Principal Component Analysis for Supervised Learning: a minimum classification error approach

Authors

  • Tiago Buarque Assunção de Carvalho UFRPE - Universidade Federal de Pernambuco http://orcid.org/0000-0001-9321-8938
  • Maria Aparecida Amorim Sibaldo UFRPE - Universidade Federal de Pernambuco
  • Ing Ren Tsang Universidade Federal de Pernambuco, Centro de Informática - CIn/UFPE.
  • George Darmiton da Cunha Cavalcanti

Keywords:

Principal component analysis, Dimensionality reduction and manifold learning, Supervised learning by classification, Data mining

Abstract

We present an alternative method to use Principal Component Analysis (PCA) for supervised learning. The proposed method extract features similarly to PCA but the features are selected by minimizing the Bayes error rate for classification. We show that the proposed method selects features that best separate the elements of the different classes. Using real and synthetic datasets, along with four different classifiers, experimental results show that the recognition accuracy of the proposed technique is improved compared to PCA.

Downloads

Download data is not yet available.

Author Biographies

Tiago Buarque Assunção de Carvalho, UFRPE - Universidade Federal de Pernambuco

Prof. Tiago Buarque Assunção de Carvalho has graduation at Bacharelado em Ciências da Computação by Universidade Federal de Pernambuco (2007) , master's at Ciências da Computação by Universidade Federal de Pernambuco (2010) and Ph.D. at Ciências da Computação by Universidade Federal de Pernambuco (2015) . Currently is of Universidade Federal Rural de Pernambuco (UFRPE).

Maria Aparecida Amorim Sibaldo, UFRPE - Universidade Federal de Pernambuco

Prof. Maria Aparecida Amorim Sibaldo bachelor's at Ciência da Computação from Universidade Federal de Alagoas (2006), master's at Modelagem Computacional do Conhecimento from Universidade Federal de Alagoas (2009), and Ph.D. at Ciências da Computação by Universidade Federal de Pernambuco (2015) . Currently is of Universidade Federal Rural de Pernambuco (UFRPE).

Ing Ren Tsang, Universidade Federal de Pernambuco, Centro de Informática - CIn/UFPE.

Prof. Tsang Ing Ren graduate at Engenharia Eletrônica from Universidade Federal de Pernambuco (1993) and ph.d. at Visão Computacional from Universitaire Instelling Antwerpen (2000).  Currently is of Universidade Federal de Pernambuco, Centro de Informática - CIn/UFPE.

Downloads

Published

2017-11-27