
Linguagem e Tecnologia

DOI: 10.1590/1983-
3652.2026.51173

Session:
Articles

Corresponding author:
Vítor Hugo Barbosa dos
Santos

Section Editor:
Daniervelin Pereira 
Layout editor:
Leonardo Araujo 

Received on:
February 7, 2025
Accepted on:
May 27, 2025
Published on:
January 21, 2026

This work is licensed under a
“CC BY 4.0” license.
cb

Exploiting semantic similarities applied to
recommender systems with Content-Based
Filtering
Explorando similaridades semânticas aplicadas a sistemas de
recomendação com Filtragem Baseada em Conteúdo
Gabriel Gonçalves Faria Costa∗1, Diego Correa da Silva†1,
Guilherme Souza Brandão‡1, Vítor Hugo Barbosa dos Santos§1

and Frederico Araújo Durão¶1

1Universidade Federal da Bahia, Salvador, BA, Brasil.

Abstract
The present work aimed to develop and evaluate alternative methods for similarity calculation, combining
conventional approaches such as cosine similarity with the Wu-Palmer similarity, integrated into WordNet’s
semantic network, to improve the quality of recommendations in Content-Based Filtering recommender sys-
tems. The MovieLens small movie database and Google Collaboratory’s Python programming environment
were used for this. The results of the experiments indicate that Content-Based Filtering can be improved by
implementing methods that leverage semantic similarity measures. In addition, the best-performing similarity
measure was Wu-Palmer, as measured by Mean Reciprocal Rank and Mean Average Precision. Specifically
regarding Mean Reciprocal Rank, Wu-Palmer’s similarity consistently got better results through all positions,
with the maximum average outperforming others. Concerning Mean Reciprocal Rank outcomes, the algorithm
developed based on Wu-Palmer similarity also demonstrated the best overall performance in the experiment,
achieving a maximum Mean Reciprocal Rank of 0.67 at position ten.

Keywords: Semantic similarity. Recommender systems. Content-Based Filtering.

Abstract
O presente trabalho teve como objetivo desenvolver e avaliar métodos alternativos de cálculo de similari-
dade, combinando abordagens convencionais, como a similaridade do cosseno, com a medida semântica de
Wu-Palmer, integrada à estrutura de rede semântica WordNet, visando aprimorar a qualidade das recomen-
dações em sistemas de recomendação baseados em Filtragem Baseada em Conteúdo. Para a condução dos
experimentos, utilizou-se o conjunto de dados de curtas-metragens do MovieLens, bem como o ambiente de
programação Python, executado na plataforma Google Colaboratory. Os resultados experimentais indicam
que a Filtragem Baseada em Conteúdo pode ser significativamente aprimorada por meio da incorporação de
medidas de similaridade semântica. Entre as abordagens avaliadas, a similaridade Wu-Palmer apresentou o
melhor desempenho tanto na métrica de Classificação Recíproca Média (MRR) quanto na Precisão Média.
Em particular, no que se refere à Classificação Recíproca Média, a medida de Wu-Palmer obteve resultados
consistentemente superiores em todas as posições analisadas, alcançando a maior média entre as demais
abordagens. De forma semelhante, na avaliação da Precisão Média, o algoritmo baseado na similaridade
Wu-Palmer destacou-se pelo melhor desempenho geral, atingindo um Rank Recíproco Médio máximo de 0,67
na posição 10.

Keywords: Similaridade semântica. Sistemas de recomendação. Filtragem Baseada em Conteúdo.

1 Introduction
Recommender Systems (RS) are software that present new products to consumers as recommen-
dations. These suggestions should be personalized according to the user’s preferences. RSs serve
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two functions: encouraging users to consume specific content or products and managing information
overload. The latter often occurs when many items are available in the catalog, which might hinder
user experience (Jannach et al., 2011).

The system must develop and maintain a model or profile representing user preferences to define
personalized recommendations. Collaborative Filtering (CF) and Content-Based Filtering (CBF) are
commonly used approaches. CF relies on historical user-item interaction data to identify user similar-
ities and make recommendations. CBF focuses on analyzing the attributes or features of items and
recommends items based on user preferences or profiles. CBF has two advantages over CF: no user
group is required to make personalized recommendations, and it is robust to the cold-start problem
(Anwar; Uma, 2021; Thorat; Goudar; Barve, 2015).

Despite its advantages, CBF does not consistently outperform CF. This limitation stems from
the inherent challenge of defining item similarity in CBF. Text as title, description, and genre, called
metadata, is a common feature used to determine the similarity of the items, usually in natural
language. So, choosing the correct natural language text similarity method is necessary to measure
its similarity.

To improve CBF results, it is crucial to develop alternative methods that account for these semantic
relationships to augment the precision. One potential approach is to leverage external resources, such
as reference databases, or to utilize named entity recognition techniques, which identify elements in
a text that correspond to real-world entities (e.g., proper nouns) and can provide insights into the
content of the text in which they occur.

Extensive research efforts have focused on improving CBF algorithms and models to address this
issue (Wijewickrema; Petras; Dias, 2019; Oppermann; Kincaid; Munzner, 2020). Exploring different
similarity methods has shown promise in enhancing these models and algorithms.

When text is the primary descriptor of an item, existing methods for calculating textual similarity
often neglect the semantic relationships among keywords, making text-based comparisons difficult.

This study is dedicated to enhancing CBF in RS by exploring alternative methods for calculat-
ing item similarities, specifically leveraging semantic similarity measures. The primary objective is to
demonstrate the effectiveness of Wu-Palmer semantic similarity compared to traditional cosine similar-
ity in improving recommendation accuracy. By focusing on semantic relationships, we aim to address
the inherent limitations of textual-similarity methods and improve the precision of CBF algorithms.
Our approach involves experiments using a dataset of user preferences and item attributes. We will
implement the Wu-Palmer semantic similarity method alongside cosine similarity and evaluate their
performance using metrics such as Mean Average Precision (MAP). By comparing the recommenda-
tions generated by these methods, we aim to validate the hypothesis that semantic similarity improves
the quality of item recommendations in CBF. The experiments showed that Wu-Palmer semantic sim-
ilarity is more effective than cosine similarity. This means that considering semantic relationships
between words yielded better comparisons between two vectors containing different words with similar
meanings. Although the initial Mean Average Precision (MAP) values for all tested algorithms were
low, achieving a precision above 10% improved the recommendation ranking compared to a random
selection of films.

2 Content Based Systems
Over the last few years, RSs have been a valuable means of addressing information overload. However,
other reasons item providers and recommender system owners might want to explore RSs include
increasing the number of items sold, selling a more diverse set of items, or increasing user satisfaction
and loyalty (Ricci; Rokach; Shapira, 2022).

The RSs are software tools or techniques that suggest items likely to interest a specific user.
Suggestions are usually related to various decision-making processes, such as what to buy, what to
listen to, or what to watch. A CBF uses user-item interactions, such as ratings, (Ricci; Rokach;
Shapira, 2022).

Personalized recommendations are sorted lists of items that reflect user preferences and restrictions.
CBF Systems collects user items to predict the most suitable items obtained from explicit similarities
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between them. This similarity is usually calculated using measures such as the cosine or Jaccard
similarity (Pazzani; Billsus, 2007; Singla et al., 2020).

The CBF recommender systems have some limitations, such as limited analysis of the quality of
recommended content, overspecialization, limited serendipity and diversity, issues of similarity and
scalability, and inability to capture user evolution (Rolim et al., 2017; Javed et al., 2021). One of
the main parts of those systems is the similarity of objects, which can be applied to items or users,
usually to items. These similarities are calculated based on the features of the objects, such as text
descriptions and metadata (Messina et al., 2019). That information can have high or poor quality,
as it can describe the objects very well or be inaccurately represented. Also, the data can contain
incorrect values, such as user data, which can introduce biases (Oppermann; Kincaid; Munzner,
2020). Additionally, it is necessary to use efficient, accurate similarity methods to produce high-
quality recommendations, especially when the object description is a natural-language text, such as a
movie description.

2.1 Similarity Measures
A similarity measure must be used to compare items. In the present work, we compare two word
vector types: the user model and a list of keywords associated with a specific movie. There are
several measures, but the cosine similarity, given by Equation (1), is considered a standard metric in
RSs and is also commonly used in text mining to compare documents (Jannach et al., 2011). The
cosine similarity measures the angle between two n-dimensional vectors. The result is always a value
between zero and one, where one represents the maximum similarity or equality between the two
vectors.

sim( −→a ,−→b ) =
−→a .
−→
b∣∣ −→a ∣∣ ∗ ∣∣∣ −→b ∣∣∣ (1)

In the present work, the cosine similarity was used. However, several other similarity measures
are commonly used in recommendation systems. Two measures to be mentioned are the Pearson
coefficient and the Jaccard similarity, calculated, respectively, by Equation (2) and Equation (3)
shown below.

Pearson(x, y) =
Σxy − ΣxΣyN√

(Σx2 − (Σx)2N )(Σy2 −
(Σy)2

N )
(2)

Jaccard(A,B) = | A ∩ B || A ∪ B | (3)

Pearson’s Coefficient is a statistical measure that measures the degree of linear correlation between
two variables, x and y. A positive correlation will produce a coefficient value greater than zero and less
than or equal to 1, indicating that the two variables are directly proportional. A negative correlation,
with a coefficient value less than zero and greater than or equal to minus one, indicates that the two
variables are inversely proportional, in which case an increase in the value of one of the variables will
produce a decrease in the value of the other. A coefficient of zero indicates the absence of any linear
correlation between the two variables.

Jaccard similarity measures the overlap between two sets and produces a value between 0 and
1. The closer to one, the more similar the two sets will be. The Jaccard coefficient is calculated by
dividing the intersection of the two sets A and B, the number of elements in common between them,
by the union of the two sets, and the total number of distinct elements present in the two sets A and
B.

3 Semantic Networks and Natural Language Processing
Semantic networks are a type of knowledge representation that uses graphs to model concepts and
their relationships. In a semantic network, concepts are represented as nodes (vertices), and their
relationships are defined as edges (arcs). Nodes in a semantic network typically represent entities or
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concepts, such as objects, people, or ideas. The edges between nodes are predicates that represent
relationships or connections between concepts.

Semantic networks can be used for various purposes, including knowledge representation, Natural
Language Processing (NLP), and information retrieval, and are particularly useful for representing
complex relationships between concepts and organizing large amounts of information in a way that is
easy to understand and navigate.

A standard currently used in defining and implementing semantic networks on the web is the
Resource Description Framework (RDF). RDF is used to represent interconnected data on the web.
RDF instructions describe and exchange metadata, enabling standardized data exchange based on
relationships among them (Loshin, 2022). An RDF statement consists of three components: the
subject is the resource being described; the predicate describes the relationship between the subject
and object; the object is a resource related to the subject. So, in the case of the example above,
the subject would be the word “Cat”, the predicate the relation “is a”, while the object would be the
word “Mammal”.

Natural language means any language used for daily verbal communication between human beings.
At the same time, NLP can be generically defined as any computer manipulation of a text in natural
language. NLP techniques range from simple tasks, such as counting word frequencies in a text, to
more complex tasks, such as interpreting its meaning. NLP is a field of artificial intelligence (AI)
that aims to enable computers to interpret and generate human language. NLP involves developing
algorithms and models that analyze and process text and speech data, enabling machines to perform
tasks such as language translation, sentiment analysis, and question answering. NLP has widely used
semantic networks to represent and process language meaning.

One of the most well-known semantic networks used in NLP is WordNet. WordNet is a large-scale
lexical database of the English language, developed by Princeton University, in which nouns, verbs,
adjectives, and adverbs are grouped into sets of synonyms called “synsets” interconnected by semantic
relationships such as hypernyms (the relationship between a general term and a more specific term)
and meronymy (the relationship between a part and a whole) (Fellbaum, 1998). These “synsets”
correspond to abstract concepts linked together in a hierarchy. More generic concepts encompass the
meaning of other “synsets” and are called root “synsets”. The result of this semantic network is a
thesaurus that can be consulted on the Internet.

3.1 Semantic Similarities
WordNet can be used as a corpus by the Python NLTK (Natural Language Toolkit) library, thus
serving as a reference for similarity calculations between semantically related words (Bird; Klein;
Loper, 2019). One way to compare words using WordNet is to compare their “lemmas”. A “lemma”
is a generic entry in the dictionary that represents a general meaning for other words. Every word in
WordNet is related to at least one “lemma” and this “lemma” can be shared between different words.
From there, we can identify words with similar meanings by their “lemmas” in common.

Another possible approach to word comparison is to calculate semantic similarity between terms
based on their locations and potential relationships within the WordNet taxonomy. Several functions
in the NLTK library can calculate semantic similarity based on the WordNet taxonomy. The method
used in the present work was the Wu-Palmer similarity, as defined in Equation (4), which measures
the semantic proximity between two words by considering the depth of the “least common subsumer”
(LCS) between them. The LCS corresponds to the closest common term between two words, which
is the one nearest in the WordNet hierarchy to the sum of the depths of their respective synsets, or
the most specific concept that both terms share. Considering that the root depth of the WordNet
taxonomy is equal to one, the LCS depth will never be zero, so the calculation result will always be
a value greater than zero and less than or equal to one (Mohit, 2022).

Other similarity measures provided by the NLTK library include “path similarity”, which returns
a value between 0 and 1 representing the similarity between two synsets based on the shortest path
connecting them in the WordNet hierarchy. This Leacock-Chodorow similarity returns a score based
on the shortest path connecting the two meanings of the words, using the maximum depth of the
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taxonomy in which the meanings occur. This relationship is defined by -log(p/2d), where p is the
length of the shortest path and d is the taxonomy depth. Three other similarity measures in NLTK
calculate the similarity between two word meanings using the concept of “information content” (IC).
These are the similarities of Resnik, Jiang-Conrath, and Lin (NLTK, 2023).

WuPalmer = 2 ∗ depth( lcs( syn1, syn2 ) )

( depth( syn1 ) + depth( syn2 ) )
(4)

The Wu-Palmer similarity measure is used in NLP and information retrieval to assess the semantic
relatedness of two words in WordNet. The Wu-Palmer similarity measure calculates the relationship
between two words based on their distance in the WordNet hierarchy, considering the LCS depth
between the two terms (Wu; Palmer, 1994). Therefore, the Wu-Palmer measure allows calculating
the similarity between sets of terms that share semantic meaning, which is not possible with a non-
semantic similarity measure such as the cosine.

4 Related Works
Using data from the MyAnimeList portal, (Zuin; Magalhães; Loures, 2016) developed a method to
identify the central comment of a topic in a discussion forum about cartoons, avoiding the use of
popularity indicators, such as likes or upvotes. As in the present work, the method involved NLP
techniques with the NLTK library to map etymologically related nouns. Precision, Recall, F1 score,
and MAP were used to evaluate the results. According to the article authors, the WordNet Wu-Palmer
similarity was also used as an alternative, but it did not yield better results than the initial method.

D’Addio, Domingues, and Manzato (2017) proposes an architecture for a hybrid recommendation
system that ranges from text pre-processing, using term and aspect extraction techniques, to sentiment
analysis, to assign polarities to the topics evaluated by users. The text pre-processing step has some
similarities wWu-Palmarethods used in the present work, such as POS tagging and the extraction of
nouns that matched the main characteristics of the items. In the CF step, which was not implemented
in the current work, they used the neighborhood-based recommendation algorithm. The similarity
measure they used was Pearson’s coefficient. The outcome evaluation measures were mean squared
error, precision, and MAP. The databases were the MovieLens database, enhanced with information
from the IMDB website.

Bernardo and Andrade (2019) developed a CF recommendation system for movies using the IMDB
movie database and Firebase resources. The system was designed for use on Android smartphones
using Facebook login. Similarity between different users was calculated using Pearson’s coefficient.
The present work, however, despite being focused on movie recommendation systems, only aims to
investigate other methods of calculating similarities, comparing cosine and Wu-Palmer similarities
approaches in a content-filtering context.

Almeida (2020) used feature extraction techniques, Word2Vec, and TF-IDF, not used in the
current project, to transform textual information related to movies into numerical values for content-
based analysis. For this, a larger version, MovieLens 1M, was used, and the same dataset was used
in the current project. However, for user profile learning, based on the ratings of watched movies,
machine learning techniques were used to build a regression model that represents user preferences.
The cosine similarity measure was used, and the evaluation metrics were Precision, Recall, Novelty,
and Diversity.

Lucas Magnus da Silva (2020) developed a hybrid recommendation system for movies, combining
collaborative and CBF, using contextual pre-filtering and the KNN (K-Nearest Neighbors) algorithm
for CF, and the evaluative measures of Mean Absolute Error, Mean Squared Error, and Square Root
of the Average Error. The database used was the same as in the present work: the MovieLens small
dataset. Similarly, the movie genre attribute was used for the CBF step. However, the similarity
measure implemented was the Jaccard index, not the cosine or Wu-Palmer similarity. The results
indicated pure CF was better than hybrid and Content-Based approaches.

In (Pradeep et al., 2020), a movie recommendation system was built based on cast, keywords,
crew, and genre attributes. These four attributes were aggregated into a single column, creating a
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new attribute that served as the basis for the system. The recommendation was then made, using
the cosine similarity, of another ten films similar to the first film, informed by the user. Similarly, in
the current project, we concatenated each film’s title, genre, and tags into a single string, from which
we extracted all nouns. However, this new string of nouns served as a base attribute for creating the
user model and for later comparing it with other movies.

Using the MovieLens database, Azambuja, Morais, and Filipe (2021) presents a five-layer MLP
architecture as an example of a neuronal CF model using the Jaccard coefficient as a similarity measure.
The output of the proposed model consists of the “successful percentage of movie recommendation”
for the Top N recommendations from the predictions list for each user. On the other hand, in
the present content-based work, which does not employ a machine learning model or the Jaccard
similarity, the final result is a ranking of the ten films most similar to the user model for each base
user. The authors used precision, recall, accuracy, and F-score as evaluation metrics. In addition, they
also denote the differences and complementarities between sequential recommendations, which use
chronologically ordered user information, and recommendations based on sections, neither of which is
considered in this work.

The work of Leonardo Lima Felix da Silva (2021) aimed to compare different AutoML tools applied
to recommendation systems using the MovieLens database. The strategy the author addressed was
CF to predict the next item the user would consume, in this case, the next movie the user would
watch. Unlike the current approach, which identifies possible items that match the user’s profile
rather than those consumed over a given period. In the author’s experiments, none of the techniques
implemented by the autoML tools produced significant results.

The research conducted by Wang and Dong (2020) on textual similarity measurement techniques
provides fundamental insights relevant to this study. The authors comprehensively review several
methods, including distance-based metrics such as cosine similarity and Jaccard index, as well as deep
learning approaches such as neural embeddings. These methodologies are crucial for effectively calcu-
lating item similarity in content-based recommender systems, which aligns with the integration of the
Wu-Palmer similarity measure within the WordNet semantic framework in this study. By examining
applications in information retrieval and recommender systems, the study emphasizes the importance
of selecting robust similarity metrics to enhance recommendation quality. The journal by Han et al.
(2021) on semantic similarity techniques for short texts is directly relevant to this study’s focus on
improving similarity measures in recommender systems. The authors explore vector-based methods,
neural network architectures, and embedding models, aligning with the use of Wu-Palmer similarity
within the WordNet framework in this study. By evaluating performance metrics such as Mean Re-
ciprocal Rank (MRR) and discussing practical applications in sentiment analysis and recommender
systems, their findings support the methodology of integrating advanced semantic techniques to im-
prove the quality and relevance of recommendations. Rathee and Malik (2022) provides an analysis
of semantic similarity measures in information retrieval, offering a detailed examination of metrics
such as WordNet-based similarity and neural embeddings, directly applicable to this study’s focus on
improving content-based filtering. The authors evaluate criteria such as precision and computational
efficiency, offering insights into selecting effective similarity measures. By discussing applications in
document clustering and recommender systems, their findings highlight the relevance of this study’s
approach to integrating the Wu-Palmer similarity to optimize recommendation quality. The study
by Chandrasekaran and Mago (2021) on the evolution of semantic similarity techniques offers in-
sights into advanced methodologies that inform this study. The authors trace the progression from
traditional methods to modern approaches that utilize embeddings and neural networks, which are
fundamental to understanding how semantic relationships impact recommender systems. This evolu-
tion aligns with the exploration of Wu-Palmer similarity integration within the WordNet framework
in this study, highlighting the importance of leveraging semantic context to improve recommendation
accuracy. Its comparative analysis in natural language processing and recommender systems provides
a theoretical framework that validates the focus on improving content-based filtering through semantic
enhancements.
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5 Exploring semantic similarities applied to recommender systems with Content-
Based Filtering
The present work aims to investigate alternative methods for calculating similarity in recommendation
systems using CBF. More specifically, where it is necessary to compare two keyword lists or vectors:
one that describes a user´s movie preferences and another that refers to a movie´s characteristics.
For this, the performances of four different similarity calculation methods, as described in Section 5.2,
were compared. Of the four implemented methods, one uses the Wu-Palmer semantic similarity, and
two use cosine similarity, one applied to nouns and the other to their respective lemmas according to
the WordNet taxonomy. The last is a control method that uses predefined functions from the Python
Scikit-learn library to calculate the cosine of the nouns.

5.1 Architecture
The initial project’s architecture can be divided into two essential elements. The first element consists
of creating strings (vectors) containing keywords that define a movie´s characteristics, generated
from its title, genre, and any user tags associated with the movie. Having generated the strings
for all movies, they are kept in memory as a movie attribute to define user models and subsequent
recommendations.

NLP techniques were used to extract the relevant terms from the title and genre attributes and
the movie tag table, which were included in the respective keyword vectors or movie strings. For
the present work, the Python library NLTK was used to implement the necessary NLP techniques
(Bird; Klein; Loper, 2019). The first technique implemented was the “tokenization” of text strings.
Tokenization is the process of splitting a sentence or a string of words into a list of its constituent
elements. Once the list is generated by tokenizing the string, the next step is called “part-of-speech
tagging” (POS-tagging).

During POS tagging, each term in the list produced by the tokenization process receives a label
indicating its part of speech. That label informs whether that term is a noun, verb, adjective, or other
word class. The result of POS-tagging is a list of tuples containing the term plus its grammatical
label. From there, words belonging to a specific grammatical category can be easily filtered from the
source text. For example, to extract all nouns, one only needs to search the list of tuples for terms
with labels corresponding to the different types of identified nouns: ‘NN’ for singular nouns; ‘NNS’ for
plural nouns; ‘NNP’ or ‘NNPS’, respectively for singular and plural proper nouns. Figure 1 presents
the processes involved in this first stage.

Movies and Tags

For each movie

concatenate title and genres

* Title + genres + tags

* Convert to lowercase

For each movie

concatenate user tags

* Tokenization and POS-tagging

* Noun filtering

* Removes duplicate nouns

* Removes nouns with less 

than 3 letters

Final string =

string attribute

1

2
3

4 5 6

7

Figure 1. Process of creating the movie strings.
Source: Own elaboration.

Initially, the film titles and their respective genres are concatenated (arrow 1). In contrast, the user
tags for the respective movie are concatenated separately (arrow 2). The two strings are united into
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a single string, and all the capital letters of the resulting string are converted to lowercase (arrows 3
and 4). Tokenization followed by POS-tagging of this exact string generates a list of tuples containing
words with their respective grammatical classes, from which all nouns are filtered (arrow 5). Duplicate
nouns and those with fewer than three letters (arrow 6) are removed. From the resulting list of distinct
nouns with more than three letters, the film’s new “string” attribute is constituted (arrow 7).

The second element consists of defining the user model, which, in this case, corresponds to a list
of the most frequently associated words with the user’s best-rated movies, presumably related to the
user’s preferences. Figure 2 shows the process of defining the user model from the movie strings.

Movies and Ratings

Movies rated by the user

with a score >= 4

List for dataframe and

quantifies frequencies of nouns

Adds the strings from user’s

favorite movies to a list

15 most frequent nouns

selected
User model

Qty. movies

> 10

Removes duplicate nouns

and sorts by frequencies

No

 Yes

Select user by Id

Figure 2. User model creation process.
Source: Own elaboration.

From the user ID, all movie IDs rated by the user with a score of 4 or higher are extracted from
the rating file. A new user must be selected if the user has evaluated fewer than 10 films. Once all
movie IDs have been collected, their respective strings are concatenated into a single list of nouns.
This list is converted to a data frame, and the frequencies of equal nouns are quantified and ordered
from highest to lowest. The fifteen most frequent distinct nouns are selected for the user model.

5.2 Recommendation model
The recommendation process consists of comparing a user model with a movie string. To do so, any
number of films the user has not yet evaluated can be drawn. Each film is compared individually with
the user model. Afterward, all drawn films are ordered by similarity. The N films at the top of the list
with the most significant similarity can be presented as recommendations. Figure 3 generally shows
how the comparison process works.

User Model

Movie strings

For each movie in the sample

compare user model with 

movie string

order movie sample by 

similarity to user model

Return n movies

most similar

Figure 3. Comparison between user model and movie string.

Four different methods of comparison by similarity measures were evaluated. The Wu-Palmer max-
imums’ average method, as presented in the Algorithm pseudocode Algorithm 1, finds the maximum
Wu-Palmer similarity for each of the user model´s nouns with respect to all the nouns in the movie
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string. The highest recorded value is stored in a list, and the mean of these maximum similarities is
then calculated.

Algorithm 1 Averaging the Wu-Palmer maximums.
1: Takes two lists of nouns: l ist0, l ist1
2: Initialize list values
3: Initialize list maximums list
4: Initialize aux = 0
5: for each noun in l ist0 do
6: synset0 = noun synset in WordNet
7: if length(synset0) > 0 then
8: clear list values
9: for each noun in l ist1 do

10: synset1 = noun synset in WordNet
11: if length(synset1) > 0 then
12: aux = wu-palmer similarity between synset0[0] and synset1[0]
13: if aux == 1 then
14: break, max value for synset0 found
15: else
16: Adds aux to list values
17: end if
18: end if
19: end for
20: if aux == 1 then
21: Adds aux to maximums
22: else
23: Adds maximum of values to maximums
24: end if
25: end if
26: end for
27: if length(maximums) == 0 then
28: Return None
29: else
30: Return sum(maximums)/length(maximums)
31: end if

To illustrate how the Wu-Palmer maximum averaging works, we can consider the two-word vectors:
A = [“cat”, “dog”] and B = [“wolf”, “bear”]. Firstly, we calculate the Wu-Palmer similarities of all
combinations of terms between the two vectors and select the most considerable result for each term
for one of the vectors. Considering vector A, the most significant similarity for the first term of the
vector is with the second term of vector B. That is, between the two-word combinations cat ” +”
wolf” and cat ” + ”bear,” the second combination yields the highest similarity value, approximately
0.89. The second term’s highest similarity corresponds to the pair dog ” + ”wolf”, with approximately
0.93. Then we calculate the arithmetic mean of these two values, yielding a similarity of roughly 0.91
between the two vectors. This implementation of the Wu-Palmer maximums’ average will always
generate values greater than zero and less than or equal to one. The maximum value of one is
obtained when two similar vectors are compared, containing the same terms regardless of the order
in which they occur inside the vectors.

The cosine method, based in part on the online material by (Puri, 2018), considers only the single
occurrences of terms in two-word lists or vectors. First, the two term lists are converted into data
frames with a single frequency column. Then, the union, or a merge, of the two data frames is
performed as exemplified in Table 1. A third data frame is generated, containing all the terms of both
data frames plus two columns, one for each original list of terms, indicating whether the term occurs
in the respective list. This union of two data frames computes the cosine similarity between the two
lists of terms using the pseudocode for Algorithm Algorithm 2.

The cosine similarity method is used to compare nouns and their lemmas. For the second method,
the lemmas of the respective nouns of the two strings to be compared must first be extracted from
WordNet. The Algorithm Pseudocode Algorithm 3 represents the process by which lemmas are found
for a given vector of nouns. First, the noun´s synset is checked, after which the synset´s respective
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Table 1. Merge between two tables of terms and frequencies.

Term f reqx

airbnb 1.0
china 1.0

country 1.0
listings 1.0

lockdowns 1.0
years 1.0

+

Term f reqy

airbnb 1.0
china 1.0

experiences 1.0
listings 1.0
offers 1.0

summer 1.0

=

Term f reqx f reqy

airbnb 1.0 1.0
china 1.0 1.0

country 1.0 0.0
experiences 0.0 1.0

listings 1.0 1.0
lockdowns 1.0 0.0

offers 0.0 1.0
summer 0.0 1.0

years 1.0 0.0

Source: Own elaboration.

Algorithm 2 Cosine similarity calculation.
1: Takes two lists of nouns: l ist0, l ist1
2: Convert l ist0 to df 0 with frequency column
3: Convert l ist1 to df 1 with frequency column
4: Merge of df 0 and df 1 produces data frame mergedf with frequency columns freqx and freqy correspond-

ing to the occurrence of each term in both lists.
1: for each line in mergedf do
2: numerator+ = row[freqx ] ∗ row[freqy ]
3: vectorx+ = line[freqx ]2
4: vectory+ = line[freqy ]2
5: end for
6: denominator = √vectorx ∗

√vectory
7: return numerator/denominator

lemma is checked. The last evaluated method was a control method, used to compare with the
first three, which used predefined functions from the Scikit-learn library (Pedregosa et al., 2011) to
calculate cosine similarity between nouns.

Algorithm 3 Extraction of lemmas from nouns.
1: Get list nouns
2: Initialize list lemmas
3: for each noun in nouns do
4: synset = noun synset in WordNet
5: if length(synset) > 0 then
6: if length(lemmas(synset[0])) > 0 then
7: Adds the first lemma of synset[0] to lemmas
8: end if
9: end if

10: end for
11: Return lemmas dataframe

5.3 Recommendation in action
A recommendation scenario with three random movies not rated for a given user can occur as follows.
The survey of well-evaluated films, with grades between 4 and 5, by the user of Id = 1 produced
the following user model: “action-adventure comedy-drama thriller crime children animation romance
war fantasy mystery horror Disney story”. Considering the following movie IDs and their respective
strings: 32898, “trip moon voyage lune action adventure”; 86290, “bill story comedy documentary”;
184997, “love simon comedy-drama”. Using the Wu-Palmer maximum average comparison method,
the results in Table 2 are obtained for each film.

Based on the results of the similarity analysis, we can rank these three films for user recommenda-
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Table 2. Example recommendation using Wu-
Palmer based similarity measure.

Movie Id Wu-Palmer maximums average

184997 0,5693
86290 0,5193
32898 0,4755

Source: Own elaboration.

tions. As shown in Table 2, the first movie recommended is id 184997, followed by 86290, and lastly
32898. The process can be repeated using the other three similarity measures evaluated to confirm
the recommendation results. For example, a new ranking is generated using the cosine similarity of
the lemmas for these three films and users, as shown in Table 3.

Table 3. Example recommenda-
tion using the cosine of WordNet
lemmas.

Movie Id Cosine of lemmas

86290 0,2582
184997 0,2582
32898 0,2309

Source: Own elaboration.

Considering these two rankings, obtained using different similarity measures, we can conclude that
the film with ID 32898 is the least suitable for recommendation, as it ranked last in both rankings.
However, it would not be possible to define with certainty the most appropriate film to recommend
because, although film 184997 ranked first in the ranking by first similarity, it appears tied with film
86290 in the cosine of the lemmas. But even so, if we used the first similarity as a tiebreaker, we
could assume that 184997 would be the most nominated among the two remaining films.

6 Experimental evaluation
The experiment was implemented entirely in Python using Google’s Collaborative Development Envi-
ronment. In addition to NLTK, other Python libraries included Pandas and Numpy for data manipula-
tion, Matplotlib for graphing the results, and Scikit-learn for controlling the cosine similarity measure.
The database´s CSV files were hosted in a public GitHub repository and read in Collaboratory using
Pandas library functions.

A small MovieLens database was used to experiment. The information contained in the attributes
title, genre, and tags for a specific movie was aggregated into a single list of words, from which nouns
were extracted using NLP features in the Python NLTK library. The resulting list of nouns served as
the basis for making the user model and calculating the similarity between the user model and specific
movies.

The methodology of this study differs significantly from the approach described in (Wang; Dong,
2020) in their article ”Measurement of Text Similarity: A Survey”. The experiment described here
was implemented in Python using Google’s collaborative development environment and the NLTK,
Pandas, Numpy, Matplotlib, and Scikit-learn libraries for data manipulation, visualization, and control
of the cosine similarity measure.

On the other hand, (Wang; Dong, 2020) focused on reviewing and categorizing text similarity
measurement techniques. They reviewed vector-based methods such as TF-IDF and Word2Vec, sta-
tistical methods including cosine similarity and Jaccard, and machine learning-based methods such as
neural networks and pre-trained language models. They also discussed the use of hybrid techniques
that combine several approaches to improve the accuracy of similarity measurement.
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In contrast, the present study used the small MovieLens database, aggregating information from
the title, genre, and tags attributes into a list of words. From this list, nouns were extracted using
NLP resources from the NLTK library. This list of nouns was used to create the user model and to
compute the similarity between the user model and specific movies.

Uniquely, the authors provided a comprehensive theoretical view of text similarity measurement
techniques, without a specific focus on practical implementation in a particular database, such as
MovieLens.

6.1 Methodology
The first stage of the experiment consists of loading the database files into data frames in the
Collaboratory environment, followed by creating keyword vectors for each movie, as already described
in the previous section, as shown in Figure 1 in Section 5.1. The second stage comprises the sequential
analysis of all 610 users registered in the database and can be divided into four other phases:
1. Defining the user model for a particular user, as depicted in Figure 2 in Section 5.1.
2. Draw the movie test sample using the user ID number as a seed for generating random numbers

ranging from 1 to 9999, skipping existing IDs. Ten movies are drawn from among the user’s
favorites, and other unknown ninety movies, so the total candidate set of test movies contains one
hundred movies, 90% of which were not rated by the user and another 10% that are part of his
subset of favorites. The number of users’ favorite films is not fixed. The candidate set comprises
100 movies. The successful recommendations must include 10 of the 100 films to be analyzed.

3. We repeat the previous step for each user and recommend 10 movies out of the 100 items in the
candidate set. The recommendation is based on the algorithms presented in the proposal´s section.
To generate the top 10 recommendations, the movies from the user profile are all compared against
the 100 items in the test set.

4. The metrics MAP (Mean Average Precision) and MRR (Mean Reciprocal Ranking) @ positions 3,
5, and 10 were calculated in the last phase. The metrics are applied exclusively to the 10 items
recommended.

6.2 Data set
The database used in the project was the Movielens small dataset, obtained from the Grouplens
website, a research group at the Department of Computer Science and Engineering at the University of
Minnesota. MovieLens is a movie recommendation site with thousands of registered users (Grouplens,
2022).

The MovieLens small database contains user ratings on a scale of 1 to 5 stars and free-text tags
for various movies. The database has 100.836 ratings and 3683 tags from 610 users for 9742 movies,
collected between March 1996 and September 2018 (Harper; Konstan, 2015). The database is divided
into four files: links.csv, movies.csv, ratings.csv, and tags.csv. The links.csv file was not used in the
project. The ratings.csv file contains user ratings organized by userId, movieId, rating, and timestamp
attributes. Similarly, the tags.csv file includes the user tags about the movies. It has the same
characteristics as userId movieId, which respectively identify the user and movie, plus the attributes
tag and timestamp. For the present work, the timestamp attributes were ignored in both files. The
movies.csv file contains information about movies, including movie titles and genre attributes.

The database files were initially downloaded from the Grouplens website. Timestamp attributes
have been deleted from rating files and user tags. The movies.csv, ratings.csv, and tags.csv files
were then stored in a public GitHub repository, from which they were loaded into the Google Colab
development environment in raw format using the Pandas library’s CSV reader.

6.3 Evaluation metrics
Appropriate evaluation metrics are necessary to compare the results of the different recommendation
rankings defined from the other similarity calculation methods used in the experiment. For this, two
metrics based on binary ranking, where each position in the result can represent either error or success,
are commonly used today. These were the MAP and MRR for all users in the database that produced
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results.
The precision at the K position, or P@K, given by Equation (5), calculates the percentage of hits

up to a particular position K in the ranking. For example, the precision in position three will count all
hits, represented by the letter r, from the first position in the ranking to the third position, ignoring
the positions below three.

P@K =
r

K
(5)

In this work, two P@K-based measures were used. The first measure was the average P@K, or
aP@K, defined in Equation (6) as the average of all precisions at all positions up to position K for a
given ranking of a user sample. For the aP@3 of any ranking generated by a given similarity measure
for a single user, the arithmetic mean of all P@K precisions from position one to three of the ranking
is calculated. In this context, N = K.

aP@K =
1

N = K

N∑
i=1

P@K (6)

The second measure was the mean of the aP@Ks, or MAP, presented in Equation (7), where the
means of the respective aP@Ks for all test users U are calculated for each of the evaluated similarity
measures at positions three, five, and ten. So, if there are N user rankings, each with its aP@3 for a
given similarity measure, the MAP@3 is the mean of the aP@3 across all users.

MAP@K =
1

U

U∑
i=1

aP@K (7)

The reciprocal rank (RR) is defined by the accuracy of the first hit detected, according to its
respective position in the ranking. For example, in a ranking where the first hit is detected in the
third position, the RR of this ranking of recommendations, represented by N will be defined as 1/3
even if the final position K contemplated by the metric is below three. The last evaluation measure
implemented in the work was the MRR, defined in Equation (8), which corresponds to the average of
all RR obtained in the experiment for each similarity measure evaluated at positions 3, 5, and 10.

MRR@K =
1

N

N∑
i=1

RR@K (8)

The MRR score ranges from 0 to 1, with higher scores indicating a better ranking algorithm. An
MRR value of one means that the first relevant item is always in the top-ranking position for all
queries. At the same time, a score of zero indicates that no relevant item is ever found in any position
among all rankings.

6.4 Results
Complete results were obtained for 557 of the 610 database users. Of the 53 users who did not
produce results, 40 did not have a sufficient number of favorite movies, rated between four and five
stars, previously defined as at least greater than ten, to produce the user model. The other 13
remaining users did not produce complete results for all similarity measures and were excluded from
the final results.

Figure 4 shows the average precisions (aP@K) results for all valid users in positions three, five,
and ten for each evaluated similarity calculation method, where the orange line marks the median. At
the same time, the dashed green indicates the MAPs for their respective positions.

As shown in the graphs, the cosine of lemmas and nouns yields better-quality results than the
other three measures, with significantly fewer outliers after position 10, slightly higher upper quartiles,
and fewer outliers at positions 5 and 3. However, in all three measures, the medians were well below
0.2.

The measure calculated from the Wu-Palmer maximums average showed better-quality results
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(a) (b)

(c) (d)

Figure 4. Average precisions.
Source: Own elaboration.

than the other three measures, with significantly fewer outliers in position five, no outliers detected,
and a median above 0.3 at position three of the ranking.

The results for the MAPs shown in Table 4 indicate better precision for the similarity measure
calculated from the Wu-Palmer maximum average, although they also show the most significant
deviations in all three evaluated positions, followed by the cosine similarity of the nouns with the
second-best performance. The lemma’s cosine achieved slightly better precision at position ten when
compared to the nouns’ cosine using the Scikit-learn library. In comparison, the latter achieved better
precision at position three and tied for fifth place with the lemmas cosine.

Table 4. MAPs and standard deviations.

Mean Average Precisions (MAP)
Measure MAP@3 SD MAP@5 SD MAP@10 SD
max_wp 0.37 0.32 0.28 0.24 0.19 0.15
cos_ns 0.24 0.28 0.19 0.21 0.13 0.13
cos_ls 0.21 0.27 0.17 0.2 0.12 0.12
cos_sk 0.22 0.28 0.17 0.21 0.11 0.13

Source: Own elaboration.

Looking at Figure 5, it is possible to notice a decreasing pattern of MAPs as there is an increase
in the number of positions contemplated for all four similarity measures. The best precisions were
obtained for up to the third position, while the worst ones were obtained for up to the tenth position.
The deviations also presented corresponding results. In this case, the deviations were more significant
for the minor positions. The highest precision was observed at positions three and five for the Wu-
Palmer similarity measure.

Costa et al. | Texto Livre | Belo Horizonte | v.19 | e51173 | 2026 14/19



(a) (b)

Figure 5. Graphs of MAPs and respective deviations.
Source: Own elaboration.

Table 5 shows the values of the MRRs and their respective deviations for the four similarity
measures investigated. As in the case of MAP, the measure that performed best across all positions
was based on the Wu-Palmer similarity maximums. However, the highest values were in the most
prominent positions, with 0.67 and 0.66, respectively, in positions ten and five. Deviation values were
also relatively low, with very close deviations at higher positions for all similarity measures.

Table 5. MRRs and standard deviations.

Mean Reciprocal Ranks (MRR)
Measure MRR@3 SD MRR@5 SD MRR@10 SD
max_wp 0.64 0.43 0.66 0.39 0.67 0.38
cos_ns 0.45 0.43 0.49 0.41 0.51 0.38
cos_ls 0.42 0.43 0.45 0.41 0.48 0.38
cos_sk 0.44 0.44 0.47 0.42 0.49 0.4

Source: Own elaboration.

As shown in Figure 6, the Wu-Palmer maximum’s average yielded better MRR results across all
positions than those of the other similarity measures. The standard deviations remained more or less
the same, with the slightest deviations found in position ten and the largest in position three for all
similarity measures investigated.

(a) (b)

Figure 6. Graphs of MRRs and respective deviations.
Source: Own elaboration.
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6.5 Discussion
The experiment results indicate better performance for the algorithm based on the Wu-Palmer se-
mantic similarity, as measured by MAP and MRR, compared with cosine-based similarity measures.
However, the two metrics used yielded conflicting results about which ranking position yielded the
best result.

Considering the MAPs, the results may initially seem low across all the algorithms tested, with the
highest value in position 3 for the Wu-Palmer-based similarity, at 37% precision. This can be explained
by the fact that the movie sample contains only 10% of the user’s favorite movies. Therefore, in a
random ranking, the expected precision would be 10%, i.e., the proportion of users’ favorite movies
in the total sample. Therefore, although low, a precision above 10% in this case may indicate a
result above that expected from a random draw of films for recommendation. This means that all
tested similarity calculation methods appear to have positively affected the recommendation ranking
at some position, but especially the method based on Wu-Palmer similarity at positions three and
five. It is important to note that all MAPs also had significant standard deviations, meaning the
recommendations would not be relevant in many cases.

Regarding the MRR results, the algorithm developed based on the Wu-Palmer similarity also
achieved the best results in the experiment, with a maximum MRR of 0.67 at position 10. Contrary
to the MAP metric, the MRR standard deviation was higher when MRR was lower. For example,
in the Wu-Palmer maximum average algorithm, the highest MRR value showed the least deviation
among the three evaluated positions. Except for the cosine method using the Scikit-learn library,
which showed the most significant deviation at position three, all other techniques showed the same
tendency: lower standard deviations with larger MRRs, and all methods, without exception, presented
better MRRs when counted to a greater number of positions. That is, the MRR results indicate an
increase in the quality of recommendations at position ten when compared to positions five or three.

7 Conclusion, improvements and future work
This work aimed to develop and evaluate a new similarity calculation method that accounts for se-
mantic relationships among keywords. The experiments in this study underscore the significance
of incorporating semantic relationships into similarity calculations for CBF recommender systems.
Specifically, our findings reveal that the Wu-Palmer semantic similarity method outperforms the
traditional cosine similarity method. This improvement is crucial, as it enhances the accuracy of
recommendations by better capturing the nuanced similarities between items described by different
but semantically related keywords. This new method was to be used in CBF-based recommendation
systems to improve the quality of the system’s movie recommendations, making them more aligned
with users’ preferences.

The MovieLens small database defined vectors of nouns corresponding to movies and user pref-
erences. By comparing the movie’s keyword vector with a vector representing the user model, we
determined the degree of similarity between the movie and the user’s preferences. The semantic
similarity measure taken as the basis for our new method was the Wu-Palmer, based on the Word-
Net taxonomy and available through the NLTK library. Three other similarity measures were also
evaluated: A simple implementation of the cosine of nouns and the cosine of lemmas according to
the WordNet structure, and the cosine of nouns using native methods from the Scikit-learn library.
Among the four methods tested, the one that yielded the best results for average precision and re-
ciprocal ranking was the Wu-Palmer semantic similarity method. Therefore, we can argue that a
similarity measure that accounts for semantic relationships between words can yield better results
when comparing two vectors containing different words that share similar meanings.

In the current work, only the attributes of title, genre, and user tags were used to produce the
keyword vectors for the films and, consequently, the user models. A possible improvement to the
current methodology would be to use additional data sources about the films in the database, such as
synopses or film reviews, to enhance the films’ keyword vectors. Additionally, it would be pertinent to
explore integrating semantic information into cosine similarity measures via word embeddings. This
aspect, not addressed in the current study, could provide valuable insights for future research efforts
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in enhancing recommendation systems. As noted in the results subsection, 13 of the 610 base users
did not produce complete results for all similarity measures, despite providing an adequate number of
favorite movies to define a valid user model. The cause of this phenomenon has not been investigated
in depth. So far, it is impossible to determine whether all these users experienced an error related to
the same similarity measure or to the actual cause of the error. Therefore, a possible improvement
would be to verify why these 13 users did not produce complete results and to remedy the situation
by correcting code inconsistencies or defining more appropriate parameter values for the user model.

Also, a single control method was implemented using the cosine function from the Scikit-learn
library. This control compared the work’s already recognized method with the experimental techniques
developed. Another possibility would be to implement a random draw for each user sample, for
objective comparison between an utterly random ranking and another generated from the investigated
similarity calculations. Considering the results obtained and the fact that there are several other
semantic similarity measures available in the NLTK library, a possibility for future investigation would
be to apply the same method of calculating the average of maximum similarities to those other
semantic similarities, such as the shortest path, Leacock-Chodorow, Resnik, Jiang-Conrath, or Lin,
and compare their respective results.
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