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Introduction 
 
In (Biacino 2018) the evolution of the concept of a real function at the beginning of the 
20thcentury, after the introduction in the mathematical world of the Dirichlet’s concept of 
function, the appearance of a series of pathological functions and finally the definitions of 
new classes of sets and functions given by the French mathematicians Baire (1874-1932), 
Borel (1871-1956) and Lebesgue (1875-1941), is examined. Their purposes and attempts to 
propose a large class of functions and sets as accessible objects, where all the mathematical 
classical operations could be performed, their discussions and polemics, in which many other 
mathematicians were involved, are reported. 

In this paper the early development of measure and function theory is exposed and 
discussed in detail, with a particular emphasis on the new technical results about functions 
and the comparison of their properties. The contribution of some  Italian scholars to the  just 
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born theory of measurable functions is underlined also: as I observed in (Biacino 2019), a  
particular interest in the theoretical questions about real functions and a noteworthy 
sensibility towards Riemann’s integral theory were already present in the  thought of  the 
Italian mathematician U. Dini (1845-1918); this  is  why the theses of Baire, in 1898, and 
Lebesgue in 1902, were published on the Annali di Matematica, directed by Dini; indeed, the 
important mathematician had already developed in his famous treatise: Fondamenti per la 
teorica delle funzioni di variabili reali in 1878 noteworthy attempts at the study of the 
functions of a real variable in a very general setting; there he gives the notion of 
indetermination limits in a point, on the left and on the right, for oscillating functions and the 
consequent definition of derived numbers, the so called Dini derivatives, the proof of the 
Hankel condensation principle and a great amount of fundamental theorems, we will often 
quote in this paper.  

Many of his disciples also gave this theory fundamental contributions.  The young V. 
Volterra (1860-1940) in a paper published on the Giornale di Battaglini, in 1881 proposed the 
first example of a bounded derivative that is not Riemann integrable (Volterra 1881 b).  

This function is a pointwise discontinuous function, that is, as in the definition in (Dini 
1878, 62), even it has infinitely many discontinuities, in every part of the interval where it is 
defined there is at least a point of continuity for it. But it is not Riemann integrable: Dini claims 
that if a function is Riemann integrable then it is pointwise discontinuous, but he says also 
that he believed that the converse in general does not hold (Dini 1878, 250). The previous 
example by Volterra proves that he was right; and that pointwise discontinuous functions 
exist whose set of discontinuities has positive Lebesgue measure.  

But mainly it proved that Riemann’s theory of integral was inadequate to solve the 
problem of the research of the primitives of a given bounded function and justified the 
introduction of Lebesgue’s integral, as Lebesgue himself notices in his Leçons.  No wonder if 
a good series of results in measure and real function theory was  produced by the  successive 
generation, that is the generation  of C. Severini (1872-1951), G. Vitali (1875-1932), F. Fubini 
(1879-1943), B. Levi (1875-1961) and L. Tonelli (1885-1946): the work of all these 
mathematicians is amply quoted and expounded in this paper, the origin of  their  ideas and 
the connections  with the French scholars are also underlined. So in the following essay you 
will find a  brief history of many important theorems about the new classes of functions 
introduced at the beginning of 20th century, as Lebesgue-Vitali’s Theorem, Vitali 
characterization of integral functions, Vitali-Lusin’ Theorem etc. up to Radom-Nicodym-
Lebesgue’s Theorem: indeed these theorems not only allowed a complete organization of 
the material and a significant progress of the  theory but  represented  even  a  key to win the  
resistance of the classical mathematicians  who  thought that only  very regular functions 
were useful when doing mathematics. At the same time the way was beginning to open to 
the important applications to the variational calculus and functional analysis. 
 
Vitali-Lebesgue’s Theorem 
 
At the beginning of 1900, the mathematicians work mainly using analytic functions or 
functions provided of one or more derivatives, except at most for a finite number of points. 
Now in general a Riemann integrable function, a Baire function, a Lebesgue measurable 
function are not of such a kind. This is why a comparison of the new classes of functions 
becomes essential and proceeds rapidly at the same rate of growth of measure and 
integration theory. 

Another important problem was to characterize a Riemann integrable function by 
means of some property of the set of its discontinuities. The idea of Hankel that a function is 
Riemann integrable if and only if it is pointwise continuous was proved to be wrong, as we 
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have said, so the problem kept unsolved. The young Vitali2 in the first years of 1900 was a 
teacher at Sassari, Voghera and Genua. Despite he came from the school of Dini and Arzelà, 
he worked in general without contacts with other mathematicians3; after his important 
papers about analytic functions linked to the Arzelà’s research, he was interested, perhaps 
indirectly influenced by Dini, in the works of Cantor, Borel, Jordan.  

So in  1904 Vitali  in his brief paper Sulla integrabilità delle funzioni (Vitali 1904) and 
Lebesgue in his Leçons (Lebesgue 1904 a), separately characterize Riemann integrable 
functions; they establish in this way a link between the rising theory of functions and classical 
mathematics, solving definitely a problem in which the mathematicians were interested  
since 1867. 

The demonstrations by Lebesgue and Vitali are fundamentally equivalent; Lebesgue 
claims that:  

 
Main Theorem – A real bounded function f(x) is Riemann integrable if and only if its set 

of discontinuities is a null measure set.  
 
It is merit of Lebesgue to have borrowed the definition of a null measure set from 

Borel: it is a set such that its points can be enclosed in a finite or enumerable number of 
intervals whose total length is as small as we want. On the other hand stating the same 
theorem independently Vitali requires that  the set of discontinuities has estensione minima 
nulla,4 where the minimal extension of a set is the g.l.b. of the sum of the lengths of the 
intervals of a finite or enumerable system that covers the set without internal points in 
common. This is equivalent to the definition of Lebesgue’s external measure (Lebesgue 1904 
a, 104), so the two definitions are completely equivalent.    

Both the demonstrations start from the du Bois-Reymond’s criterion, where the notion 
of the oscillation5 of a real function f(x) in a point y as the difference between the maximum 
and the minimum limit of f(x) in y is used: 
 

A real bounded function f(x) in the interval (a,b) is integrable if and only if for every >0 
the set of the points where the oscillation is greater than   is an “integrable”  (according 
to Lebesgue-du Bois-Reymond) or a “rinchiudibile” (according to Vitali) set. 

 

 
2 For a biography of Vitali see the introduction by Pepe to (Vitali 1984,1-24) and also (Pepe 1984) and 
(vaz Ferreira 1991). 
3 Tricomi said about him: “fu essenzialmente un self made man che, per buona parte della sua carriera, 
lavorò quasi senza contatti con altri scienziati, e gli capitò di arrivare simultaneamente ad altri, ma 
indipendentemente da loro, specie dal Lebesgue, a fondamentali risultati di teoria delle funzioni di 
variabile reale, che altrimenti gli avrebbero data fama mondiale” (Giusti e Pepe 2001, 152).  
4 Also Vitali in his paper Sui gruppi di punti (Vitali 1960, 139), where develops his measure theory 
independently but equivalently to Lebesgue, quotes (Borel 1898). 
5 Du Bois-Reymond (1831-1889) introduces the “limits of the indetermination” of a series and their 
difference since 1870 (Hawkins 2002, 26). In 1875 also Ascoli (1843-1896) gives a punctual definition of 
oscillation and furnishes the following condition:  
A function is integrable in [a,b] if and only if  for every >0 and for every sequence of decompositions of  
[a,b], G1, G2, G3, ... in partial intervals such that the maximum width of the intervals of the decomposition 
Gn tends to 0, the sum of the measures of the intervals containing points where the oscillation is equal or 
greater than  tends to 0 when n tends to . (For the proof see (Ascoli 1875) and (Letta 1994)).  The 
preceding condition is equivalent to the criterion established by du Bois-Reymond in 1882. (Ascoli 1875) 
is written in Italian and is difficult to read, perhaps this is why it passed unnoticed: Lebesgue and also 
the Italian Vitali refers always in their works to du Bois-Reymond criterion and do not quote it. It is also 
worth noticing that in the same year in which Darboux Memoir on discontinuous functions appears, in 
(Ascoli 1875) the existence of upper and lower integrals of a bounded function is proven. 
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Both words in the preceding criterion, “integrable” or “rinchiudibile”, indicate a Peano 
Jordan null set. But, while, as we will see, Vitali devoted to the subject two papers when he 
was youth and a third one in the years of maturity, Lebesgue claimed, after remembering 
that yet in a Note of C.R. in 1901 he demonstrated the necessity of the condition:  “J’attache 
d’ailleurs assez peu de f𝑢ොt à cette condition qui est identique, au langage employé près, à celles 
de Riemann et du Bois-Reymond” (Vitali 1960, letter of February, 16th, 1907 from Lebesgue to 
Vitali). In the Leçons, after the demonstration of du Bois-Reymond’s criterion as a 
consequence of Riemann criterion, Lebesgue proceeds quickly to prove the necessity: if f(x) 
is integrable, then for du Bois-Reymond criterion the set   
                           

G()= {𝑥: 𝑜𝑠𝑐𝑖𝑙𝑙 𝑓(𝑥) ≥ }  is integrable for =1, ଵ
ଶ

, ଵ
ଷ

, ... . 
 
On the other hand the set of discontinuities coincides with G(1)G(ଵ

ଶ
)G(ଵ

ଷ
).... then it has 

null Lebesgue measure. On the contrary if the set I of discontinuities of f(x) has null measure 
then for every >0  a sequence of intervals  (𝐼௡)  exists such that  𝐼௡   contains I and the sum 
of the lengths of such intervals is <. Consider the set {x : oscill f(x)  }: it is contained in I 
and, by a Baire’s result, is closed (Baire 1899, 10), therefore a finite number of the previous 
intervals cover it and therefore it is integrable. So, by the du Bois-Reymond criterion, also the 
sufficiency of the condition is proved. 

The proof by Vitali is fundamentally the same, save for some little variations in the 
name of the notions at stake.  It is interesting to remember that, in the paper Sulla condizione 
di integrabilità delle funzioni (Vitali 1903), written one year before, Vitali furnishes a criterion 
with a different statement, where only rinchiudibili sets are involved:6 
 

Criterion 1 -  A real and finite function f(x) is integrable in an interval (a,b) if and only if the 
set of its singularities  is such that every  closed subset of it is rinchiudibile. 

 
The proof is founded basically on the du Bois-Reymond’s criterion and on the following 
theorem proved by Vitali:  
 

Criterion 2 - If f(x) is a real finite function, integrable in the interval (a,b), then every real 
and finite function (x), continuous in the points where f(x) is continuous, is integrable 
in (a,b). 

  
Proof of Criterion 1 - The condition is sufficient because if it holds then the set  of the points 
where the oscillation of f(x) is  greater or equal to , being a closed set contained in the set 
of the singularities, is rinchiudibile  and therefore by du Bois-Reymond’s criterion f(x) is 
integrable.  

Conversely, if f(x) is integrable and D is a closed subset of the set of its discontinuity 
points, then it is possible to construct a function g(x) with a jump greater or equal to  in the 
points of D and continuous elsewhere: such a function is integrable by Criterion 2 (that is not 
proved here) and therefore by the du Bois- Raymond’s criterion the set D is integrable. 

It is interesting to remember that Vitali deals again with this subject in (Vitali 1927), in 
the years of his maturity, when he furnishes a new demonstration of the main theorem.  The 
proof, we give the only if part of it, is very simple because, even if it requires more advanced 
notions, it is not linked to du Bois-Reymond’s criterion, but is related directly to the Riemann 
definition of integrability. On this occasion, indeed, Vitali makes use of the following 
property: given a real, bounded function in an interval (a,b), the upper (resp. lower) Darboux 

 
6 Vitali uses a particular case of a theorem by Osgood (American Journal of Mathematics, 19), that is: 
If a closed set is the union of a sequence of rinchiudibili sets, it is rinchiudibile. 
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integral, as a function of the upper limit of integration x is an absolutely continuous function 
whose derivative is f(x) in the points x where f is continuous. Now, if a function is absolutely 
continuous and his derivative is a. e. zero then the function is constant. Therefore if f(x) is 
a.e. continuous in the interval (a,b) then the difference between the upper and the lower 
integrals, an absolutely continuous function, has a.e. null derivative so it is a constant: but 
this difference is zero if x=a and therefore upper and lower integrals coincide in all of (a,b), 
that is the function is integrable.   

 

Vitali-Lusin’s Theorem 
 
In 1904-05 great interest was devoted to the study of Baire classes by several authors: in 
(Lebesgue 1904 b) H. Lebesgue proves again, but this time without the use of transfinite 
ordinals, the fundamental theorem already established by Baire that a function is of class 1 if 
and only if it is punctually discontinuous. 

In 1905 G.Vitali in a brief paper, Una proprietà delle funzioni misurabili proves that:  
 

Every real measurable function is the sum of a function of class not greater than 2 and of 
an a.e. zero function7 (Vitali 1905 a).  

 
The proof is based on the observation that every measurable function is the sum of an 

a.e. zero function and of a function that is the limit of a non-decreasing sequence of first class 
functions. Such functions can be determined thanks to a theorem nowadays known as 
Lusin’s Theorem, which furnishes a characterization of Lebesgue measurability and is 
established in this paper by Vitali for the first time. Lusin (1883-1950) in his turn will state and 
prove it again independently in a special paper in 1911.  

 
7 In (Volterra 1881 a) it is proven that, given a finite number of punctually discontinuous functions (that 
is first class functions by Baire theorem) defined on the same set D, the points where they are all 
continuous is a dense subset of D. In (Lebesgue 1904 b) this fact is generalized to the case of a 
sequence of functions. On the other hand, Young (1863-1942) proves in 1911 that every real bounded 
measurable function is the sum of a first class function and of an a.e. null function, without quoting 
the results of Vitali and Lebesgue (Young 1911). Indeed Young proves that every bounded measurable 
function f(x) is equivalent for purposes of integration to an upper bound of an increasing sequence of 
upper semicontinuous (u.s.) functions and to a lower bound of a decreasing sequence of lower 
semicontinuous (l.s.) functions (Young 1911, 16). Now an u.s. or a l.s. function is a first class function 
and therefore, by Baire theorem, is pointwise continuous. By the preceding theorems by Volterra and 
Lebesgue, given an increasing sequence of u.s. functions and a decreasing sequence of l.s. functions, 
there is a dense set E where all the functions are continuous and therefore f being the upper limit of 
the first sequence  is l.s. in E. and being the lower limit of the second sequence is also u.s. in the same 
set E, then f is punctually discontinuous, that is belongs to the Baire first class.  
It is worth noticing that, some years before, the argument was discussed in some letters from 
Lebesgue to the young Fréchet (Taylor Dugac 1981); in the letter of Dec. 26th, 1904, Lebesgue writes:   
“You start from a very beautiful observation, that is if f is the limit of fn and fn is the limit of fnp then it 
is possible to select some fnp in such a way they have f as their limit except for a set of null measure. 
Then you conclude that if fn is limit of polynomials (except on a null measure set) also f is limit of 
polynomials. It follows that every Baire’s function can be represented a. e. by a sequence of 
polynomials”.    
Since every measurable function a.e. coincides with a Baire function it follows by the previous Fréchet 
theorem that every real measurable function of real variable is the a.e. limit of a sequence of 
continuous functions (Taylor Dugac 1981, 150 and following, where two proofs by Lebesgue are given).  
It is also interesting the remark by Lebesgue (Taylor Dugac 1981, 159, letter of January, 22th,1905): “It 
is clear that the foregoing statements implies: ‘f equal a.e. to a convergent sequence of polynomials’, but 
that does not mean ‘f a.e. the same of a function that is everywhere of the first class’”. 
It is interesting to remember that Tonelli in 1910 proves that every Lebesgue summable function of 
two variables is a.e. the sum of a series of polynomials (Tonelli 1910). 
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 Here is the statement of Vitali-Lusin’s Theorem: 
 

If f(x) is a measurable function in an interval (a,b) whose length is l, then, for every >0 a 
closed subset P of (a,b)  exists such that  the restriction fP  of f to P is a continuous 
function. 

 
In a footnote Vitali claims that this theorem looks like another theorem at which the 
following papers hint:  Borel, Un théorème sur les ensembles mesurables. C. R., 7. 12. 1903, 
Lebesgue, Sur une proprieté des fonctions, C.R., 28. 12. 1903 and Lebesgue, Leçons, footnote at 
p.125. Vitali adds that the author, that is Lebesgue, did not give yet explicit demonstration of 
it.8 

The proof of Vitali-Lusin’s Theorem is based on a proposition stated and proved by 
Vitali himself: 
  

If f(x) is a measurable function in a subset G, whose measure is M, of a bounded interval 
(a,b), then given the numbers >0  and >0, there exists  a perfect  subset G1  G, whose 
measure is greater than M-   and there exists  a segment , such that in every interval 
whose measure is ≤,  the function, restricted to the points of  G1,  has an oscillation ≤. 

 
Now Vitali proves the main theorem. Indeed let 1, 2,... s, ... be positive numbers such 

that the sum of the series  1+ 2+...+ s+ . .  is less than . Moreover let 1, 2, ..., s, ... be an 
infinitesimal sequence of positive numbers. By the preceding proposition there exist a 
perfect set G1  such that m(G1)>l-1  and a number 1  such that in every interval whose length 
is ≤ 1 the function f(x), restricted to G1  has an oscillation not greater than 1. Now for the 
preceding proposition applied to G1 there exist a perfect set G2⊆G1, such that m(G2)>m(G1)-
2, and a number 2 such that in every interval whose length is ≤ 2  the function, restricted 
to G2, has an oscillation ≤ 2,  and so on. 

The intersection of the sets G1, G2, .... is a closed set , whose measure is m()>l-
∑ ௦

௦ୀଵ >l-. 

The function f is continuous in the points of : indeed, for every positive  there exists 
s< and for every  x0, in   every neighborhood of x0 whose length is ≤ s the function 
restricted to Gs  and a fortiori to , has an oscillation ≤s<. 

Now we will expose the proof of Vitali-Lusin’s theorem given by Lusin in 1911 in his Note 
on the Comptes Rendus where his results on measurable functions already published in 
Russian the year before are exposed. A characterization of the class of Baire functions is 
obtained in a very simple way since it is based on Severini-Egoroff’s Theorem (Lusin 1912).  

By the way we remember that this theorem was proved before by Severini in 1910 and 
after independently by the Russian mathematician Egoroff (1869-1931) in 1911: the brief paper 
by Egoroff starts quoting Borel (Borel 1905, 35) and Riesz9 treatment of the relations 
between a.e. convergence and measure convergence (Egoroff 1911) and the author obtains 
his simple proof by using a consequence, obtained by Lebesgue, of the implication a.e. 
convergence  measure convergence.10 

 
8 In (Lebesgue 1904 a, footnote p. 125) the following, statement appears: “Toute fonction mesurable 
est continue, sauf aux points d’un ensemble de mesure nulle, quand on neglige les ensembles de 
mesure , si petit que soit ”.  Analogous statement one can find in the Note Sur une proprieté des 
fonctions (Lebesgue 1903). In it Lebesgue observes that the preceding property, he calls Borel 
property, since this author has pointed out it in a Note of the C.R. (December 7th, 1903), characterizes 
the measurable functions. 
9 F. Riesz, Sur les suites de fonctions mesurables, C.R. t.148, p.1303. 
10 An equivalent statement is given for the series, as we will immediately see, in (Lebesgue 1903), for 
the proof see (Lebesgue 1906, 9) and (Borel 1905,35). 
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Also Severini’s proof is based on Lebesgue’s result, but it is inside another 

demonstration: for this reason and also because it is written in Italian, the theorem is known 
out of Italy with the only name of Egoroff.11  The statement of Severini-Egoroff’s theorem is 
the following: 
 

If  (𝑓௡) is a sequence of measurable  functions in [0,1] a.e. converging to  a function f(x) 
then for every >0 there exists a closed set P such that  meas(P)>1-  and the sequence 
uniformly converges to f in P. 

 
Here is the proof by Severini for the series, completely independent from the context were 
it is inserted: consider in an interval (a,b) the a.e. convergent series fn(x). By a result in 
(Lebesgue 1903), given two positive numbers  and ,  it is possible to determine an 
increasing sequence of natural numbers n1, n2, ..., ni,....  such that, if H୬౟

 is the set of the points 
where some remainder of  the series starting from the n୧

୲୦  is  ≥ 
ଶ౟   then m(H୬౟

)≤

ଶ౟.  Now  if 

i’ is a natural number such that 

ଶ౟ᇲషభ
≤  and if  H୧ᇱ=H୬౟ᇲ

  H୬
౟ᇲశభ

 ... H୬
౟ᇲశ౞

 ....  then in 
(a,b)- H୧ᇱ  the series uniformly converges.  
Indeed for every g>0 if i” is such that i”≥i’  and 

ଶ౟" ≤g , then for every n≥ n୧"  it is |∑ f୩(x)୩ஹ୬ |<


ଶ౟" ≤ g   for every x(a,b)- H୧"(a, b) − H୧ᇱ; moreover   
 

m( H୧")≤ m(H୧ᇱ)≤ 
ଶ౟ᇲ + 

ଶ౟ᇲశభ
 + ....+ 



ଶ౟ᇲశ౞
+ ...=  



ଶ౟ᇲషభ
≤ . 

 
 The proof by Egoroff is very similar. It is possible to find a proof of Vitali Lusin’s 

Theorem, in (Lebesgue 1903), where the “proprieté de M. Borel” stands for a new type of 
continuity arising from continuity when passing to the limit: 
 

In order to prove that the functions defined at the present time satisfy Borel’s property 
it is enough to remark that the continuous functions satisfy this property and it is 
preserved when passing to the limit. 
  
And Lebesgue adds, without demonstration:  
 
Every convergent series of measurable functions is uniformly convergent if we omit a set 
whose measure is 𝜀, 𝜀 being as small as we want. 

 
Borel and Lebesgue already enunciated in 1903 not only Vitali Lusin, but also Severini 

Egoroff Theorem! 
The very simple proof by Lusin is similar to the preceding one given by Lebesgue: it is 

based on the fact that  if  f  is of class 1, by Severini Egoroff theorem, the following property 
holds: 
 

For every  >0   there exists a closed set  P  such that  meas(P)>1-   and f  is continuous on 
P. 

  
Now Lusin proves that the class of functions for which this property holds is closed under 
a.e. convergence (“elle se conserve à la limite”, as Lebesgue says).  It follows that all Baire’s 
functions verify this property. 

 
 11 Only in 1924, in the brief note Su una proposizione fondamentale dell’analisi, (B.U.M.I.(2), Vol. 3, p. 
103-104) L. Tonelli (1885-1946) credits Severini for the first proof of  Severini-Egoroff Theorem. 
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Moreover, every Lebesgue measurable function coincides a.e. with a Baire’s function 
and Vitali-Lusin’s Theorem is proved. 

It is interesting remember that some years after, L. Tonelli introduces the definition of 
funzione quasi-continua (almost continuous function) in the following way (Tonelli 1921, 131):  

 
A function f defined in the interval (a,b) is called an almost continuous function  if for 
every >0 there exists a closed subset H of (a,b) such that the restriction of f to H  is 
continuous  and m(S-H)<.12 

 
Many authors were interested in this argument. Sierpinski, in 1916, in order to give an 

elementary proof of Lusin’s Theorem, gives a new definition of measurable set based on set 
theory. Precisely he defines the sets of null measure as usual, then for every set he calls it 
measurable if it is the union of a closed set and of a set of null measure: he does not give a 
definition of measure but he can define in this way measurable functions (Sierpinski 1916). 
    
Absolutely Continuous Functions     
 
In (Lebesgue 1904 a) the author studies with care functions of bounded variation whose main 
properties he describes since Chap. IV.  But only in Chap. VII, after defining the notion of 
summable function, he displays their more interesting properties. In his thesis he had proved 
that if a function f(x) is everywhere derivable and his derivative is bounded then the 
derivative is Lebesgue integrable and the following equality:  f(x)-f(a)=∫ 𝑓′(𝑥)𝑑𝑥

௕

௔
  holds, but 

he had been unable to extend this result to whatever unbounded derived number. This is 
accomplished in (Lebesgue 1904 a) in the following way: 

 
Assume a derived number of a function is finite,13 then it is summable if and only if the 
function is of bounded variation. If this is the case its total variation coincides with the 
integral of the absolute value of the derived number.14 (Lebesgue 1904 a, 122-123) 
 
Lebesgue claims also that the fundamental relation f(x)-f(a)=∫ 𝜇(𝑥)𝑑𝑥

௕

௔
   holds, where 

𝜇 is the derived number that is supposed to exist. The proof is based upon the notion of chain 

 
12 Without reference to Vitali-Lusin’s theorem, in 1921 Tonelli proves that every almost continuous 
function is Lebesgue measurable, but the converse does not hold, because: non sono definite quelle 
funzioni nelle cui definizioni si fa uso del principio delle infinite scelte arbitrarie.   
Indeed, this author introduces the class of measurable sets in a completely new way in order to avoid 
any use of choice axiom: obviously it is a more restrict class of sets than the class of Lebesgue 
measurable sets. For the same reason he considers exclusively analytically expressible functions (as 
defined by Lebesgue): he proves that they are all almost continuous and defines his integration theory, 
less generally than Lebesgue, based on the new measure space and quasi-continuous functions. So, 
his definitions of measurable sets and functions and his integration theory are closer to Borel’s than 
Lebesgue’s theory and they agree with the classical contemporary mathematics.  
Vitali represents an opposite tendency with respect to choice axiom and uses it in a decisive manner 
to prove the existence of a not Lebesgue measurable set (Vitali 1905 e). 
13 Observe that if it possesses only discontinuity of first type it is Riemann integrable. Indeed in 1908 L. 
Tonelli wrote Discontinuità di 1a specie e gruppi di punti, (Tonelli 1960, 69-74) where he proves that the 
set of the discontinuities of first type of a real function of a real variable is at most countable. Then if 
a function has no second type discontinuities, for (Dini 1878, 244), it is Riemann integrable (as 
Riemann’s function).  
14  This last equality is wrong in general if the derivative number is not finite in every point: indeed if 
f(x) is the Cantor function then its variation is 1, but the integral of its derivative number is zero (see 
also the statement and the proof in (Levi 1906, 359)).  
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of intervals he defines at p. 62 and the use of transfinite ordinals.  He extends also the 
fundamental theorem proved by Dini (Dini 1878, 278)15 for Riemann integrable functions to 
Lebesgue summable functions, but it is surprising since, while Dini’s result agrees with the 
Vitali-Lebesgue’s theorem that a Riemann integrable function is almost everywhere 
continuous, no similar information is available for summable functions (for example the 
characteristic function of the rational numbers of the interval [0,1] is summable but totally 
discontinuous): 
 

If f is summable on [a,b], then the derivative of the integral 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
௫

௔
 is a. e. equal 

to f(x). 
  

He concludes his book by adding that:    
  

every bounded variation function f(x) has a. e. a finite derivative that is summable. But in 
general f(x) is not a primitive of its derivative, as it is possible to see for example with the 
Cantor function (Lebesgue 1904 a, 128-129).  

 
Then Lebesgue claims, in a footnote and without demonstration that:  

 
In order that a function is an indefinite integral its total variation in every countable 
number of intervals of total length l has to tend to zero with l. 

 
 And also: 
  

If in the statement at page 94 one does not suppose f(x) bounded nor F(x) with bounded 
derivatives numbers, but only the previous condition, then one obtains a definition of 
integral equivalent to that developed in this Chapter and applicable to all summable 
functions bounded or not. 
 

Now at page 94 there is the following definition whose particular cases are Duhamel’s and 
Riemann’s definitions of integral: 
  

A bounded function f(x) is called summable if there exists a function F(x) with bounded 
derivatives numbers that admits f(x) as its derivative except for a set of values of null 
measure. The integral in (a,b) is then, by definition, F(b)-F(a).16 

 
In 1905 Vitali writes the paper  Sulle funzioni integrali  (Vitali 1905 d). Where he focuses 

on the nomenclature and gives the fundamental definition of absolutely continuous function 
that will be quoted in all the subsequent literature on this topic.  

Let F(x) be a real function defined in the interval (a,b)  and let (c,d)  be an interval 
contained in (a,b): Vitali calls increment of F(x) in the interval (c,d) the difference F(d)-F(c)  and 

 
15 If F(x)= ∫ 𝑓(𝑥)𝑑𝑥

௫

௔
 (Riemann’s integral) then the four derivatives of F are all finite and (Riemann) 

integrable and if g is one of them, then F(x)-F(a)= ∫ 𝑔(𝑥)𝑑𝑥
௫

௔
. 

16 The passages from the Leçons above can be found also in (Lebesgue 1907 b, 286 Note 1), where 
Lebesgue claims priority about the extension of the fundamental calculus theorem. In the same paper 
he says that B. Levi pointed out to him the paper by Vitali where the same theorem is enunciated and 
proved. Lebesgue quotes many other works by Vitali about Lebesgue’s theory and concludes: These 
points of contact show that the theorems we are talking about are very natural and they arise to all those 
are studying such questions.  
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calls increment of F(x) in a set of pairwise disjoint partial intervals the sum of the increments 
of F(x) in every interval. 

Then he calls absolutely continuous a function F(x)  if for every >0 there exists  >0 
such that  the sum of the absolute values of the increments of F(x)  in a set of pairwise disjoint 
intervals  such that the sum of their lengths is less than ,  is less than .  

He calls  integral function  a function F(x) if there exists a (Lebesgue) summable 
function f(x) in (a,b)  such that for every x(a,b) it is:  F(x)-F(a)=∫ 𝑓(𝑡)𝑑𝑡

௫

௔
. 

At this point Vitali shows that: 
  

a function F(x) in (a,b) is an integral function  if and only if it is absolutely continuous. 
 
In this way Vitali expresses in an elegant manner the only sketchy thought in the Lebesgue 
footnote, and furnishes a precise demonstration of it, including the case of not bounded 
derived functions. 

In order to obtain the proof of the fundamental theorem, Vitali establishes some partial 
results that one can find also in the Leçons: for example he proves  that if a function is 
absolutely continuous then it is of bounded variation, (toute intégrale indéfinie est à variation 
bornée, in the Leçons) and also that it is not true the converse of the preceding proposition, 
that is there are continuous functions of bounded variation that are not absolutely 
continuous like the Cantor function (the (x) function of the Leçons): indeed  it is continuous 
and not decreasing, therefore it is a function of bounded variation, but for every >0  there 
exists a set of intervals whose union contains the Cantor set such that the sum of all the 
intervals is less than : The increment of the function in it is equal to 1 and therefore the 
Cantor function is not absolutely continuous. 

Borrowing a theorem from the Leçons he modifies slightly, Vitali proves that  
 

1) every derived number of a continuous function with bounded variation is a. e. finite.   
Then he proves that  
 
2) if a function F(x) is absolutely continuous and zero is a.e. between the two derived 
right numbers then F(x) is a constant (Vitali 1905 d, &6). 
 
Moreover, generalizing an important result of the Leçons to unbounded functions:  
 
3) the indefinite integral of a summable function has a.e. this function as its derivative 
(&7). 
 
4) the lower right-derived number  d of a continuous non-decreasing function F(x) in 
the closed interval (a,b) is summable ( &8). 
 
5) an absolutely continuous non-decreasing function is an integral function (&9). 
 
Finally, since every absolutely continuous function is the difference of two absolutely 

continuous non-decreasing functions, the theorem is proved. 
In 1916 L.Tonelli, (Tonelli 1916a) in the paper Sulla ricerca delle funzioni primitive, will 

give a simpler proof than Vitali’s one of the fact that an absolutely continuous function is the 
integral of its derivative, a proof more elementary also than  the first rough one by Lebesgue, 
based on intervals chains and resorting to the transfinite (Lebesgue 1904, 121-22). Tonelli’s 
proof is obtained approximating the given function of bounded variation, whose graph is 
therefore rectifiable, by piecewise linear functions.    
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Exchange of Opinions B. Levi – Lebesgue 
  
For its conceptual characteristic breaking with the traditional mathematical culture, the 
apparition of the Leçons by Lebesgue gave rise to a series of comments. Since Lebesgue’s 
admirable and extensive work often shows some obscure aspects, B. Levi, in 1906, begins an 
interesting exchange of opinions with the French mathematician, writing four Notes on the 
Rend. Acc. dei Lincei, justifying he himself some enunciates by Lebesgue, and suggesting that 
the demonstration of some other propositions has to be improved.  

Levi intends to submit the more questionable propositions of (Lebesgue 1904 a, 122-
23) to a careful analysis, following anyway Lebesgue’s methods. 

Namely in the first Note he begins considering the proposition by Lebesgue: 
 

The integral of one of the derived numbers of a function (supposed finite) does exist if 
and only if the function is of bounded variation; if this is the case the indefinite integral of 
that derivative number is a primitive.  

 
Now, Levi says, in this proposition the hypothesis that the derivative number is 

bounded is essential and therefore the proof given by Lebesgue is faulty. In order to give a 
more careful proof of it Levi proves some auxiliary facts:  
 

The lower or upper, right or left derived numbers of a continuous function belong to the 
Baire second class; therefore, they are measurable (Levi 1906 b, 433).17 

 
If f(x) is a continuous function and in every point the right and left derivatives exist then 
the set of the points where they are different is enumerable (Levi 1906 b, 437). 

 
Then he proves again the proposition of (Lebesgue 1904 a, 120), that is:  

 
The indefinite integral of a bounded measurable function f(x) has a.e. a derivative equal 
to f(x). 

 
He demonstrates with care that the previous theorem holds also in the case f(x) summable 
but not bounded (pp. 674-681).  

In all the Notes he continues his strong analysis of Lebesgue’s work, studying in detail 
the relations between the behavior of derivatives and their primitive functions. And 
particularly he corrects the previous Lebesgue’s statement in the following way: 
   

a function of bounded variation is a primitive of one of its derived numbers if this number 
is bounded (and not merely finite).  

 
This is analogous to some other propositions in (Lebesgue 1904 a,123-125) that are rather 
ambiguous for the presence of the word “finite” in place of “bounded”. One of the main 
results of Levi’s research about this topic is the following very interesting characterization of 
the integral functions: 
 

Let f(x) be a continuous function in the interval [a,b] and let u(x) be one of its derivative 
functions. Then the fundamental theorem of the calculus holds if and only if the set of the 

 
17 In (Baire 1899, 64) it is proved that if a function is derivable then its derivative is in the first class. 
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values assumed by f(x) in a zero measure set has zero measure and u(x) is a summable 
function (Levi 1906 b, 358).18 

 
The fundamental theorem by Levi in the case the derived number is not bounded is given in 
(Levi 1906, 359), using the notion of reducible set that is a set such that one of its derived sets 
is empty: 
 
  

Let u(x) be one of the derived functions of the continuous function f(x) in the interval 
[a,b]:  if the set of the points where u(x) is infinite is at most reducible, then the necessary 
and sufficient condition  in order that u(x) is Lebesgue summable, is that f(x) is of 
bounded variation. Then f(x) = ∫ 𝑢(𝑡)𝑑𝑡

௫

௔
 +C, where C is a constant. 

 
Observe that by the characterization of the integral functions given by Vitali, we can obtain 
by this theorem the following interesting proposition:  
 

a continuous function is absolutely continuous if one of its derived functions is summable 
and the points where it is infinite is at most reducible. 

 
After the long proof, Levi observes that he has preferred a way of proof different by that 
used by Lebesgue: the French mathematician in his proof, in order to calculate the total 
variation of the given function, considered a sum extended to an enumerable chain of 
intervals. Remember that a chain of intervals, defined in (Lebesgue 1904 a, 63), is an ordered 
set of disjoint intervals of the real line. Every interval is contiguous to the preceding one if it 
exists; otherwise it has as first extreme the upper bound of the second extremes of the 
preceding intervals. The operation of extending a sum to an enumerable chain of intervals 
seems to Levi an elegant and suggestive but always very delicate operation, resorting to the 
transfinite, about which Levi has some reservations.  

Lebesgue, quite irritated, immediately answers, (Lebesgue 1907 a, b), meeting some 
Levi’s objections and adding some intermediate reasoning, but also explaining some 
definitions he himself used. 

He claims that, while a bounded derivative of a function is not necessarily Riemann 
integrable, as Volterra proved with a counter example, on the contrary:   
 

the indefinite Lebesgue integral of a bounded derivative always exists and is one of its 
primitive functions.  

 
If the derivative is not bounded he remembers that in the Leçons he gave the following 
propositions: 
 

The indefinite integral of an everywhere finite (bounded or not) derived number is one of 
its primitive functions if and only if the derived number is Lebesgue summable. 

 
Moreover: 
 

 
18 Observe that, by Vitali’s theorem about integral functions, this proposition implies the following 
Banach-Zarecki Theorem: 
 If f(x) is continuous, of bounded variation and the Lusin’s condition (N) holds (that is for every subset E 
of [a,b]  m(E)=0 →m(f(E))=0)  then f(x) is absolutely continuous on [a,b]. 
It is clear that Lusin’s (N) condition is already present in the proposition by B. Levi. 
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The indefinite integral of an everywhere finite derived number is one of its primitive 
functions if and only if the primitive functions are of bounded variation. 

 
In this way Lebesgue corrects the analogous proposition of the Leçons simply by 

removing the part regarding the representation of the function having the derived number 
by its integral.  

Lebesgue adds that, in general, both the derived number is finite or infinite, the 
problem of the determination of a primitive function of it does not make sense. Indeed, 
Lebesgue claims, Hans Hahn has proved that there exist two functions, f and g, having 
everywhere the same derivative but f-g is not a constant; if the derivative is not finite it is 
impossible to determine the function up to a constant. 

It is worth noticing that Lebesgue assures that the previous propositions are absolutely 
correct and they were given a proof also by B. Levi (Lebesgue 1907 b, 284 Note 1). 

But he does not agree with the drastic opinion by Levi about the use of transfinite 
chains of intervals in his demonstrations. This is a crucial point in the polemic. Lebesgue 
refutes his opponent’s argument defending his procedure. In particular Levi has observed 
that if the extremities of the intervals constitute an irreducible set, as in an example he 
exhibits and as in the Cantor set, the results are no more reliable. Lebesgue answers simply 
that he was already acquainted with that.  

We now finish the exposition of the exchange of ideas between Lebesgue and B. Levi, 
by reporting a summary of the subsequent development of the problem of the research of 
the primitives that is possible to read in a paper of 1920 by L. Tonelli: Sulla ricerca delle funzioni 
primitive, (Tonelli 1960, Vol. I, 360-376). In it the Author deals with the problem in the most 
general setting, making a survey of the situation.  He recapitulates that if a function has a 
bounded derivative then this derivative is Lebesgue (not always Riemann) integrable and the 
equality: f(x)-f(a)=∫ 𝑓′(𝑥)𝑑𝑥

௕

௔
 holds; moreover, Vitali showed that this equality holds for 

every absolutely continuous function. 
 But there are some not absolutely continuous functions that possess a finite derived-number 
or even a finite derivative at every point, which is not Lebesgue integrable.19 The problem to 
determine a primitive function in this case was faced by Denjoy and solved by a new method 
of integration he called totalisation.  

It was not possible to say that the research was finished at this point since functions 
exist which have derivative or a given derived number that is not always finite. Now, while in 
the preceding cases the solution is proved to be unique, in the last case the problem may be 
undetermined. If for example a function has an upper right-derived number equal to +∞ (-∞)  
at every point of a perfect set P, if we add to it a function (x) that is constant in all the 
intervals contiguous to P  and increasing (decreasing) to the right at every point of P that is 
not the first extremum of a contiguous interval, the sum f(x)+(x)  and f(x) have  always 
equal upper right-derived numbers, but  f(x) and f(x)+(x) do not differ from one another 
only by a  constant. Examples of such functions (mentioned by Lebesgue) were given by H. 
Hahn, B. Levi and others.  

Remember that B. Levi gives the following sufficient condition to the point: 
 

Two continuous functions F(x) and G(x) defined in the same interval differ at most by a 
constant if they have equal derivative in every point of the interval, the derivative being 
finite everywhere except at the points of a set  E such that  m[(F-G)(E)]=0 (Levi 1906, 
558). 

 

 
19 For example the function defined in [0,1] in the following way: f(0)=0, f(x)=x2𝑠𝑖𝑛

ଵ

௫మ   for 𝑥 ≠ 0, has a 
not summable derivative that is finite in every point. 
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As a counterexample let F(x)= (x)  and G(x)=2(𝑥) where (x) is the Cantor function. F(x) 
and G(x)   are continuous and their derivatives coincide everywhere; they are infinite in the 
points of the Cantor set C, but m[(F-G)(C)]=1. Indeed G(x)-F(x) is not a constant. Observe that 
C is perfect. 

Well, Tonelli, by using the Denjoy integration method, proves that:  
  

A necessary and sufficient condition in order to a continuous function be determined, up 
to a constant, by a derived number is that: 

 
1) this number exists a.e.; 
 
2) the set of points where this number is infinite does not contain a perfect set. 
 
Term by Term Integration of Equi-Absolutely  
Continuous Sequences of Integrals 
 
Only in 1907 Lebesgue sends a letter20 to Vitali about the papers of the Italian mathematician 
on measure and integration theory; indeed, he complains: “I have always had knowledge of 
your papers (when I have had) by chance and after their publication”. He notices that there 
are very many points in common in their respective papers: with regard to absolute 
continuity and the relevant theorem, Lebesgue underlines his priority, but acknowledges 
Vitali as who threw light upon the result he himself had mentioned on the contrary only in 
passing; but above all he praises Vitali since he has transposed the definition of absolute 
continuity to a useful condition to integrate series term by term.   

 Indeed, in February 1907 Vitali published the paper Sull’integrazione per serie (Vitali 
1907), a very famous and quoted paper, where the definition of absolute continuity is 
extended to a family of functions in the following way:  given a family of functions, their 
integrals are called equi-absolutely continuous   if  
 

for every >0 there exists  >0   such that the absolute value of the integral of whatever 
function of the family, extended to whatever measurable set whose measure is less than 
,  is less than .  

 
After this definition Vitali obtains the following criterion: 
 

A series of summable functions defined in a measurable set of finite measure is term by 
term integrable if and only if it converges and the integrals of its partial sums are equi-
absolutely continuous. 

 
In particular if we have a uniformly convergent series of continuous functions defined in a set 
of finite measure, then, as was exclusively applied until then, the term by term integration is 
allowed by the criterion.  Lebesgue had yet generalized this result to bounded measurable 
functions in the Leçons, by the following theorem: 
 

If a series converges and its partial sums are uniformly bounded, then it is possible to 
integrate it term by term. 

 
This theorem is quoted by Vitali, since it is a simple consequence of his general criterion; but 
Vitali does not notice that by his criterion the more general condition easily follows: 

 
20 Letter of February 16th, 1907 (Vitali 1984, 457). 
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If a series converges and all its partial sums are less or equal to a summable function, then 
it is possible to integrate it term by term.  

 
Such a theorem will be enunciated and proved in (Lebesgue 1908).  With regard to the same 
theorem, in a footnote of a subsequent paper (Lebesgue 1909), the French mathematician 
observes that it is implied by Vitali’s criterion; he also  remembers that Poincaré had given in 
1894-95  some lessons at the Sorbonne about the potential theory, edited with the name of 
Leçons sur la Théorie du potential newtonien by Le Roy and Vincent and published in 1899, 
where a theorem in order to pass to the limit under integral sign is enunciated; in it the 
hypothesis of a summable majorant plays a crucial role.21 

 It is worth noticing that by Vitali’s general criterion, as Vitali himself underlines, also 
the following Beppo Levi’s Theorem (Levi 1906 a), published one year before, follows: 
 

Let (fn(x)) be an increasing sequence of nonnegative measurable functions and let f(x) be 
its limit. Then 

 
 ∫ 𝑓(𝑥)𝑑𝑥 =

௕

௔
 limn∞∫ 𝑓௡(𝑥)𝑑𝑥

௕

௔
. 

 
 Thus, the determination of Vitali’s criterion, together with the more available 

Lebesgue’s and B. Levi’s sufficient conditions it implies, concludes the research about the 
topic. 
 
The Problem of the Reduction of Double Integrals 
 
Reducing double integrals was a complex problem from the very beginning; the difficulty was 
linked to the fact that if a function is integrable, both in Riemann and in Lebesgue sense, the 
partial functions obtained by restricting it to the segments of equation x=constant and 
y=constant are not measurable in general. For integrals in the sense of Riemann among the 
mathematicians which were interested in the problem there was also Arzelà who gave his 
contribution to its solution in 1891. For the Lebesgue’s double integrals in his thesis Lebesgue 
had encountered the same difficulty for his integral but he had observed that if the function 
is Borel measurable in the interval D=[a,b]X[c,d] then the partial functions  x→f(x,y) and 
y→f(x,y) are all Borel measurable and if f(x,y) is bounded then for the double integral 
extended to D we have: 
 
                            ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦  =∫ 𝑑𝑥 ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 =

ௗ

௖

௕

௔ ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
௕

௔

ௗ

௖
                                           (*) 

 

 
21 Indeed, we can read (Lebesgue 1909, 121): 
“Soit l’intégrale  ∫f(x,y,z)dxdy  étendue à  un certain domain S. Supposons: 
1o   que le contour C qui limite  S ne dépende pas  de z; 
2o   que l’on ait en tout point de  S   |f(x,y,z)|≤ (x,y),   étant une fonction positive; 
3o   que l’intégrale   ∫(x,y)dxdy  étendue au domaine S, ait un sens; 
4o   enfin, que l’on ait   𝑙𝑖𝑚௭⇾଴ f(x,y,z) = f(x,y,0)    quels que soient  x et y, pourvue qu’ils restent fixes. 
Dans ces conditions, on a la relation:  𝑙𝑖𝑚௭⇾଴ ∫f(x,y,z)dxdy =∫f(x,y,0)dxdy.” 
But Lebesgue notices that since there is no demonstration, it is difficult to have an overall view of the 
situation; some explanations before the enunciate let us believe that Poincaré referred to continuous 
functions and that f(x,y,z) was supposed to converge uniformly to f(x,y,0) except for some 
exceptional points. While until then uniform convergence had played a central role when passing to 
the limit under the integral sign, in this way Poincaré made use of a summable majorant for the first 
time, allowing the possibility meas (S) infinite.  
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In the case the integrals in (*) are Riemann’s integrals, some mathematicians had showed 
that there are many exceptions to its validity; in 1907 E. W. Hobson observed that all the 
counterexamples fail if we consider in (*) the Lebesgue’s integral. Consider for example 
Thomae’s example: D=[0,1]X[0,1],  f(x,y)=1 if x is rational, f(x,y)=2y if x is irrational: the 
integrals  ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦  and  ∫ 𝑑𝑦 ∫ 𝑓(𝑥, 𝑦)𝑑𝑥

ଵ

଴

ଵ

଴
 do not exist in Riemann’s sense but Hobson 

pointed out that both exist in Lebesgue’s sense and have value 1 (Hawkins 2002, 159). 
Hobson did not realize that equality (*) holds in general for a function of two variables 

if it is integrable in the sense of Lebesgue.  Instead this fact was noticed first in 1906 by B. 
Levi, who in a footnote of a paper about Dirichlet’s Principle, claimed, in passing and without 
proof, starting from some papers of Pringsheim about superficial Riemman’s integrals, that 
if a function f is summable in the unitary square then it is possible to deduce that the linear 
integrals do exist on every segment of equation x=constant or y=constant except at most for 
a set of lines of zero measure and therefore negligible. Then the double integral can be 
obtained by means of two successive integrations.22   

In (Fubini 1907) the idea of B. Levi is dealt with apart, and we can find finally the proof 
of the following most general version of the reduction theorem: 
 

 Let f(x,y) a function of two variables, summable in a rectangular set D=[a,b]x[c,d] : then 
for a.e. y∈ [𝑐, 𝑑] the partial function  x∈ [𝑎, 𝑏] → f(x,y) and for a. e. x∈ [𝑎, 𝑏] the function 
y∈ [𝑐, 𝑑] → f(x,y)   are summable and (*) holds. 

 
Fubini proves that if f(x,y) is summable in D then there exists a Borel measurable function 
g(x,y) that coincides a. e. with f(x,y) in D. It follows that f(x,y)  is linearly summable that is for 
a.e. y∈[c,d]  the partial function   x∈ [𝑎, 𝑏] →f(x,y)   and for a. e. x ∈ [𝑎, 𝑏] the partial function 
y∈ [𝑐, 𝑑] →f(x,y)  are measurable: Fubini proves that they are also summable and (*) holds.  
 Two years after Tonelli inverts the preceding proposition if the function is nonnegative. 
 

If f(x,y) is a measurable nonnegative function in the set D=[a,b]X[c,d] such that one of the 
iterated integrals in (*) is finite, then f(x,y) is summable and (*) holds (Tonelli 1960, Vol. 
I, 157). 
  

It is well known that great difficulties Lebesgue’s integration theory encountered to be 
considered at an international level as a significant mathematical theory (Vitali 1984, 9-10). By 
means of Fubini-Tonelli theorem and the theorems about the passage to the limit under the 
integral sign Lebesgue’s theory was complete and ready for the applications, so these 
theorems decreed its triumph. 
 
Contribution by Tonelli to the Problems of the 
Rectification of the Curves 
 
Jordan in the C.R. de l’Academie de France in 1881 and in the second ed. , Vol. 1 of his Cours 
d’Analyse had defined the functions of bounded variation and had proved that a curve is 
rectifiable if and only the functions which represent it are of this kind. 

  In 1908, one year after he graduated with first class honors at the University of 
Bologna discussing a thesis about the polynomials of approximation of Tchebychev, Tonelli23 
writes the paper Sulla rettificazione delle curve (Tonelli 1960, Vol.I, 52), where he deals again 
with the problem of the determination of the length of the curves, this time in the light of 

 
22 B. Levi, Sul principio di Dirichlet, Rend. Circ. Mat. Palermo, t.22, 30. 
23 Further information about the life and the works of Tonelli can be found in “Sulla vita e sulle opere 
di Leonida Tonelli” by Silvio Cinquini in (Tonelli 1960, Vol. I, 1-35). 
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the new theory of Lebesgue’s integral and of the definition by Vitali of an absolutely 
continuous function.24 He improves the result given by Jordan, establishing the following 
characterization:   
 

The length L of the curve of equations  x=x(t), y=y(t), z=z(t) (a≤ 𝑡 ≤b)  is given by: 
L =∫ ඥ𝑥′(𝑡)ଶ + 𝑦′(𝑡)ଶ + 𝑧′(𝑡)ଶ 𝑑𝑡 

(where the integral is the Lebesgue integral) if and only if the functions x(t), y(t), z(t) are 
absolutely continuous. 

 
In 1916 he comes back to the subject in the paper Sul differenziale dell’arco di curva, (Tonelli 
1916 b) where he points out, among other things, that the graph of the Cantor function f is 
an example of rectifiable curve whose components x(t)=t, y(t)=f(t), t[0,1] are of bounded 
variation but not absolutely continuous. In this case the length is strictly greater than the 
corresponding integral, and is equal to it plus the total variation of f in the set of the points 
where the derivative does not exist finite.  
 
Functions of More Variables and Additive Set Functions 
 
In 1915 and after in 1916 de la Vallée Poussin gives a general definitive treatment of additive 
set functions, their derivatives in a point and the generalization of the fundamental calculus 
theorem. As we have seen, in the case of one real variable, Vitali had already completely 
solved the problem in 1905, introducing in the paper Sulle funzioni integrali the concept of a 
real absolutely continuous function of a real variable and characterizing by it the integral 
functions. 

Interesting thing, in 1907, in the paper Sull’integrazione per serie, Vitali comes back to 
the preceding definition, looking at the integral function of a summable function no more as 
a point function but as an absolutely continuous set function. 

In the paper Sui gruppi di punti e sulle funzioni di variabili reali (Vitali 1908) the Author 
tries to generalize the fundamental definitions appearing in (Vitali 1905 d) to functions of 
more variables. 

Namely, let F(x,y) be a real function of two variables defined in a rectangle with edges 
parallel to the coordinate axes. Vitali calls increment of F  in the rectangle whose vertices are 
(a,b), (𝑥ଵ,𝑥ଶ), (a,𝑥ଶ), (𝑥ଵ,b),  the quantity:  

 
F(a,b) + F(𝑥ଵ,𝑥ଶ) - F(𝑥ଵ,b) - F(a,𝑥ଶ); 

 
F is called absolutely continuous in the rectangle R if for every number >0 there exists a 
number >0  such that for every finite set of rectangles contained in  R  with edges parallel 
to the coordinate axes the sum of whose measures is less than ,  the sum of the moduli of 
the increments of F(x,y) in such rectangles is less than .  

F(x,y) is an integral function if and only if there exists a summable function  f(x,y) such 
that:   

  
F(𝑥ଵ,𝑥ଶ) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

௫మ

଴

௫భ

଴
. 

 
 Vitali says that a function F is of bounded variation if in whatever manner  the rectangle 

R is divided in a finite  number of rectangles with edges parallel to the coordinate axes, the 

 
24 It is interesting remember that in a postcard dated 25thApril 1908 Arzelà writes to Vitali “Ho una nota 
del mio allievo Tonelli relativa alla lunghezza, e che si riattacca all’ultima sua nota. Io sono 
occupatissimo, potrebbe leggerla lei? è breve” (Vitali 1984, 470). 
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sum of the moduli of the increments of  F(𝑥ଵ,𝑥ଶ)  in such rectangles is less than a fixed 
number. 

  The incremental ratio is defined in the following way: 
 

ி(௫భା௛,௫మା௞)ାி(௫భ,௫మ)ିி(௫భା௛,௫మ)ିி(௫భ,௫మା௞)

௛௞
. 

 
Vitali makes h and k tend to 0   with h=k   and calls numeri derivati destri (sinistri) in the point 
P the indetermination numbers of such an expression for h and k tending to 0 and positive 
(negative).  If these limits are finite and equal, their common value is, by definition, the 
derivative. 

On the basis of these elements, Vitali claims that it is possible to extend to the case of 
more variables all the results previously obtained for the functions of one variable. 

In order to give an example of a total derivative in the sense of Vitali for a function of 
more variables, in (Tonelli 1910) the problem of the derivation of a multiple integral is faced 
in the same order of ideas. Tonelli indeed considers a Lebesgue integrable function of two 
variables f(x1,x2) in a domain A and defines the first derivative numbers of the integral of 
f(x1,x2) in the point (x1,x2) interior to A as the indetermination limits for u0+ of the integral:  
 

ଵ

௨మ ଴
௨
଴
௨

f(x1+u1,x2+u2)du1du2 

 
If these limits coincide their common value is called  first derivative of the integral of f(x1,x2) 
in the point (x1,x2); if u0-  in one or in both the integration limits and if there is no 
indetermination, then it is possible to obtain the second, third and fourth derivative.  If these 
four derivatives coincide their common value is the derivative. Tonelli  is able at this point to 
prove a generalization to functions of more variable of the analogous result proved by 
Lebesgue for functions of only one variable, that is:  a Lebesgue  summable function f(x1,x2) 
coincides a.e. with the derivative of its integral in the interior points (x1,x2) of A. In particular it 
is the derivative of its integral in the points where it is continuous. 

In (Lebesgue 1910) the preceding fundamental definitions are generalized to the case 
of functions of more variables, and Lebesgue extends the results of the last chapter of the 
Leçons, in particular with respect to the multiple integrals derivation. 

Lebesgue quotes the young Tonelli’s work and, in his paper, makes constantly 
reference to (Vitali 1908): he inspects Vitali’s definitions, visits their positive sides and 
organizes the new theory; as first thing he defines the notion of additive set function taking 
as a prototype the integral function.25  

First an interval function is defined (coinciding with the increment of the given function 
as in Vitali); indeed in the two-dimensional space Lebesgue considers the interval I=(A,B), 
where A=(x1,x2), B=(x1+h,x2+k)  (h>0,k>0) and defines the  function   
                        

(I) = 𝑓(𝑥ଵ + ℎ, 𝑥ଶ + 𝑘) + 𝑓(𝑥ଵ, 𝑥ଶ) − 𝑓(𝑥ଵ + ℎ, 𝑥ଶ) − 𝑓(𝑥ଵ, 𝑥ଶ + 𝑘). 
 
Let f be of bounded variation: then if the interval I is the sum of a finite number of pairwise 
disjoint intervals Ip then  (I) = (Ip), that is  is additive. Lebesgue does not highlight the 
intermediate further steps of the extension of  to a general additive set function, but they 
are well underlined in (de la Vallée Poussin 1915). 

After Lebesgue makes clear the meaning of the derivation in this frame: to this aim 
firstly he introduces the notion of a regular family of domains: a family of measurable 

 
25 “After all, giving an additive and absolutely continuous set function, or giving a bounded and 
absolutely continuous function of k real variables are two equivalent operations” (Lebesgue 1910, 386-
387).  
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domains is called regular if there exists >0 such that, for every set D of the family, it is 
m(D)>.m(S)   where S  is the smallest hypersphere containing it. By this definition a variable 
set of the family is not allowed to have an infinitesimal measure if all its dimensions are not 
infinitesimal. 

Then, given an absolutely continuous additive set function, F, Lebesgue defines its 
derivatives as the indetermination limits  of the ratio  ி(ா)

௠(ா)
, where  m  is the Lebesgue measure 

of E, E varies in the family  and the diameter of E tends to 0. 
The whole central part of his paper is a re-examination of the definitions and the proofs 

of Vitali’s widely quoted paper of 1908, and a suitable transformation of them leading to the 
generalization of the theorem of the Italian. Lebesgue says: “J'ai imité son exemple en me 
bornant tout d'abord aux fonctions F absolument continues”.  

He then proves the following theorem, analogous to Vitali’s theorem: 
 
An absolutely continuous additive set function has a finite derivative a.e., which is 
summable, and it is the indefinite integral of such a derivative (Lebesgue 1910). 

 
In order to prove it Lebesgue uses a geometric proposition by Vitali,26 the following cover 
theorem: 
 

Let E be a measurable set: let us suppose that every point of E belongs to an infinite 
number of arbitrarily small intervals from a family F of intervals. Then it is possible to 
extract from F a finite or enumerable set of intervals, pairwise without interior points in 
common, such that the sum of their measures is not less than the measure of E. 

     
 In 1908, Vitali notices that an analogous proposition can be proved in the plane, 
considering, in place of intervals, a family of squares, or in the space, a family of cubes. 
Lebesgue proves it for every regular family of domains, but he shows that it is not true for 
whatever family of domains (Vitali 1908). 
 

Vitali cover theorem is used by Lebesgue in particular to prove that: 
 

 If an absolutely continuous additive set function  is positive in a quadrable domain D,27 
then there exists in D a set of positive measure where the derivative numbers of  are 
positive. 

   
Indeed if this was not the case, with every point P of D, except the points of a null set, it would 
be possible to associate a sequence of regular domains , interior to D and containing P, 
whose diameters tend to 0 and such that, for every ,  ()/m() <(D)/m(D).  Now by Vitali’s 
theorem there exists a sequence of regular , pairwise without interior points in common, 
covering all of D, except a null set E. Then D can be viewed as the union of the   and of E and 
therefore m(D)=m()  and (D)=().  It follows: 

 
() < m() (D)/m(D)=(D), 

 
an absurdity. 
 

 
26 In (Banach 1924) there is a simple demonstration of this fundamental theorem. 
27 That is a Lebesgue measurable domain whose boundary is a null set (therefore a quadrable domain 
is nothing but a Peano Jordan measurable domain). 
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An important consequence of the preceding proposition which plays a central position in the 
proof of the main theorem is the following: 
  

Let an absolutely continuous additive set function be such that one of its derivative 
numbers is a. e. not negative (resp. not positive), then it is constantly not negative (resp. 
not positive). And therefore if a derivative number is a.e.  equal to zero then the function 
is a.e. equal to zero. 

 
To prove the fundamental theorem Lebesgue considers an absolutely continuous additive 
set function   that is ≥0 (this hypothesis is not restrictive since every absolutely continuous 
function is the difference of two nonnegative). He considers one of the two derivative 
numbers of , D(), and determines a lower  approximation of the integral function of D() 
in the following way.  

Given >0, let     Ei={𝑥: 𝑖 ≤ 𝐷() < (𝑖 + 1)},  i=1,2, ...n-1, E={𝑥: 𝐷() = }. 
These sets are measurable since Lebesgue has previously proved that: 

 
The derived numbers of an additive absolutely continuous function are measurable 
functions. 

 
Now, consider a domain F including all the previous ones: let, for every i, i  be a closed set, i 

⊆Ei, such that m(i)>m(Ei)- 
ଶ೔   and  a closed set, ⊆E , such that m()>m(E)-.  Let   

 
fi(P)=0  if P∉i,     fi(P)=i   if Pi; 

f(P)=0 if P∉,   f(P)=n  if P. 
 
Also  let                                (E)=∑ ா

௡ିଵ
௜ୀ଴ fi(P)dP +ாf(P)dP.          

 
It follows that the derivative numbers of  are less or equal to D(). 
Let () be the upper derivative number of : then it is  D(-)≥D()-()≥0 and therefore, 
by the preceding proposition, for every n: -≥0.  On the other hand, it follows by definition 
that: 
  

(F)≥ భ…೙
[D()-]dP  + nm(); 

 
This relation holds for every n and for every >0. It follows that m()=0 and therefore also 
m(E)=0.  It follows that D() is a.e. finite.  Let 0 and n. Since  
 

m(F)≥ m(
ଵ
 ...

௡ିଵ
)>m(E1)+...+m(En-1)-, 

 
it is  m(

ଵ
 ...

௡ିଵ
)m(F). Therefore we obtain: (F)≥ ி[D()]dP. 

 
Now Lebesgue puts D’(P)= D()(P) if D()(P) is finite, and D’(P)= 0 otherwise. 

 
It follows  (F)≥(F)≥  ிD’(P)dP    and also (E)≥(E)≥  ாD’(P)dP  for every domain E. By a 
similar procedure Lebesgue proves also the converse inequality obtaining  (E)= ாD’(P)dP 
for every domain E. Since this relation holds also for the other derivative number, the two 
derivative numbers are equal, that is  has finite derivative a. e. and coincides with the 
indefinite integral of such a derivative.   

By the fundamental theorem, the integral, that is the function F: Eா𝑓(𝑄)𝑑𝑄, is an 
additive absolutely continuous function. Lebesgue considers in particular a function f of two 
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real variables. As usual in order to prove that the derivative of F in P is  equal to f(P)  it is 

enough to prove that it is  𝑙𝑖𝑚௠(ா)଴ ಶ|௙(ொ)ି௙(௉)|ௗொ

௠(ா)
 =0 where E varies in a regular family 

(Lebesgue 1910, 404).  As he has proved for the functions of one variable and Tonelli for a 
function of two variables, now Lebesgue proves that the set of the points P such that this 
derivative is not f(P) has null measure. Therefore 
 

 if f(Q) is a summable function then the derivative of the function Eா𝑓(𝑄)𝑑𝑄    is a.e. 
equal to f(P). 

 
 Lebesgue defines also the mean density of a measurable set E in an interval (a,b) as the 

ratio  ௠
[ா∩(௔,௕)]

௕ି௔
;  and  the density of a set E in a point a on the right as the limba ௠

[ா∩(௔,௕)]

௕ି௔
 if it 

exists; in an analogous way the density on the left is defined; if the two preceding values 
coincide they are the density of the set E in a.  

Lebesgue proves that the density of a measurable set E is a.e. equal to 1 in the points 
of E and 0 in the complement and therefore coincides a.e. with the characteristic function of 
E, 

ா
.  

 By the equality   (a,b)=∫ 
ா

(𝑥)𝑑𝑥
௕

௔
 =m[E(a,b)]   it follows that  

ா
  is a. e. the  

derivative  of its indefinite integral. 
Then, Lebesgue deduces in general: 

 
Every summable function of a real variable is a.e. the derivative of its indefinite integral 
(Lebesgue 1910, 408). 

 
In 1915 de la Vallée Poussin considers a particular family of regular sets and defines the 

notion of  reseau: a reseau consists in a sequence of nets  by which the space is divided: for 
example in the case of two dimensions it is possible to obtain a  net by two systems of 
straight lines parallel to the coordinate axes and equally spaced. The subsequent net is 
obtained adding other two parallel lines equally spaced between two consecutive ones of 
the preceding net, the distance of the next parallel lines being always in the same ratio with 
the distance of the preceding lines. 

The definition of derivative is given in the following way: given  the absolutely 
continuous additive set function, f, de la Vallée Poussin determines for almost all the points 
P, in a uniform way, a sequence  En  of  elements of the reseau  such that the point P belongs 
to every one of them and limnm(En)=0, then he calculates the lower and upper limits of the 
ratio  f(En)/m(En). In the case such limits are finite and coincide they are the derivative of f  in 
the point P.  

Obviously the just now defined derivative depends on the fixed reseau.28   
Well, by using such a uniform procedure, de la Vallée Poussin proves the fundamental 

theorem without using the Vitali covering theorem.   
 
The Quadrature of the Surfaces 
 
Another field where Tonelli gave a great contribution was about the quadrature of the 
surfaces: in the past the area of a surface S had been often considered as the limit of the 
areas of some polyhedral surfaces inscribed in S and having S as their limit: but in order that 
this definition is well given it is necessary to prove that whatever sequence of polyhedrons is 
considered the corresponding limit is the same.  Schwarz and Peano in 1882 gave examples 

 
28 Obviously, this happens in general also for the regular families, but de la Vallée Poussin proves that 
the choice of the family is influential only in a set of points of null measure (de la Vallée Poussin 1915).   



 
Development of the Theory of the Functions of Real Variables 

in the First Decades of the Twentieth Century 
Loredana Biacino 

 

22 

to prove that the previous limit does not exist in general, varying with the particular sequence 
considered. Subsequently Peano gave, in 1890, in a paper on Rendiconti dell’Accademia dei 
Lincei, the following general definition:  
 

The area of a convex surface is the l.u.b. of the areas of the polyhedral convex surfaces 
inscribed and the g.l.b. of the circumscribed ones.  

 
This definition is not depending on the Cartesian coordinates, but it is too general and is not 
useful for applications. Hermite, in his Leçons, in 1882, proved, in the way we study nowadays, 
the formula for the quadrature of a surface of equation z=f(x,y)  with (x,y) belonging to a 
bounded set D: he supposed that the surface had a tangent plane in every point and that this 
plane varied with continuity. In (Lebesgue 1902, Chapt. IV) the previous definition is extended 
to a Lebesgue summable function f(x,y) with summable derivatives.  

In order to give for the surfaces a definition similar to that of the rectifiable curves it 
was necessary generalize the definition of function of bounded variation in the case of 
functions of two variables; this had become a very hard problem since in the case of more 
variables the definitions by Vitali and Lebesgue of a function of bounded variation turned out 
to be inadequate.  

It is remarkable that some years before Vitali gave his definition of function of two 
variables of bounded variation Arzelà (1847-1912) made an attempt to define this concept, as 
follows (Arzelà 1904-05 and 1906-07). 

Consider a bounded function f(x,y) defined in a rectangle ABCD whose edges are 
parallel to the axes and let L be a curve that has A as an extremity and is such that along it x 
and y are both increasing, at least one of them strictly. Let M be the other extremity 
belonging to the rectangle and let M1, M2, ...Mp=M be points of L disposed in the increasing 
order of x and y.  Consider the sum   

 
f(M)-f(A) = f(M1)-f(A) + f(M2)- f(M1)+ ...+f(Mp)-f(Mp-1) = PL-Nl 

  
where PL is the sum of the positive differences and NL the sum of the absolute values 

of the negative differences.  The Author says that the function f(x,y) is of bounded variation 
if one of these two sums is bounded when L varies in the class of the prescribed curves and 
M varies in the rectangle.  If this is the case, he proves that also the other sum is bounded and 
f(M)-f(A) = P(M) – N(M), where P(M) is the upper bound of PL and N(M) is the upper bound of 
NL. Then he proves that the functions P(M) e N(M) are not decreasing if M proceeds along a 
line of the prescribed ones in the positive direction of x and y. So it is easy to prove that: 

 the function f(M) is of bounded variation if and only if it is the difference of two positive 
not decreasing functions in the direction of the positive axes. 

 If f(M) is of bounded variation and continuous then it is only possible to prove that the 
function P(M) is continuous along ascending curves. The definition is too restrictive and the 
procedure is not available for the applications, particularly for the treatment of the area of a 
surface. 

About this topic Tonelli wrote a series of papers on the Rendiconti dell’Accademia dei 
Lincei, culminating in 1926 in a communication to the Accademy of Sciences de Paris (Tonelli 
1960, 453), where he gave two new definitions of a function of bounded variation and a 
definition of an absolutely continuous function. These definitions turned out to be very useful 
also in the studies about the double series of Fourier and in the calculus of variations.  

Given  the continuous function f(x,y) defined in the square Q whose opposite vertices 
are (0,0) and (1,1), for  every 𝑥̅[0,1] Tonelli denotes by Vy(𝑥̅)  the total variation of the 
function, of the only y, f(𝑥̅,y) with y varying in [0,1], with an analogous meaning for the 
function obtained by exchanging  x for y, Vx(𝑦 )̅. The function f(x,y) is said to be of bounded 
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variation in Q  if  Vx(y) and Vy(x)  are a.e. finite in the interval  [0,1]  and if the Lebesgue 
integrals:   ∫ 𝑉(௬)(𝑥)𝑑𝑥

ଵ

଴
  e    ∫ 𝑉(௫)(𝑦)𝑑𝑦  

ଵ

଴
exist finite. 

Tonelli defines the area of a surface  as Lebesgue, that is it is  the minimum limit of the 
areas of the polyhedral surfaces tending to the considered surface and proves that the 
surface of equation  z=f(x,y),   (x,y)Q,  has finite area if and only if f(x,y) is of bounded 
variation. If f(x,y) is of bounded variation in Q then the partial derivatives  with respect to x, 
p(x,y), and y, q(x,y), exist finite a.e. in Q, are integrable and for the area of the surface, S, it is:  

 
                                             S ≥ ∬ ඥ1 + 𝑝ଶ + 𝑞ଶdxdy,   
 

the integral being extended to Q. 
In the previous inequality the equality holds if the function  f(x,y) is also absolutely 

continuous , that is the partial functions  f(𝑥̅,y) e f(x, 𝑦ത) are absolutely continuous, the former 
for a.e. 𝑥̅, the latter for a. e. 𝑦ത  in [0,1] and the variations Vy(𝑥̅)  and   Vx(𝑦ത) are integrable 
functions respectively of  𝑥̅ and  𝑦ത, in [0,1]. 

Observe that if a function is of bounded variation in Arzelà’s meaning it is also of 
bounded variation in the sense now exposed. As a matter of fact for a function satisfying 
Arzelà’s definition the functions 𝑉(௬)(𝑥) and 𝑉(௫)(𝑦) are bounded. It is not true the contrary. 
Moreover if the function is of bounded variation in the sense of Vitali may not be of bounded 
variation in the sense of Tonelli: indeed the function defined in the unit square by f(x,y)=g(x) 
where g(x) is not of bounded variation in the interval [0,1], is of bounded variation in the 
sense of Vitali (actually all the increments f=f(x+h,y+k)-f(x+h,y-k)-f(x-h,y+k)+f(x-h,y-k) in the 
partial rectangles are zero) while obviously it is not of bounded variation in the sense of 
Tonelli. But there are functions of bounded variation in the sense now exposed but not in 
Vitali’s sense (Tonelli 1926 a).  

During the proof Tonelli introduces the concept of total derivative of the function 
F(x,y) as Vitali: indeed he considers the increment F=F(x+h,y+h)-F(x+h,y-h)-F(x-h,y+h)+F(x-
h,y-h) and  defines the derivative as the limit for h tending to zero, if it exists, of the ratio 
F/4h2. 
 
Extension of Rolle’s Theorem to Additive Set Functions 
 
Only about seven years after he has written the paper Sui gruppi di punti e sulle funzioni di 
variabili reali, Vitali, in that period teacher in a school at Voghera, begins again to produce 
research papers.  He gets in touch with his friend Fubini, who is working about the extension 
of the mean theorem to additive set functions and gives his contribution to the argument. 

In those years there was some interest about this topic. Peano had written a paper, 
(Peano 1914-15), quoting a surprising treatment of the question by Cauchy in the Exercices 
d’Analyse et de Physique mathématique under the title Mémoire sur le rapport différentiel de 
deux grandeurs qui varient simultanément.29  Peano starts with an observation: if a function 
of one variable f is derivable in an interval in the more restrictive sense that for every point 
xo of this interval it is 

f’(xo)= 𝑙𝑖𝑚௫௫೚,௬௫೚
 ௙

(௫)ି௙(௬)

௫ି௬
 , 

 
then the derivative f’(x) is a continuous function. But, for an additive set function f the 
derivative is just defined in this way, since, Peano says, f’(A)=lim ௙(ா)

௠(ா)
  when the set E tends 

to the point A (and not necessarily A belongs to E): so if f’(A) exists finite for every A, then 

 
29 t.2, Paris 1841, pp.188-229. 
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f’(A) is a continuous function.30 Peano concludes, thank to his very strong definition of 
derivative:  
 

If a bounded, closed and continuous body (or class of points) has a determined density 
in every point, then the mean density coincides with the density of the body in a 
suitable point (Peano 1914-15, 1155).   

 
Also Fubini had dealt with the same argument and in (Fubini 1914-15) had proved the 
following proposition:  
   

If f is a finitely additive function derivable in all the points of a bounded measurable set J 
such that if T is a part of J  between two parallel lines at a distance of h each from the 
other then f(T) tends to 0 when h tends to 0,  then for this function Rolle’s theorem hold, 
that is if f(J)=0 then there exists a point A interior to J such that f’(A)=0.31  

 
Fubini added in this way in his hypotheses a weak form of continuity for the function that 
holds for example, he observed, for the integral functions. Here is the elementary proof by 
Fubini: he considers the domain J enclosed between two right lines y=a and y=a+h. For every 
y he considers the part Jy of J whose points have ordinate not greater than y and he puts 
F(y)=f(Jy). The function F(y) is continuous by hypothesis, moreover F(a)=F(a+h)=0. If F is not 
identically zero then there exists a point ]a,a+h[ interior to J which is a point of minimum 
or maximum for F. If ≤

௛

ସ
 is suitable small, in the interval ]-,+[ there exist two points 

y=b and y=b+k where F assumes the same value and therefore: F(b+k)-F(b)=0. Let T be the 
part of J between the right lines y=b and y=b+k. It is f(T)=f(J)=0. 

Let us repeat about T the reasoning made about J, exchanging the role of x and y. We 
obtain a set J1 interior to J such that f(J1)=0 and each projection of it on both the coordinate 
axes is less than the half of the analogous projection of J. Repeating for J1 the previous 
procedure and continuing indefinitely we determine a sequence of domains  JJ1J2 .... 
such that the projections of every Jn on every one of the two axes is less than the half of the 
analogous projections of Jn-1  and  f(J)=f(J1)=f(J2)= ...=0. There exists one and only one point A 
belonging to all the domains Jn. Since the diameter of Jn  tends to 0 then  f’(A)= lim ௙(௃೙)

௠(௃೙)
 =0. 

If the previous continuity condition was dropped Fubini only was able to prove a weak 
version of the mean value theorem (Fubini 1915b), namely: 

 
If f(T) is an additive and derivable set function  defined in the closed partial domains of a 
measurable and bounded domain J, if l and L are the g.l.b  and l.u.b of the derivative f’ in 
the points A of J, then l≤ ௙(௃)

௠(௃)
≤L. And, if l<L it is    l< ௙(௃)

௠(௃)
<L. 

 
Then, as a consequence, Fubini proves:32 
 

If two (finitely) additive and derivable functions f(T) and g(T) have equal (finite) 
derivatives, they are equal. 

 
30 For the proof see (Peano 1887, 171-172), where additive set functions and their derivatives 
are introduced in a pioneering way. 
31  The thesis was a consequence of Peano’s result, but Fubini had some doubt to use Peano’s definition 
of derivative, very different from the definitions by Lebesgue and de la Vallée Poussin, as is possible 
to see by some letters he sent to Vitali (Vitali 1960, 518-520). 
32 Fubini’s interest for the new mathematical topic is also testimonied by the new chapter, Funzioni 
Additive Generali e Integrali Multipli, he added to the second edition of his textbook (Fubini 1915a). 
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Vitali writes two papers on the mean value problem: the first one is a note derived from 

a letter to Fubini where he shows that the continuity condition of the function used by Fubini 
can be dropped if the domain is for example a rectangle (Vitali 1915-16). In the second paper 
(Vitali 1916) he also observes that while in the theorem of Fubini the point A is interior, so that 
the function can be supposed derivable only in the interior points of the given domain, in his 
proposition the function has to be supposed derivable in all points of the domain. Here is the 
theorem established by Vitali: 
 

Let J be a rectangle ABCD, let f(E) be an additive function, defined in the class of the 
measurable subsets E of J, that has a finite derivative (in the sense of Lebesgue) in every 
point of J and let f(J)=0: then there exists a point  P belonging to J such that f’(P)=0.    

 
The elementary proof is based on the subdivision of the rectangle J  in the following way: 
Vitali divides  the edge AB in 2n  equal parts and draws the parallel lines to BC passing through 
the division points; in the same way he divides BC in 2n  equal parts and draws the parallel 
lines to AB passing through the division points: in this way for every natural number n he 
obtains a system Sn of equal rectangles. Since f(J)=0, there exist two consecutive rectangles 
𝑇ଵ

ᇱ and 𝑇ଵ
"  of S1 such that f(𝑇ଵ

ᇱ) ≥0  and  f(𝑇ଵ
") ≤0. Let T1=𝑇ଵ

ᇱ 𝑇ଵ
" . Then in T1 there exist two 

consecutive rectangles 𝑇ଶ
ᇱ and 𝑇ଶ

"  of S2  such that  f(𝑇ଶ
ᇱ)≥ 0  and f(𝑇ଶ

") ≤ 0.  Let   T2=𝑇ଶ
ᇱ 𝑇ଶ

"  
and so on. The rectangles T1, T2, T3, ... have one and only one common point P.  It is not difficult 
to prove now that f’(P)=0 and the theorem is proved.  

A property  like “there exist two consecutive rectangles in which f changes sign” is 
called in (Peano 14-15, 1153)  “semidistributive”: it is a property u in a given class of sets  such 
that if A and B belong to  and AB verifies u, then or A verifies u or B verifies u but it is not 
true the converse. A proof in which a semidistributive property is involved is analogous to 
the proof of the zero theorem for continuous functions of one variable.   

It is evident that the constructions used by Fubini and Vitali for their proofs are very 
close to the procedures of the reseaux introduced by their Belgian colleague de la Vallée 
Poussin.    
 
Functions of Bounded Variation 
 
After the absolutely continuous additive set functions, Lebesgue studies in his paper Sur 
l’intégration des fonctions discontinues the functions of bounded variation of more than one 
variable in an analogous way. As Vitali does, starting from a function of bounded variation of 
one (or more) variables, he obtains the additive set function corresponding. As Vitali does, if 
f is a function of two variables, he defines the function (E). 

Lebesgue defines also for such a function the saltus in a given point33 in an analogous 
way that in the case of one variable.  A point is called singular if one of the saltus is different 
from zero.34 He introduces also the singular segments (or varieties in more than two 
variables). Then he obtains the important result: 
 

A function of bounded variation of k variables gives rise to an additive set function that 
has a.e. a finite derivative; the derivative is summable and the function coincides with the 

 
33 There are 4 saltus for a function of two variables. 
34 Lebesgue proves that a point is singular if at least one of the two derived numbers is infinite. 
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sum of an absolutely continuous function, the integral function of its derivative, and a 
singular part, the saltus function whose derivative is a. e. zero.35    

 
Many years after, in 1922, Vitali, comes back to the early studies about functions of real 
analysis and being in the dark about preceding results, proves an analogous elegant and 
more precise proposition, about functions of bounded variation of one variable. Here is the 
statement: 
  

Every function of bounded variation is the sum of a saltus (discontinuous) function, of an 
absolutely continuous function and of a linear combination of finite or infinitely many 
elementary spreads, 

 
where the elementary spreads are continuous functions of bounded variation, not absolutely 
continuous, as the Cantor function (Vitali 1922 e 1923). 
By a letter of March 30th, 1923, Fréchet will acquaint Vitali with the results obtained by de la 
Vallée Poussin.36 

In 1925 Vitali will come back to the argument with the important note Sulle funzioni 
continue (Vitali 1925), where a new remarkable characterization of the continuous functions 
of bounded variation is exposed, known today under the name of Banach-Vitali theorem 
since also Banach obtained similar results by means of different methods. 

Given a function f(x) defined in an interval (a,b) and with values in (c,d), let 𝐺ஶ be equal 
to the set of points of (c,d) corresponding to infinitely many points of  (a,b),  and, for every 
natural r, let 𝐺௥ be equal to the set of points of (c,d) corresponding to precisely r points of 
(a,b). Moreover, let 𝐹௥ be the set of points of (c,d)  corresponding to r points at least of (a,b). 
Then  the  𝐹௥ are measurable and it is:  𝐺௥ =𝐹௥ - 𝐹௥ାଵ. Vitali proves that the following theorems 
hold: 
 

 
Theorem 1.  Let  f(x) be a continuous function in (a,b); f(x) is of bounded variation if and 
only if the series ∑ 𝜇 (𝑟),  where 𝜇(r) is the measure of 𝐹௥, is convergent. In every case the 
total variation of  f is given by the sum of such a series. 
 

 
35 In (de la Vallée Poussin, 1909) the Author says that he has completely changed the integral part of 
the treatise with respect to the first edition in order to expose the beautiful works by Lebesgue; in this 
part (pp.269-272), we find the following theorem quoted in (Lebesgue 1910): “Let f(x) be a continuous 
function of bounded variation in the interval (a,b), γ a derivative number of f(x), E the set of the points 
of (a,b) where γ is infinite; then γ is summable in the set of points where it is finite and f(b)-
f(a)=∫ f(x)dx

ୠ

ୟ
+V, where V is the variation of f in E, that is the limit of the sums of the variations in a 

countable set of disjoint intervals whose union covers E when the length of these intervals tends to 
zero”.  
 In a footnote de la Vallée Poussin remembers that he had communicated this result to Lebesgue, 
furnishing the demonstration for the case of a monotone function f. Lebesgue answered immediately, 
furnishing the general proof, based on the consideration of an intervals chain. 
36  We can find the final formulation of the theorem under consideration for the functions of a real  
variable, jointly with the demonstration, in the second edition of the Leçons by Lebesgue, sent to  press 
on December, 1926,  in the Chapt.IX:  
 A bounded variation function f(x) in an interval (a,b) has a finite derivative a. e. and its derivative is 
summable. Moreover f(x) is the sum of an absolutely continuous function (the integral function of its 
derivative) and a bounded variation function, the saltus function, having a. e. zero derivative. 
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Theorem 2. Let 𝑚௥ be the measure of 𝐺௥. Then  f is of bounded variation if and only if  𝐺ஶ  
has null  measure and the series ∑ 𝑟𝑚௥  converges: in such a case the  sum of this series 
equals the total  variation  of  f. 

 
Arzelà’s Contribution to Calculus of Variations 
 
In the 19th century many mathematicians were interested in the Dirichlet problem, 
concerning the search of a harmonic function u in a tridimensional set E verifying the 
condition u= f on the boundary of E, S, where f is a given function. Some mathematicians 
thought to obtain the resolution of Dirichlet problem using the “minimum principle” 
introduced in Mechanics in the XVIIIth century, that is, given a function f on S, they believed 
that the solution of the problem was a function assuming the value f on S and minimizing the 
integral  

                                                                 ∭ ൤ቀ
డ௨

డ௫
ቁ

ଶ
+ ቀ

డ௨

డ௬
ቁ

ଶ
+ ቀ

డ௨

డ௭
ቁ

ଶ
൨ 𝑑𝑥𝑑𝑦𝑑𝑧. 

   
This method was called in the sequel Dirichlet’s Principle and for many years nobody 

had doubt about the existence of such a minimum. Many properties of the harmonic 
functions could be deduced by the study of holomorphic functions.  The first who thought to 
invert this trend and to use the properties of harmonic functions to study holomorphic 
functions was Riemann. He considered the double integral  

 

                                                         ∬ ൤ቀ
డ௨

డ௫
ቁ

ଶ
+ ቀ

డ௨

డ௬
ቁ

ଶ
൨ 𝑑𝑥𝑑𝑦 :                                            (*) 

 
since it is positive and varies with continuity he admitted the existence of the minimum   and 
supposing that the boundary conditions were verified, obtained the fundamental theorem 
of the conformal representation of a simple connected region onto the unitary circle. 
Weierstrass was the first to observe that there was no prove about the existence of such a 
minimum and subsequently Prym and Hadamard gave examples of harmonic functions in E, 
continuous in the closure of E, such that the integral (*) is infinite (Diedonné 1996, 337). From 
that negative result many researches were born in order to determine under what conditions 
Dirichlet principle holds, that is when it is possible to establish the existence of the minimum 
without recourse to the differential equations. It was necessary to investigate a manner to 
transfer Weierstrass theorem to prove the existence of maxima and minima for continuous 
functions, to more general situations. 

Just in line with the recent studies by Volterra, C. Arzelà, in 1889, in Funzioni di linee, 
and some years after in 1895 in Sulle funzioni di linee, considers a class of equi-continuous 
functions, a distance between functions, a neighborhood of a function and a concept of 
function that is the uniform limit of a suitable subsequence of an infinite family of functions. 
He proves, using Ascoli’s theorem, that such a limit exists if the functions of the family are 
uniformly bounded and equi-continuous.   

As Cantor Arzelà calls a family G of functions closed when every its limit point belongs 
to G. If F is a real function defined in a closed family of functions G he says that F is continuous 
if F(u)= limn F(un) for every sequence un of points of the family G that has u as its limit.  

We underline that in Arzelà’s definition the function works on entities, objects that (as 
in Volterra) are not completely abstract yet, but may be points or curves (linee). Also Volterra 
defines the concept of continuity for such a type of functions, we now call functionals (after 
Hadamard), but he does not deal with the possibility of transferring to them Weierstrass 
theorem. This is instead the intention of Arzelà who wants to use this theorem for applying 
it to the proof of the Dirichlet Principle: 
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Theorem – Let F be a real function defined in a family of functions G. Let the functions of 
the family G be equi-continuous and let G be closed. Then there is in G at least a function v(x) 
such that the l.u.b.  of the values of F in every neighborhood of v(x) coincides with the l.u.b. of 
F in G. An analogous proposition holds for the g.l.b. of F. If F is continuous then there exist in G 
two functions U and V such that  F(U)≤F(u)≤F(V)  for every u∈G (Arzelà 1895-96).    

It is worth noticing that in a communication presented at the first International 
Congress of Mathematicians held in Zurigo in 1897 J. Hadamard (1865-1963) claimed the 
importance of functional analysis in the study of Calculus of Variations and in general for the 
theory of differential equations. In the same year an important step to apply a direct method 
to the resolution of Dirichlet principle appeared in the paper by Arzelà Sul principio di 
Dirichlet, where for the first time an attempt is made to restore Riemann’s demonstration 
using the theorem of Weierstrass. It is also worth noticing that few years after an analogous 
generalization of Weierstrass theorem for functionals defined in abstract compact sets 
would be carried out by Frechet, Hadamard’s disciple, in his doctorate thesis (Frechet 1906).  

 Consider now (Arzelà 1896-97).  Given an open set A whose boundary is a continuous 
curve C, let f(x,y) be a continuous function defined in the points of C. 

Arzelà considers the class of functions u=u(x,y), defined in the closure of A such that:  
1) u(x,y)  are continuous with their first and second derivatives, 
2) the second derivatives and the incremental ratios of the second derivatives are 

uniformly bounded, 
3) u(x,y)=f(x,y) in the points (x,y) ∈ C.  
 Then he proves that the considered class is closed with respect to the uniform 

convergence and, as he has proved in the preceding paper, there is a function U in the class 
such that, if   

 

                                                   J(u)= ∬ ൤ቀ
డ௨

డ௫
ቁ

ଶ
+ ቀ

డ௨

డ௬
ቁ

ଶ
൨ 𝑑𝑥𝑑𝑦,  

 
where the integral is extended to A, then it is J(U)≤J(u) for every u in the class.  Arzelà proves 
that such a function U is harmonic.  Indeed consider a function U+𝛼V, where 𝛼 is whatever 
real number, positive or negative and V is a function satisfying 1) and 2) that is zero in the 
points of C. Then by Gauss’s formula it is: 
 
                                             J(U+𝛼V)=J(U)+𝛼2J(V)+2𝛼 ∬ ቂ

డ௎

డ௫
 
డ௏

డ௫
+

డ௎

డ௬
 
డ௏

డ௬
ቃ 𝑑𝑥𝑑𝑦                      

                                = J(U)+𝛼2J(V)-2𝛼 ∫ 𝑉
డ௎

డ௡
 ds -2𝛼 ∬ 𝑉∆𝑈𝑑𝑥𝑑𝑦= J(U)+𝛼2J(V) -2𝛼 ∬ 𝑉∆𝑈𝑑𝑥𝑑𝑦 

 
where ∆ is the Laplacian. Since it is   J(U+𝛼V)≥ J(U)  for every ∝, Arzelà proves that 

∬ 𝑉∆𝑈𝑑𝑥𝑑𝑦=0 and, since V is arbitrary and ∆U is continuous, then ∆U=0. 
In this very original way Arzelà proved the existence of the minimum for the integral 

of the square of the Laplacian only in a subclass of the class of continuous functions. Only 
three years after, at the Second International Congress of Mathematicians held in Paris, 
without mentioning Arzelà’s work, that he probably did not know, D. Hilbert claimed he was 
convinced that in order to solve differential equations with partial derivatives in particular as 
in the classic case of Dirichlet’ Principle, some proof of existence could be produced on the 
basis of a general minimizing criterion. In particular he considered the problem of minimal 
surfaces: it consists in the search, among all the surfaces that have a given boundary, of the 
surface with the smallest area, that is such that, given a domain D, the integral, extended to 
D,   

                                                             ∬ ට1 + (
డ௙

డ௫
)ଶ + (

డ௙

డ௬
)ଶdxdy  
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is minimum. In the past the problem, dealt also by Lagrange, was reduced to a differential 
equation, the Euler- Lagrange equation, but, among other difficulties linked essentially with 
the fact that the theory of surfaces was not completely advanced, it was difficult to verify 
whether the solution of the equation was actually a minimum or not. In his relation Hilbert 
claimed that this problem and Laplace equation were particular cases of the following 
general problem:  determine a function z=f(x,y)  for which the integral: 
 

∬ 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)𝑑𝑥𝑑𝑦 , where  p=డ௙

డ௫
, q=డ௙

డ௬
, is minimum under the condition డ

మி

డ௣మ డ
మி

డ௤మ - ( డమி

డ௣డ௤
)ଶ>0. 

 
Hilbert wondered whether the solutions of such problems were always analytical, a question 
that has been answered negatively in the sequel. 

 
Tonelli’s Contribution to Calculus of Variations  
 
The vast amount of work and papers Tonelli produced on Calculus of Variations from 1911 is 
strictly linked to the works of Arzelà (his professor at the University of Bologna) and Hilbert. 
We will start with one of his most important papers of the early period, the Memoir published 
in 1915 Sur une méthode directe du calcul des variations, (Tonelli 1915) where the results 
exposed in two notes appeared on the C.R. of the Acc. of the Sciences of Paris the year before 
are assembled. In it Tonelli remembers that Arzelà had tried to apply the direct method in 
order to solve the Dirichlet’s problem: his efforts were in vain but his direct method was valid 
since the double integral of the square of the gradient even if not continuous is lower semi-
continuous.  Tonelli underlines that Hilbert was the first to define correctly the problem: he 
had proved in 1900 that the technic deduced from the theory of continuous functions 
allowed really to solve Dirichlet problem (Hilbert 1900). But Hilbert, in the opinion of Tonelli, 
did not catch the very and deep essence of the method. He proved actually that a minimizing 
sequence of surfaces, chosen among the admitted ones, such that the respective integrals 
tended toward the g.l.b. that had to be proved to be the limit, had at least a limit surface. By 
the use of an already known solution in a particular case of the same problem, he proved that 
the limit surface was a solution of the problem. Then he never used the fact that, given the 
minimizing sequence, the functional tends to the value assumed in the limit surface, that is 
so the required minimum value.  In this way he never refers explicitly to continuity, that is the 
property that allows the passage to the limit. And the field of applications of his method 
remains in this way bounded. This limitation was underlined also by J. Hadamard who 
furnished another direct method in order to prove the existence of the minimum. Given the 
surface of equation z=f(x,y) and a point M on it, he affirms that if one starts from M and 
follows the maximum gradient line in the sense of decreasing z, he arrives at a minimum 
point. From this idea Hadamard deduces a procedure of successive approximations which 
allows a method for determining effectively the minimum (Hadamard 1906). But also 
Hadamard finds some difficulties with this method.     

As in the preceding papers, Tonelli is sure that in general the method valid for the 
ordinary continuous functions can be actually extended to functional calculus under suitable 
hypotheses and can be completed in order to give the analytical properties of the solution. 
He underlines the contribution that it is possible to obtain from Baire’s idea to introduce the 
notions of lower and upper semi-continuity, in order to obtain a sufficient condition for the 
existence of the minimum and the maximum. 

But there is a difficulty: every infinite sequence of points of a bounded interval (a,b) 
has at least one accumulation point; this fact is not true if we consider a family of functions.  
In this case it is necessary to add some supplementary conditions in order to apply some 
particular result as Ascoli’s theorem. Once the existence of the minimizing element will be 
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proved, those supplementary conditions will imply also the analytical properties of the 
solution. 

Let us show how Tonelli applies the direct method to the functional:  
 

                                                J(y)= ∫ 𝑓(𝑥, 𝑦(𝑥), 𝑦ᇱ(𝑥))𝑑𝑥
௕

௔
     (*) 

 
where A is a set of points (x,y,y’) such that:  a≤ 𝑥 ≤ 𝑏,  -∞<y<+∞,  -∞<y’<+∞; and f(x,y,y’)  is a 
continuous function with fy’, fy’y’,fy’x in A such that: 
 
I) fy’y ’(𝑥, 𝑦, 𝑦ᇱ)  ≥ 0 in A; 
 
II) there exist constants α > 0, h > 0 and k such that f(x,y,y’) ≥ h |𝑦|ଵାఈ+k. 
 
The problem linked to (*) Is: determine in the class F of absolutely continuous functions y(x) 
such that f(x, y(x),y’(x))  is integrable a minimum of J(y). 
 

 Tonelli places himself in the set of the conditions of the regular problems (so called 
after Hilbert). 

In general the integral in (*) is called positively (negatively) regular if the invariant 
fy’y’(x,y,y’) is >0 (<0) for every (x,y,y’)∈A. It is almost positively (negatively) regular if, as in the 
condition I) and II), fy’y’≥0 (≤ 0) and f>0 (<0). 

 Tonelli proved for the first time in 1913 in the paper Sul caso regolare nel calcolo delle 
variazioni, that positive (negative) regularity implies the lower (upper) semi-continuity of the 
functional. In a brief paper in 1914, Tonelli proves that if the functional is continuous then the 

Euler equation fy - 
ௗ௙೤ᇲ

ௗ௫
 =0, that is the condition a minimum of the functional has to satisfy in 

general, reduces to fy’y’=0 and therefore  f(x,y,y’)=P(x,y) + Q(x,y)y’ a very restrictive condition 
implying that all those problems that really concern the calculus of variations are excluded 
(Tonelli 1914). In this paper Tonelli expresses also the condition that the functional is 
considered in the class of absolutely continuous functions (firsly he has considered the 
functional defined in the class of continuous rectifiable curves); in Fondamenti, he insists on 
the semi-continuity of the almost regular integral (*) in the class F of the absolutely 
continuous functions y(x) in (a,b) such that f(x,y(x),y’(x)) is integrable, a larger class than the 
class of the continuous functions with their first derivatives, used in the classical theory. 
Lavrentieff will prove that it is not possible to enlarge the class of absolutely continuous 
functions since if one considers in particular the class of the functions of bounded variation 
as admissible functions then the g.l.b. of the integral in this class coincides with the g.l.b. in 
the class of all measurable functions: and it is achieved in a pair of measurable functions g(x) 
and h(x), but in general h(x) is not the derivative of g(x) (Lavrentieff 1926-27).  

Let us come back to the previous paper (Tonelli 1915): in order to prove that the 
functional (*) admits a minimum in F, as usual Tonelli proves firstly that J is a lower semi-
continuous functional in F. This is proved using the fact that if fy’y’≥0  in A then the Weierstrass 
function 

 
                                                   E(x,y; y’,𝑦௢

ᇱ) =  f(x,y,y’)-f(x,y,𝑦௢
ᇱ)-(y’-𝑦௢

ᇱ)fy’(x,y,𝑦௢
ᇱ)   

is ≥0 for every (x,y,y’)∈A and (x,y,𝑦௢
ᇱ)∈A.  

 
Then given two points P=(a,p) and Q=(b,q) he proves the following: 

 
Theorem 1– If f(x,y,y’) satisfies conditions I) and II), there exists in the class F a function yo(x) 
such that the curve of equation y=yo(x) has extreme points P and Q and minimizes integral (*). 
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Sketch of the proof: let L=inf J(y) in the class of the functions of F whose extreme points are 
P and Q. By II) L is finite. It is possible to obtain, without the use of the Axiom of Choice as 
Tonelli has proved explicitly in (Tonelli 1913), a sequence of functions of F, yn(x), such that 
yn(a)=P, yn(b)=Q and J(yn)<L+1/n for every natural number n.  The functions yn are uniformly 
bounded and Tonelli proves that they are also equi-continuous so it is possible to apply 
Ascoli’s theorem and therefore there exists a subsequence, we can still call yn(x), which is 
uniformly convergent. Let yo(x) be the limit function of yn (x): it is absolutely continuous, 
yo(a)=P, yo(b)=Q. Since J is lower semi-continuous it is limnJ(yn)=J(yo)=L and therefore yo  is the 
required minimum. Moreover:  
 
Under suitable hypotheses on f, yo   is derivable in [a,b] with continuous derivative, satisfies Euler 
equation  and is the unique solution. 
 
Tonelli wrote a series of important works about the calculus of variations that would 
continue to produce during all his life and that would culminate with the fundamental 
treatise (Tonelli 1921-23). 

 In 1929 obtains an interesting extension of his direct method to the double integral: 
 

ID= ∬ 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)𝑑𝑥𝑑𝑦     (**) 
 
where z is a function of two variables, z=z(x,y), p and q are its partial derivatives and the 
integral is extended to a plane domain D. 
 
Tonelli remembers that E. Goursat (1858-1936) in 1915 established that (**) is lower semi- 
continuous in the class of the functions continuous with their first order derivatives if there 
exist two constants 𝛼 > 0 and 𝛽 > 0 such that:  
 

u2fpp+2uvfpq+v2fqq ≥ 𝛼u2+𝛽v2    for every admissible (x,y,z, p, q), 
 
 a condition that implies Hilbert condition of regularity; in 1927 R. Rado (1906-1989) proved 
that the integral (**), where f(x,y,z, p,q)= ඥ1 + 𝑝ଶ + 𝑞ଶ , is lower semi-continuous in the class 
of the functions satisfying a Lipschitz condition, that is  such that for every function z there 
exists a constant L(z)>0 such that  
 
                     |z(x1,y1)-z(x2,y2)| ≤ 𝐿(𝑧)ඥ(𝑥ଵ − 𝑥ଶ)ଶ + (𝑦ଵ − 𝑦ଶ)ଶ     for every (x1,y1),(x2,y2)∈D; 
 
and in 1926 Haar gave a more general result considering arbitrary functions f(p,q) such that 
the integral (**) is positively regular, that is  fppfqq - 𝑓௣௤

ଶ >0, fpp>0. 
In 1929 in the paper Sur la semi-continuité des integrals double du calcul des variations, 

Tonelli proves the semi-continuity of the integral (**) by means of a very general method 
(Tonelli 1929): he supposes in fact f(x,y,z,p,q) continuous with its partial derivatives fp, fq, fpp, 
fqq, fpx, fqy  in every point (x,y) of the open and bounded set D and  for every finite z,p,q;  as 
usual the integral (**) is called almost positively regular if fppfqq - 𝑓௣௤

ଶ  ≥ 0, fpp≥0, fqq ≥ 0  for 
every (x,y)∈D  and for every z, p, q. 

Tonelli considers also the most general functions z(x,y) that it was possible conceive in 
this frame, that is the absolutely continuous functions of two variables as he himself has 
defined in Sur la quadrature des surfaces, obviously only the ones such that the function 
f(x,y,z,p,q) is integrable. Let F be the class of such functions. Then the following holds: 
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Theorem 2– Suppose that:  
 
a) there exists a real number N such that f(x,y,z,p,q)>N for every (x,y) in D and finite z, p and q; 
 
b) the integral ID is almost positively regular. 
 
Then ID is lower semi-continuous in F (Tonelli 1929, &13). 
 

In the paper L’estremo assoluto degli integrali doppi (Tonelli 1933) the Author exposes 
the continuation of the preceding research. In it indeed Tonelli searches to determine the 
minimizing functions of the integral (**) and their degree of regularity. 

In order to carry out this program Tonelli establishes an interesting condition a family 
of functions has to satisfy in an open and bounded set in order to be equi-continuous: 

 
Theorem 3 -   Suppose that the functions {f(x,y)} of a given family are all absolutely continuous  
in a bounded open set A and there exist two numbers p>2 and L>0 such that for every function 

of the family the double integral extended to A:  ∬ ቀቚ
డ௙

డ௫
ቚ
௣

+  ቚ
డ௙

డ௬
ቚ

௣
ቁ 𝑑𝑥𝑑𝑦  is less than L.  Then 

the functions of the family are equi-continuous in A. 
 
To give a result of equi-continuity up to the boundary Tonelli introduces a property the 
boundary of the set A has to satisfy: it is a rather difficult condition to expose and we limit 
ourselves to one of its consequences, the cone property in two dimensions that can be 
defined in the following way: 
 
 𝛾) there exists an angular sector T such that for every point P on the boundary of A, P is the 
vertex of an angular sector similar to T whose interior points are all contained in A. In 
particular 𝛾) holds if the boundary of A is a regular curve. 
 
Tonelli begins by proving the following theorem of prolongation by continuity: 
 
Theorem 4 -  Let the function f(x,y) be absolutely continuous in a bounded open set A;  suppose 
that there exists a number p>2  such that the double integral extended to A: 
 

ඵ ቆฬ
𝜕𝑓

𝜕𝑥
ฬ

௣

+ ฬ
𝜕𝑓

𝜕𝑦
ฬ

௣

ቇ 𝑑𝑥𝑑𝑦 

 
 is finite and suppose that 𝛾) holds: then it is possible to prolong the given function to a 
continuous function in the close set 𝐴̅. 
 

Tonelli proves that if 𝛾)  does not hold, even if the other conditions are satisfied, the 
prolongation up the boundary may be not possible. He exhibits a: 
 
Counterexample - Define the open set A and the function f(x,y) in the following way:  let the 
strictly increasing sequence  0 ≤ a0  < a1< a2< … < an, … <𝜋  be given in such a way that t0=a1-a0= 
2-2p,   tn=an+1-an = 2-(n+2)p

   for every natural number n.  Consider a polar coordinate system whose 
pole is in the origin and polar axis is the positive semi-axis of (x,y) plane. Let A be the open 
set that is the union of the following sets:  
 
                                                     An= {(𝜌, 𝜗): 2-(n+1) ≤ 𝜌 ≤2-n,   an ≤ 𝜃 ≤an+1}. 
Let  f(x,y)= g(𝜌)  where   g(𝜌)=2n+2(𝜌-2-(n+1))  if  2-(n+1)≤ 𝜌 ≤2-(n+1)+2-(n+2) 

                                            g(𝜌)= 2n+2(2-n-𝜌)     if   2-(n+1)+2-(n+2)
 ≤ 𝜌 ≤2-n. 
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It is easy to prove that: 
 

                                        ൤ቀ
డ௙

డ௫
ቁ

ଶ
+ ቀ

డ௙

డ௬
ቁ

ଶ
൨

೛

మ

 =ቚ
డ௙

డఘ
ቚ

௣
       and therefore: 

                                         ∬ ൤ቀ
డ௙

డ௫
ቁ

ଶ
+ ቀ

డ௙

డ௬
ቁ

ଶ
൨

೛

మ

dxdy = ∑ 𝑡௡
ஶ
௡ୀ଴ ∫ 2௣(௡ାଶ)𝜌𝑑𝜌

ଶష೙

ଶష(೙శభ)  =1/2. 

Since if a>0 and b>0 then  ap+bp≤ 2(a2+b2)p/2, we have that  ∬ ቀቚ
డ௙

డ௫
ቚ

௣
+  ቚ

డ௙

డ௬
ቚ

௣
ቁ 𝑑𝑥𝑑𝑦 ≤ 1. 

 
Therefore, since f(x,y) is absolutely continuous in A, the conditions  of Theorem 4 

except 𝛾) are satisfied. The function f(x,y) can be prolonged by continuity to all the points of 
the boundary different from the origin, but it is not possible to prolong  by continuity f(x,y) 
in the origin.  Indeed  on the arcs of equation 𝜌 = 2-n  it is f(x,y)= 0, while on the arcs of equation    
𝜌 =2-(n+1)+2-(n+2)  it is f(x,y)=1.  On the other hand condition 𝛾)  cannot be satisfied in the origin. 

Tonelli proves many theorems about the existence of the minimum of the integral (**). 
We consider for example the following one where a complete class in (the interior of) the 
domain D with respect to the integral ID is considered: it is a class C (Ci) of functions z(x,y) 
absolutely continuous in (the interior of) D such that  for every one of them the integral ID(f) 
is finite and every function g(x,y) that is a limit function for the class (with respect to uniform 
convergence) belongs to the class. From Theorem 3 and Theorem 4 easily follows:  
 
Theorem 5 – Let ID(z) be an almost positively regular integral extended to the domain D and let 
𝑝>2, 𝑀>0 and N be such that: 
 
                                                         f(x,y,z, డ௭

డ௫
, డ௭

డ௬
) >  M{|డ௭

డ௫
|p+|డ௭

డ௬
|p} + N. 

 
Then  if the functions z(x,y) of a complete class Ci are uniformly bounded  in the interior of D, 
there exist in Ci the absolute minimum of ID(z). If the domain is enough regular, for example if  
𝛾) holds, and if the functions constitute a complete class and are uniformly bounded on the 
boundary of D, then the absolute minimum is continuous also in the closure of D. In few years 
Tonelli’s contribution begins fundamental for the theory at an international level. 

Enthusiastic comments to his work were given by Hadamard, Carathéodory, Volterra 
e Peres (see the Introduction to (Opere scelte) by Silvio Cinquini). 
 
Conclusions 
  
As we have seen, between 1906 and 1915, great strides were made towards the extension of 
many fundamental concepts of the just arisen measure and function theory. This is a general 
feature of this period with respect to mathematical analysis and geometry; great changes are 
introduced particularly by M. Fréchet and D. Hilbert although motivated by different 
interests.  

While, as we have seen, the mathematicians have looked so far after extending the 
results about the functions of one variable to functions of a finite number of variables, 
Fréchet (1878-1973) in his PhD thesis suddenly introduces abstract spaces of points (Fréchet 
1906). The measure theory is no more linked to Euclidean spaces and Lebesgue theory, but 
abstract metric spaces are introduced, and Fréchet proves the theorems in a so general way 
which allows their application in many different particular cases. As we have seen in the 
preceding Sections already some time before in the problems of variation calculus and 
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mathematical physics some functionals, that is quantities not depending on a numerical 
variable, but on a function or on a curve, were  considered, the functionals used by Volterra, 
Arzelà and Hadamard, and also studied in a pioneering manner by Pincherle (Pincherle 1901), 
being of such a type; but now Hilbert observes that a function, let it be continuous for 
example, is determined by  infinitely many variables, its Fourier coefficients, for example, in 
such a way that a functional can be viewed as a function  of infinitely many real variables. 
Fréchet in 1910 explains that only after the definition of abstract metric space he gave in his 
doctoral thesis, Hilbert, motivated by the study of integral equations, was able to give a 
definition of a space whose points are the real number sequences such that the series of their 
squares is convergent.        

Vitali and Lebesgue, generalizing the  functions of bounded variation  to the case of 
more variables, were very near to the general concept of measure that Johan Radom (1887-
1956) introduces in 1913: indeed this author, always referring to the family of Lebesgue 
measurable sets, demonstrates that it is possible to define a Lebesgue type integral with 
respect to whatever completely additive measure function defined in the Lebesgue 
measurable sets of the space of one or more dimensions37. Without doubt he was also 
inspired by the beautiful representation theorem published by Riesz in 1909 (Bourbaki 1960), 
that is the following theorem: 
 

For every continuous linear functional A on the space C of continuous functions in an 
interval (a,b), there exists a bounded variation function  such that  A coincides with the 
Stieltjes integral determined by , that is   A(f)= ∫ 𝑓(𝑥)𝑑(𝑥)

௕

௔
  for every fC.     

 
The final generalization, where there is no reference to the Lebesgue measurable sets, 

is dated 1915 and is due to Fréchet who considers in (Fréchet 1915) the integral of a functional 
extended to an abstract space X  on which a family of sets, closed with respect to enumerable 
unions and to relative complements (famille additive d’ensembles, -ring today), is given. 
After, in 1930,  Nicodym will complete the new theory: in his paper (Nicodym 1930) he 
exposes the theory of measure and integration as today is exposed in many books for first 
graduate students in Mathematics: differently from Fréchet he prefers to use the notion of 
corps d’ensembles (-algebra today, that is a -ring such that X belongs to it) rather than famille 
additive d’ensembles,  and positive measure. He explains that the two choices he does are 
linked in his theory of integration. Indeed if  is a -ring and (E)≥0  is a parfeitement additive 
(-additive today) bounded function on  and if  is its upper bound then there exists a not 
decreasing sequence  E1, E2, ...En, ... of elements of  such  that   lim(En)==(En).  Let  
E0=En.  Now if E is such that EE0=  then (E)=0. Thus the sets outside  E0 do not play any 
role in the theory of integration and therefore it is just the same to start with a -algebra. 

With these choices he develops in a very simple manner the theory of integration 
(starting from the definition of integral for simple functions, that is functions that assume at 
most infinitely many enumerable values, each in a set of ), and finally he generalizes 
completely the theorem first enunciated and proved by Vitali  in 1905 for one variable and 
generalized by Lebesgue for the case of more real variables in (Lebesgue 1910) in the 
following form: 
 

Given a -algebra , a positive measure  on it and a -additive function, F(E), absolutely 
continuous with respect to , there exists a summable function f such that  F(E)= ா𝑓d    
for every E.    

 

 
37 J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungster. der math. 
naturwiss. Klasse der Akad. der Wiss. (Wien) t.CXXII, Abt. II a (1913), pp.1295-1438. 
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