Atenuação da intensidade de luz e profundidade de polimerização de resinas compostas
DOI:
https://doi.org/10.7308/aodontol/2013.49.1.02Palavras-chave:
Resinas compostas, PolimerizaçãoResumo
Objetivo: Avaliar a atenuação da luz através de diferentes espessuras de resina composta e a profundidade de polimerização.
Materiais e Métodos: Foram utilizadas as resinas Opallis e Llis de esmalte (E) e de dentina (D), na cor A3. Para atenuação da luz foram empregadas matrizes metálicas (6,0mm de diâmetro e espessuras de 0,5, 1,0, 1,5 e 2,0mm), as quais foram posicionadas na janela de leitura do radiômetro e a intensidade de luz medida antes e após a interposição do material. A profundidade de polimerização foi realizada seguindo os procedimentos recomendados na ISO 4049 (2000). Os dados foram submetidos à ANOVA e teste de Tukey com α=5%.
Resultados: Os resultados de atenuação mostraram que as resinas Opallis e Llis diferiram estatisticamente em todas as espessuras. Na comparação entre materiais, em 0,5mm houve diferença estatística significante apenas entre Opallis E e Llis D e entre Llis E e Llis D. Em 1,0mm não houve diferença estatística significante entre Opallis E e Llis E e entre Opallis D e Llis D; em 1,5mm somente Opalllis D e Llis D não diferiram estatisticamente. Para 2,0mm ocorreram diferenças estatística significantes entre Opallis E e Llis E. Para profundidade de polimerização não houve diferença estatística significante entre Opallis E e Llis E e entre Opallis D e Llis D.
Conclusão: Maiores valores de atenuação da intensidade de luz são observados em resinas de dentina em ralação as de esmalte, assim como em maiores espessuras de material. Resinas compostas de dentina apresentaram menor profundidade de polimerização que as de esmalte.
Referências
Nahsan FPS, Mondelli RFL, Franco EB, Naufel FS, Ueda JK, Schmitt VL, et al. Clinical strategies for esthetic excellence in anterior tooth restorations: understanding color and composite resin selection. J Appl Oral Sci. 2012; 20: 151-6.
Nomoto R, McCabe JF, Nitta K, Hirano S. Relative efficiency of radiation sources for photopolymerization. Odontology. 2009; 97: 109-14.
Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW. Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater. 2010; 6: 2053-9.
Schattenberg A, Lichtenberg D, Stender E, Willershausen B, Ernst CP. Minimal exposure time of different LED-curing devices. Dent Mater. 2008; 24: 1043-9.
Rencz A, Hickel R, Ilie N. Curing efficiency of modern LED units. Clin Oral Investig. 2012; 16: 173-9.
Obici AC, Sinhoreti MAC, Frollini E, Correr Sobrinho L, Goes MF, Henriques GEP. Monomer conversion at different dental composite depths using six light-curing methods. Polym Test. 2006; 25: 282-8.
Guiraldo RD, Consani S, Consani RLX, Berger SB, Mendes WB, Sinhoreti MAC, et al. Comparison of silorane and methacrylate-based composite resins on the curing light transmission. Braz Dent J. 2010; 21: 538-42.
Camargo EJ, Moreschi E, Baseggio W, Cury JA, Pascotto RC. Composite depth of cure using four polymerization techniques. J Appl Oral Sci. 2009; 17: 446-50.
Moore BK, Platt JA, Borges G, Chu T-MG, Katsilieri I. Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent. 2008; 33: 408-12.
Ribeiro BCI, Boaventura JMC, Brito-Gonçalves J, Rastelli ANS, Bagnato VS, Saad JRC. Degree of conversion of nanofilled and mycrohybrid composite resins photo-activated by different generations of LDEs. J Appl Oral Sci. 2012; 20: 212-17.
Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G. New insight into the “depth of cure” of dimethacrylate-based dental composites. Dent Mater. 2012; 28: 512-20.
International Organization for Standardization. ISO 4049. Dentistry – Polymer-based filling, restorative and luting materials. 3nd ed. Switzerland; 2000.
Arikawa H, Kanie T, Fujii K, Takahashi H, Ban S. Effect of inhomogeneity of light from light curing units on the surface hardness of composite resin. Dent Mater J. 2008; 27: 21-8.
Mousavinasab SM, Meyers I. Curing efficacy of light emitting diodes of dental curing units. Dent Res Dent Clin Dent Prospects. 2009; 3: 11-6.
Musanje L, Darvell BW. Curing-light attenuation in filled-resin restorative materials. Dent Mater. 2006; 22: 804-17.
Guiraldo RD, Consani S, Consani RLX, Berger SB, Mende WB, Sinhoreti MAC. Light energy transmission through composite influenced by material shades. Bull Tokyo Dent Coll. 2009; 50: 183-90.
Dos Santos GB, Monte Alto RV, Sampaio Filho HR, da Silva EM, Fellows CE. Light transmission in dental resin composites. Dent Mater. 2008; 24: 571-6.
Ganglianone LA, Lima AF, Araújo LSN, Cavalcanti AN, Marchi GM. Influence of different shades and LED irradiance on the degree of conversion of composite resins. Braz Oral Res. 2012; 26: 165-9.
Fróes-Salgado NRG, Pfeifer CSC, Francci CE, Kawano Y. Influence of photoactivation protocol and light guide distance on conversion and microleakage of composite restorations. Oper Dent. 2009; 34: 408-14.
Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent. 2007; 32: 571-8.
Roberts HW, Vandewalle KS, Berzins DW, Charlton DG. Accuracy of LED and halogen radiometers using different light sources. J Esthet Restor Dent. 2006; 18: 214-24.
Price RB, Labrie D, Kazmi S, Fahey J, Felix CM. Intra- and inter-brand accuracy of four dental radiometers. Clin Oral Investig. 2012; 16: 707-17.
Hedge V, Jadhav S, Aher GB. A clinical survey of the output intensity of 200 light curing units in dental offices across Maharashtra. J Conserv Dent. 2009; 12: 105-8.
Kilinc E, Antonson SA, Hardigan PC, Kesercioglu A. The effect of ceramic restoration shade and thickness on the polymerization of light- and dual-cure resin cements. Oper Dent. 2011; 36: 661-9.
Hong SO, Oh Y, Min JB, Kim JW, Lee BN, Hwang YC, et al. Power density of various light curing units through resin inlays with modified layer thickness. Restor Dent Endod. 2012; 37: 130-5.
Flury S, Lussi A, Hickel R, Ilie N. Light curing through glass ceramics with a second- and a third- generation LED curing unit: effect of curing mode on the degree of conversion of dual-curing resin cements. Clin Oral Investig. No prelo 2013.
Al Shaafi MM, Maawadh AM, Al Qahtani MQ. Evaluation of light intensity output of QTH and LED curing devices in various Governmental Health Institutions. Oper Dent. 2011; 36: 356-61.
Floyd CJE, Dickens SH. Network structure of Bis-GMA- and UDMA-based resin systems. Dent Mater. 2006; 22: 1143-9.
Ribeiro BCI, Boaventura JMC, Brito-Gonçalves J, Rastelli ANS, Bagnato VS, Saad JRC. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by different generations of LEDs. J Appl Oral Sci. 2012; 20: 212-7.
Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, et al. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011; 27: 157-64.
Arimoto A, Nakajima M, Hosaka K, Nishimura K, Ikeda M, Foxton RM, et al. Translucency, opalescence and light transmission characteristics of light-cured resin composites. Dent Mater. 2010; 26: 1090-7.
Lee YK. Influence of filler on the difference between the transmitted and reflected colors of experimental resin composites. Dent Mater. 2010; 24: 1243-7.
Yu B, Lim HN, Lee YK. Influence of nano- and micro-filler proportions on the optical property stability of experimental dental resin composites. Mater Des. 2010; 31: 4719-24.