse; xst,
granada-biotita xisto).

Table 5. Litochemical analysis for samples from the Andrelândia Group (major elements in wt % and traces in ppm; pgn, paragneiss; xst, granada-biotita xisto).

Amostra Rocha	CE33 pgn	JB03 pgn	JB04 pgn	JB05 xst	JB06 pgn	MU11 pgn	MU15A pgn	MU165 pgn	Amostra Rocha	UB03 pgn	UB18A pgn	UB18B pgn	UB18C pgn	UB65 pgn	GQ17 pgn	GQ18 pgn	GQ20 pgn	GQ27 pgn
SiO2	63,35	55,64	80,69	63,83	63,75	63,06	58,66	62,16	SiO2	67,59	49,17	93,84	63,74	63,03	48,45	67,85	63,65	48,36
TiO2	0,92	0,78	0,29	0,84	1,08	0,83	0,82	0,56	TiO2	0,53	1,17	0,04	0,70	0,76	2,58	0,56	0,94	1,46
Al2O3	15,39	22,45	9,17	15,95	16,85	17,17	21,86	15,97	Al2O3	14,69	13,64	2,70	15,18	15,98	13,36	15,57	15,54	14,42
Fe2O3	8,53	8,71	3,42	6,99	7,85	8,38	8,90	6,31	Fe2O3	5,41	14,10	0,66	8,16	8,05	13,93	3,67	8,09	11,47
MnO	0,15	0,27	0,08	0,11	0,08	0,10	0,07	0,10	MnO	0,13	0,21	<0.01	0,20	0,10	0,18	0,04	0,14	0,20
MgO	3,63	2,64	1,29	3,15	1,63	2,74	3,41	2,64	MgO	1,54	7,31	0,06	2,99	3,26	6,47	1,18	3,50	7,73
CaO	2,67	1,00	1,38	2,62	0,76	3,29	0,75	4,65	CaO	1,65	11,05	0,45	2,14	2,18	10,89	2,48	2,54	12,74
Na2O	2,38	1,84	2,06	2,81	1,12	3,36	0,81	3,62	Na2O	2,58	1,73	0,42	3,27	1,98	2,16	4,22	2,65	2,57
K2O	1,85	3,33	1,10	2,59	3,43	1,18	4,16	3,03	К2О	4,80	0,38	1,37	2,92	3,82	0,78	3,25	1,93	0,21
P2O5	0,04	0,14	0,04	0,21	0,34	0,11	0,07	0,25	P2O5	0,04	0,10	0,02	0,06	0,04	0,24	0,18	0,15	0,11
LOI	0,90	2,90	0,40	0,70	2,90	-0,40	0,20	0,40	LOI	0,80	0,90	0,40	0,40	0,50	0,70	0,80	0,70	0,50
Soma	99,81	99,76	99,95	99,80	99,83	99,83	99,74	99,70	Soma	99,75	99,78	99,97	99,78	99,74	99,77	99,85	99,83	99,80
Ni	61,0	103,0	<20	59,0	46,0	<20	60,0	<20	Ni	29,0	118,0	<20	62,0	<20	26,4	8,1	60,8	34,0
Rb	78,6	134,3	69,9	90,6	139,4	35,6	187,0	66,7	Rb	172,3	10,5	31,90	147,5	131,5	3,1	121,3	90,0	1,2
Ва	388,0	812,0	157,0	592,0	585,0	393,0	986,0	1217,0	Ва	1243,0	27,0	303,0	799,0	977,0	249,0	631,0	347,0	39,0
Sc	22,00	17,00	5,00	17,00	21,00	19,00	20,00	13,00	Sc	13,00	45,00	<1	17,00	19,00	-	-	-	-
Th	8,90	15,30	9,30	8,90	13,70	4,60	19,10	0,60	Th	8,50	0,30	34,50	12,40	8,60	2,40	37,50	9,40	0,20
U	1,40	3,30	1,70	2,60	2,20	0,70	1,70	0,20	U	0,80	<0.1	1,00	2,20	0,80	0,90	0,80	2,20	<0,1
Nb	7,80	20,70	9,00	10,60	15,60	6,60	12,00	6,10	Nb	20,70	3,20	0,70	9,50	7,00	17,40	8,70	11,20	7,40
Та	0,40	1,50	1,50	0,80	1,10	0,40	0,50	0,30	Та	1,20	0,20	<0.1	0,70	0,10	1,20	0,40	0,80	0,60
La	38,70	50,50	17,40	17,40	38,30	27,40	58,70	38,00	La	28,00	2,90	31,90	33,40	37,70	23,30	85,60	29,60	7,10
Ce	87,30	101,50	38,40	52,10	89,50	62,50	123,90	83,20	Ce	53,50	8,60	53,80	64,80	78,70	43,08	211,10	63,00	19,00
Pr	9,19	11,01	3,81	5,27	9,75	6,82	13,09	8,94	Pr	5,78	1,38	5,18	7,36	9,05	6,81	17,11	8,18	2,82
Sr	181,0	245,0	143,9	206,4	133,4	347,1	178,5	673,3	Sr	341,8	130,4	73,7	311,4	269,2	343,1	237,0	200,3	165,4
Nd	35,20	40,60	14,40	21,70	36,90	26,80	50,20	33,20	Nd	20,20	6,90	15,90	27,90	34,60	27,90	53,40	32,50	13,90
Zr	207,70	153,70	123,30	194,40	223,60	202,00	150,50	143,30	Zr	288,00	51,20	182,00	153,00	279,80	134,40	193,10	207,30	81,30
Hf	6,50	4,60	3,80	6,10	6,70	6,30	4,30	4,10	Hf	8,60	1,50	4,60	4,40	7,90	4,10	5,80	6,40	2,40
Sm	6,33	6,93	2,68	4,60	6,85	5,18	7,55	5,73	Sm	3,03	2,35	1,75	4,68	6,05	6,12	7,12	7,20	3,87
Eu	1,30	1,53	0,65	1,15	1,45	1,37	1,50	1,40	Eu	1,52	0,75	0,41	1,13	1,55	1,99	1,02	1,43	1,39
Gd	6,37	6,01	2,46	4,55	6,52	5,30	6,52	4,37	Gd	2,35	3,41	0,76	3,74	5,53	6,10	3,70	7,18	4,57
Tb	1,18	0,92	0,41	0,83	1,14	0,96	1,05	0,65	Tb	0,46	0,63	0,10	0,59	0,97	1,01	0,49	1,28	0,65
Dy	7,25	5,01	2,29	5,15	6,27	5,61	6,21	3,11	Dy	3,35	3,89	0,37	3,44	5,89	0.05	5,79	2,14	5,32
Y	42,60	28,50	12,90	30,90	34,40	34,70	36,70	16,90	Y	26,70	24,30	1,90	22,00	37,00	30,30	8,50	42,90	29,00
Но	1,47	1,01	0,44	1,08	1,28	1,23	1,29	0,62	Но	0,89	0,86	0,06	0,73	1,27	1,14	0,29	1,52	1,12
Er	4,39	2,95	1,21	3,29	3,83	3,58	3,90	1,58	Er	3,15	2,53	0,12	2,18	3,78	3,02	0,66	4,52	3,18
Tm	0,65	0,48	0,20	0,53	0,59	0,56	0,58	0,25	Tm	0,57	0,38	0,02	0,32	0,57	0,45	0,09	0,75	0,49
Yb	4,32	3,06	1,35	3,27	3,72	3,59	3,72	1,55	Yb	4,06	2,46	0,12	2,17	3,60	2,76	0,49	4,75	2,97
Lu	0,64	0,47	0,21	0,51	0,58	0,53	0,56	0,24	Lu	0,67	0,36	0,02	0,33	0,55	0,40	0,06	0,68	0,43
Со	21,20	30,90	5,20	17,30	17,90	19,30	20,50	15,20	Co	13,00	54,80	0,80	23,10	11,00	89,50	102,50	159,50	68,70

Figura 9. Amostras do Grupo Andrelândia em diagramas de Harker. As curvas indicam variações composicionais típicas para grauvacas finas originadas desde arcos de ilhas oceânicos (A) até margens passivas (B), passando por ambientes intermediários de arcos continentais e margens continentais ativas (Bhatia 1983). Notar que a amostra mais rica em sílica (JB-04) é o paragnaisse de Madre de Deus, que tende a baixa de margem passiva.

Figure 9. Samples from the Andrelândia Group plotted in Harker diagrams. The curves indicate typical compositional variations from island arc (A) to passive margin (B) fine-grained graywackes, passing through the intermediate geotectonic settings of continental magmatic arcs and continental active margins (Bhatia 1983). Note that the silica-rich sample, the Madre de Deus paragneiss (JB-04), plots close to the passive margin field.

Floyd et al. (1991) mostram que o grau de seleção de um sedimento, a presença de minerais pesados e a entrada de detritos máficos podem dificultar as avaliações baseadas em diagramas binários e ternários, os quais nem sempre fornecem correlações diretas entre composição, área-fonte e ambiência tectônica. Além disso, apontam o caráter geográfico limitado do trabalho de Bhatia (1983) & Bhatia & Crook (1986), embora estes autores tenham feito correlações entre as rochas sedimentos sedimentares da Austrália com modernos de diversos ambientes. Por isto, Floyd et al. (1991) propõem esquemas mais abrangentes de comparação, baseados em médias mundiais de análises químicas de rochas cujos ambientes tectônicos estão bem estabelecidos.

0,10 Margem continental passiva 0,00 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 Fe2O3 + MgO

Figura 10: Amostras do Grupo Andrelândia em diagramas de elementos maiores, discriminantes de ambientes geotectônicos (Bhatia, 1983). Em azul, amostras do setor oeste, em vermelho, amostras do setor leste. Notar que a amostra do paragnaisse de Madre de Deus (JB-04) tende para o campo de margem continental passiva.

Figure 10. Samples from the Andrelândia Group plotted in major element diagrams for geotectonic settings (Bhatia, 1983). Blue squares, samples for the western sector; red squares, samples for the eastern sector. Note that the Madre de Deus paragneiss (JB-04) tends to the passive margin field.

Figura 11: Amostras do Grupo Andrelândia em diagramas de elementos traços, discriminantes de ambientes geotectônicos (Bhatia, 1983). Em azul, amostras do setor oeste, em vermelho, amostras do setor leste. Notar que a amostra do paragnaisse de Madre de Deus (JB-04) tende para o campo de margem continental passiva.

Figure 11. Samples from the Andrelândia Group plotted in trace element diagrams for geotectonic settings (Bhatia, 1983). Blue squares, samples for the western sector; red squares, samples for the eastern sector. Note that the Madre de Deus paragneiss (JB-04) tends to the passive margin field.

Desta forma, considerando as médias dos valores de elementos maiores de sedimentos grauvaguianos originados em arcos-de-ilhas oceânicos (AIO, dominados por andesitos cálcio-alcalino), arcos magmáticos continentais (AMC, influência de rochas vulcânicas félsicas), margem continental ativa do tipo andino (MCA, mistura de rochas vulcânicas, plutônicas e sedimentares) e margem continental passiva (MP, rochas de diferentes composições e grande volume de sedimentos reciclados), comparadas com as médias gerais das amostras do Grupo Andrelândia, observa-se que o conjunto amostrado apresenta maior similaridade com depósitos de arcos magmáticos e margem continental ativa, ou deles provenientes, como indicam os conteúdos de Ba, Sr, Nb, Zr, La, Ce, V, Co, Ni, Cu, Zn, Y e razões de componentes maiores, no geral mais similares a AMC e MCA, com certa tendência para AIO (Tabela 6).

É importante destacar que esta tabela também revela as marcantes diferenças entre o paragnaisse de Madre de Deus (JB-04), que muito se aproxima da assinatura química de depósito de margem passiva, e o xisto Santo Antônio, cuja assinatura litoquímica tem muitos atributos de sedimentos provenientes de arco-de-ilhas intraoceânico algo misturado com contribuição de ambiente crustal mais evoluído (Tabela 6).

Tabela 6: Comparação de dados litoquímicos (elementos maiores em % peso e traços em ppm) das amostras do Grupo Andrelândia com valores médios de rochas grauvaquianas de arcos-de-ilhas oceânicos (AIO), arcos magmáticos continentais (AMC), margens continentais ativas (MCA) e margens continentais passivas (MP). *Dados de Bhatia & Crook (1986). **Dados de Floyd et al. (1991). ¹Valores médios das amostras do Grupo Andrelândia Superior. ²Paragnaisse de Madre de Deus (JB-04). ³Xisto Santo Antônio. Onde FeO não está listado, Fe₂O₃ significa ferro total.

Table 6. Comparison of litochemical data (major elements in wt% and traces in ppm) from samples of the Andrelândia Group with mean values for graywacke rocks from oceanic island arcs (OIA), continental magmatic arcs (AMC), continental active margins (MCA) and continental passive margins (MP). *Data from Bhatia & Crook (1986). **Data from Floyd et al. (1991). ¹Mean values for the samples from Andrelândia Group. ²Values for the sample from Madre de Deus paragneiss (JB-04). If FeO is not listed it is included as Fe₂O₃ (total).

	AIO*	AIO**	AMC/MCA**	AMC*	MCA*	MP*	MP**	Andrelândia ¹	$JB-04^2$	JB-05 ³
SiO ₂	58,83	58,25	68,73	70,69	73,86	81,95	82,59	60,92	80,69	63,83
TiO_2	1,06	0,98	0,58	0,64	0,46	0,49	0,62	0,83	0,29	0,84
Al ₂ O ₃	17,11	15,55	13	14,04	12,89	8,41	7,16	15,5	9,17	15,95
Fe ₂ O ₃	1,95	7,7	5,35	1,43	1,3	1,32	3,62	7,71	3,42	6,99
FeO	5,52	-	-	3,05	1,58	1,76	-	-	-	-
MnO	0,15	0,18	0,08	0,1	0,1	0,05	0,15	0,12	0,08	0,11
MgO	3,65	3,1	2,6	1,97	1,23	1,39	1,72	2,96	1,29	3,15
CaO	5,83	5,51	2,76	2,68	2,48	1,89	0,19	2,66	1,38	2,62
Na2O	4,1	4,13	2,41	3,12	2,77	1,07	1,02	2,27	2,06	2,81
K ₂ O	1,6	1,17	1,65	1,89	2,9	1,71	1,09	1,85	1,10	2,59
P_2O_5	0,26	0,23	0,14	0,16	0,09	0,12	0,11	0,10	0,04	0,21
$Fe_2O_3 + MgO$	11,73	10,8	7,95	6,79	4,63	2,89	5,34	10,9	4,71	9,61
Al_2O_3/SiO_2	0,29	0,26	0,19	0,2	0,18	0,4	0,08	0,25	0,11	0,25
K ₂ O/Na ₂ O	0,39	0,28	0,68	0,61	0,99	1,6	1,06	0,98	0,53	0,92
$Al_2O_3\!/(CaO\!+\!Na_2O)$	1,72	1,61	2,51	2,42	2,56	4,15	5,91	2,49	2,68	2,94
Ba	370	370	481	444	522	253	255	437,7	157	592
Sr	637	362	274	250	141	66	72	232,8	144	206
Zr	96	99	146	229	179	298	302	161,1	123	194
Nb	2	5	9	8,5	10,7	7,9	7	8,3	9	10,6
Y	19,5	15	17	24,2	24,9	27,3	24	26,5	13	31
La	8,72	10	23	24,4	33	33,5	22	26,5	17	17
Ce	22,53	22	48	50,5	72,7	71,9	56	59,7	38	52
Nd	11,36	10	24	20,8	25,4	29	39	26,7	14	21,7
V	131	188	106	89	48	31	44	125,2	35	137
Cr	37	49	55	51	26	39	29	-	-	-
Co	18			12	10	4		27,6	5	17
Ni	11	22	31	13	10	8	15	26,6	< 20	59
Cu	23	29	22	11	8	6	8	28,2	10	35
Zn	89	88	73	74	52	26	49	43,5	32	50

5. CONCLUSÃO

O presente estudo objetivou verificar a correlação que se tem adotado para unidades de paragnaisses dos setores sudoeste e sul do Orógeno Araçuaí, considerados como pertencentes ao Grupo (ou Megasseqüência) Andrelândia, por exemplo, nos mapas dos projetos de mapeamento dos contratos CODEMIG-UFMG (Projeto Sul de Minas, Pedrosa-Soares *et al.* 2003) e CPRM-UFMG (*e.g.*, Noce *et al.* 2006, 2010, Novo *et al.* 2009). Para isto, foram realizadas determinações geocronológicos U-Pb (LA-ICP-MS) em zircão e análises litoquímicas de amostras de rochas dessas unidades paragnáissicas e da área-tipo do Grupo Andrelândia, visando compará-las.

Um primeiro resultado das análises geocronológicas aqui apresentadas foi a marcante distinção entre as idades máximas de sedimentação dos protolitos do paragnaisse de Madre de Deus (Seqüência Carrancas, Grupo Andrelândia Inferior), em ca. 950 Ma, e do xisto Santo Antônio (Grupo Andrelândia Superior), em ca. 645 Ma (Fig. 3 e 4, Tabelas 1 e 2). De fato, a distinção entre sucessões metassedimentares de idades e assinaturas litoquímicas diferentes, englobadas no Grupo (Megasseqüência) Andrelândia, tem sido evidenciada por dados contidos em trabalhos diversos (e.g., Valeriano et al. 2004, 2008; Campos-Neto et al. 2007, Valladares et al. 2007, Trouw 2008, Santos 2011). Assim, o presente artigo traz mais uma contribuição para a resolução desta questão.

Além das idades máximas de deposição, estas unidades do Grupo Andrelândia também mostram marcantes contrastes em termos de contribuição de áreas-fontes, mostradas tanto pelos espectros de idades de zircão detrítico como pelas assinaturas litoquímicas. O paragnaisse de Madre de Deus revelou amplo espectro de fontes sedimentares e atributos litoquímicos que caracterizam um depósito de margem continental passiva (Fig. 3 e 7 a 11, Tabela 6). O xisto Santo Antônio mostra proveniência muito restrita e relacionada a arco magmático com tendência juvenil (Fig. 4 e 7 a 11, Tabela 6). No primeiro caso, as áreas-fontes principais seriam o sistema de riftes tonianos e a região paleocontinental do São Francisco (Teixeira et al. 2000, Valeriano et al. 2008), incluindo aí as manifestações ígneas intracratônicas do Esteniano ao Estateriano (Chemale-Junior et al. 2011, Pedrosa-Soares & Alkmim 2011). No segundo caso, o xisto Santo Antônio teria como principal área-fonte primária o sistema de arco magmático juvenil do Orógeno Brasília, talvez com alguma contribuição do magmatismo sincolisional (em função das idades mais jovens que 645 Ma, Tabela 2), mesmo que estes depósitos tenham sido muito rapidamente

reciclados pela evolução do sistema de *nappes* em que foram envolvidos (Trouw *et al.* 2000, Campos-Neto *et al.* 2007, Trouw 2008, Santos 2011).

Outro importante resultado decorre das evidências geocronológicas e litoquímicas que reforçam uma correlação cronológica das unidades de paragnaisses do setor leste da região abordada (sudeste de Minas Gerais) com o Grupo Andrelândia Superior (tal como expresso nos mapas do Projeto Sul de Minas, do contrato CODEMIG-UFMG, e nas folhas Carangola, Espera Feliz, Jequeri, Manhuaçu, Manhumirim e Viçosa dos contratos CPRM-UFMG-Programa Geologia do Brasil).

A assinatura litoquímica desses paragnaisses de alto grau metamórfico sugere proveniência de arcos magmáticos, com tendência de mistura de fontes em arco juvenil e arco de margem continental (Fig. 7 a 11). Desta forma, os paragnaisses de alto grau metamórfico analisados teriam como protolitos os depósitos derivados tanto do embasamento (onde se identifica um arco juvenil e outro de margem continental, representados pelos complexos Juiz de Fora e Mantiqueira, respectivamente; Noce et al. 2007; Heilbron et al. 2010), assim como do arco de margem continental do Orógeno Araçuaí (Pedrosa-Soares et al. 2011) e do(s) arco(s) magmático(s) do Orógeno Ribeira (Heilbron et al. 2008). Entretanto, os dados U-Pb ainda não são conclusivos em termos de áreas-fontes, devido à marcante recristalização e anatexia que afetou os afloramentos amostrados (UB-03 e F-111), e resultou em forte influência do metamorfismo regional sobre os conjuntos de idades (Fig. 5 e 6, Tabelas 3 e 4).

Contudo, as amostras dos paragnaisses de alto grau (UB-03 e F-111) fornecem a sólida idade de *ca*. 565 Ma para o clímax metamórfico-anatético na zona de fronteira Araçuaí-Ribeira, um valor perfeitamente compatível com o intervalo de duração do estágio sincolisional tanto a norte (Pedrosa-Soares *et al.* 2011, Silva *et al.* 2011) quanto a sul (Heilbron *et al.* 2008, 2010).

Finalmente, é importante destacar que, embora grosseiramente crono-correlatas, a bacia orogênica representada pelos paragnaisses de alto grau do Grupo Andrelândia Superior na região de Ubá-Carangola, não seria, certamente, a mesma bacia orogênica representada, a oeste, pela Unidade Santo Antônio, em decorrência da diferença de *timing* entre o encerramento do sistema de *nappes* da Faixa Brasília Meridional e a evolução (mais jovem) do sistema orogênico Araçuaí-Ribeira (Trouw *et al.* 2000, Campos-Neto *et al.* 2007, Heilbron *et al.* 2008, Trouw 2008, Pedrosa-Soares *et al.* 2011, Santos 2011, Silva *et al.* 2011). Mas, a erosão das frentes de empurrão mais orientais do sistema de *nappes* Brasília Meridional, que envolveram a bacia Santo Antônio, poderia alimentar a bacia orogênica a leste, hoje representada pelos paragnaisses do sudeste de Minas Gerais (Zona da Mata). É uma evidência disto a marcante similaridade entre os atributos litoquímicos médios do conjunto de paragnaisses do Grupo Andrelândia Superior em relação ao xisto Santo Antônio (Tabelas 5 e 6, Fig. 7 a 11).

6. AGRADECIMENTOS

Este trabalho é uma homenagem ao professor, orientador, colega e amigo, Carlos Maurício Noce, um cientista que trabalhou árdua e proficuamente na região aqui focalizada, e ansiosamente, como sempre, aguardou pelos dados aqui publicados (Fig. 12). Esperamos que ele aceite nossas interpretações!

Os autores agradecem ao CNPq (auxílios à pesquisa e bolsas de produtividade em pesquisa a A.C. Pedrosa Soares, C. Noce e L. C. Silva), FAPEMIG e CAPES (pelas bolsas de pós-graduação), e CODEMIG e CPRM-Programa Geologia do Brasil pelos contratos de mapeamento firmados com a UFMG. Nossa gratidão aos professores Cláudio Valeriano e Mônica Heilbron (TEKTOS-UERJ) pelas informações e discussões, e a Geóloga Eliane Voll pela dedicação e paciência.

Figura 12. Carlos Maurício Noce (fumando ou não) e amigos. Figure 12. Carlos Maurício Noce (smoking or not) and friends.

7. REFERÊNCIAS

- Alkmim F.F., Pedrosa-Soares A.C., Noce C.M., Cruz S.C.P. 2007. Sobre a evolução tectônica do Orógeno Araçuaí-Congo Ocidental. *Geonomos*, **15**: 25-43.
- Bhatia M.R. 1983. Plate tectonics and geochemical composition of sandstones. *The Journal of Geology*, **91**: 611-627.
- Bhatia M.R., Crook K.A.W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. *Contr. Mineral. Petrol.*, **92**: 181-193.
- Brito-Neves B.B., Sá J.M., Nilson A.A, Botelho N.F. 1995. A Tafrogênese Estateriana nos blocos Proterozóicos da América do Sul e processos subsequentes. *Geonomos*, 3(2): 1-21.
- Campos-Neto M.C., Janasi V.A., Basei M.A.S., Siga Jr. O. 2007. O sistema de nappes Andrelândia, setor oriental: litoestratigrafia e posição estratigráfica. *Rev. Bras. Geoc.*, *37(4-supl.)*: 47-60.
- Chemale-Júnior F., Dussin I.A., Alkmim F., Martins M.S., Queiroga G., Armstrong R., Santos M. 2011. Unravelling a Proterozoic basin history through detrital zircon geochronology: The case

of the Espinhaço Supergroup, Minas Gerais, Brazil, Gondwana Research, doi: 10.1016/j.gr.2011.08.016 (in press).

- Cox R., Lowe D.R. 1995. Controls on sediment composition on a regional scale: a conceptual review. *Journal Sediment Res.*, A65: 1-12.
- Floyd P.A., Shail R., Leveridge B.E., Franke W. 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. In: Morton A.C., Todd S.P. & Haughton P.D. W. (eds.), Developments in Sedimentary Provenance, Geol. Soc. Spec. Publ., 57: 173–188.
- Heilbron M.L., Pedrosa-Soares A.C., Campos Neto M.C., Silva L.C., Trouw R., Janasi V.A. 2004. Província Mantiqueira. In: Mantesso-Neto V.M., Bartorelli A., Carneiro C.D.R. & Brito-Neves B.B. (orgs.), Geologia do Continente Sul-Americano. São Paulo, Editora Beca, p. 203-234.
- Heilbron M., Valeriano C.M., Tassinari C.C.G., Almeida J.C.H., Tupinambá M., Siga Jr. O., Trouw R.A.J. 2008. Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions. *In*: Pankhurst R.J., Trouw R.A.J., Brito-Neves B.B., de Wit M. (eds.), West Gondwana pre-Cenozoic Correlations Across the South Atlantic Region. Spec. Public. Geol. Soc. London, **294**: 211–232.
- Heilbron M., Duarte B., Valeriano C., Simonetti A., Machado N., Nogueira J. 2010. Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U–Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. *Precambrian Research*, **178**: 136-148.
- Noce C.M., Romano A.W., Pinheiro C.M., Mol V.S., Pedrosa-Soares A.C. 2003. Geologia das Folhas Ubá e Muriaé. *In: Projeto Sul de Minas – Etapa I: Geologia e Recursos Minerais do Sudeste Mineiro*, Belo Horizonte, COMIG-UFMG-UFRJ-UERJ, cap. 12, p. 623-659.
- Noce C.M., Piuzana A.G., Vieira V.S., Carvalho C. 2006. Folha Manhuaçu, escala 1:100.000. Belo Horizonte, CPRM-UFMG-Programa Geologia do Brasil.
- Noce C.M., Pedrosa-Soares A.C., Silva L.C., Armstrong R., Piuzana D. 2007. Evolution of polyciclic basement complexes in the Araçuaí orogen, based on U-Pb SHRIMP data: Implications for Brazil-Africa links in Paleoproterozoic time. *Precambrian Research*, **159**: 60-78.
- Novo T.A., Pedrosa-Soares A.C., Noce C.M., Alkimim F.F., Dussin I. 2010. Rochas charnockíticas do sudeste de Minas Gerais: a raiz granulítica do arco magmático do Orógeno Araçuaí. *Rev. Bras. Geoc.*, **40(4)**: 573-592.
- Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.) 2003. Projeto Sul de Minas – Etapa I: Geologia e Recursos Minerais do Sudeste Mineiro. COMIG-UFMG-UFRJ-UERJ, Belo Horizonte, CODEMIG.
- Pedrosa-Soares A.C., De Campos C., Noce C.M., Silva L.C., Novo T., Roncato J., Medeiros S., Castañeda C., Queiroga G., Dantas E., Dussin I., Alkmim F.F. 2011. Late Neoproterozoic–Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Spec. Publ. Geol. Soc. London, **350**: 25-51.
- Pedrosa-Soares A.C., Alkmim F.F. 2011. How many rifting events preceded the development of the Araçuaí-West Congo orogen? *Geonomos*, **19(2)**: 244-251.
- Pimentel M.M., Fuck R.A., Botelho N.F. 1999. Granites and the geodynamic history of the Brasília Belt, central Brazil: a review. *Lithos*, 46: 463-483.

- Pimentel M. M., Fuck R.A., Jost H., Ferreira-Filho C. F., Araújo S.
 M. 2000. The basement of the Brasília Fold Belt and the Goiás Magmatic Arc. In: Cordani U. G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.) Tectonic Evolution of South America. p. 195-229. 31 International Geological Congress, Rio de Janeiro.
- Peres G.G., Alkmim F.F., Jordt-Evangelista H. 2004. The southern Araçuaí belt and Dom Silvério Group: geologic architecture and tectonic significance. Anais Acad. Bras. Ciên., 76: 771-790.
- Ribeiro A., Paciullo F.V.P., Trouw R.A.J., Valença J.G. 2003. Síntese geológica regional do bloco ocidental (Campo das Vertentes e Sul de Minas). *In*: Pedrosa-Soares A.C., Noce C.M., Trouw R., Heilbron M. (coords.), Projeto Sul de Minas Etapa I: Geologia e Recursos Minerais do Sudeste Mineiro. COMIG-UFMG-UFRJ-UERJ, Belo Horizonte, CODEMIG, 1: 51-83.
- Santos P.S. 2011. Geocronologia, área fonte e ambiente tectônico da Unidade Santo Antônio, Megassequência Andrelândia. Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Instituto de Geociências, Programa de Pós-graduação em Geologia, 70 p.
- Silva L.C., Pedrosa-Soares A.C., Armstrong R., Noce C.M. 2011. Determinando a duração do período colisional do Orógeno Araçuaí com base em geocronologia U-Pb de alta resolução em zircão: uma contribuição para a história da amalgamação do Gondwana Ocidental. *Geonomos*, **19(2)**: 180-197.
- Valeriano C.M., Machado N., Simonetti A., Valladares C.S., Seer
 H.J., Simões L.S. 2004. U-Pb geochronology of the southern Brasília Belt (SE Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West-Gondwana. Precambrian Research, 130: 27-55.
- Valeriano C.M., Pimentel M.M., Heilbron M., Almeida J.C.H., Trouw R.A.J. 2008.Tectonic evolution of the Brasília belt, central Brazil, and early assembly of Gondwana. In: Pankhurst R.J., Trouw R.A.J., Brito-Neves B.B., De Wit M.J. (eds.), West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Spec. Publ. Geol. Soc. London, **294**: 197-210.
- Valladares C.S., Machado N., Heilbron M., Duarte B.P., Gauthier G. 2008. Sedimentary provenance in the central Ribeira belt based on laser-ablation ICPMS²⁰⁷Pb/²⁰⁶Pb zircon ages. Gondwana Research, **13**: 516-526.
- Wronkiewicz D.J, Condie K.C. 1987, Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: source-area, weathering and provenance. *Geochim. Cosmochim.* Acta, **51**: 2201-2416.
- Teixeira W., Sabaté P., Barbosa J., Noce C.M., Carneiro M.A. 2000. Archean and Paleoproterozoic tectonic evolution of the São Francisco Craton. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America, Rio de Janeiro, 31st International Geological Congress, pp. 101–138.
- Trouw C.C. 2008. Mapeamento da Folha Virgínia, MG: geocronologia U-Pb (SHRIMP) em zircões e interpretação geotectônica. Tese de Doutorado, Programa de Pósgraduação em Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro. 140 p.
- Trouw R.A.J., Heilbron M., Ribeiro A., Paciullo F.V.P., Valeriano C.M., Almeida J.C.H., Tupinambá M., Andreis R.R. 2000. The Central Segment of the Ribeira Belt. In: Cordani U.G., Milani E.J., Thomaz-Filho A., Campos D.A. (eds.), Tectonic Evolution of South America, Rio de Janeiro, 31st International Geological Congress, p. 287-310.