Effectiveness of different removal methods of artificially demineralized dentin

Autores

  • Camila Ferraz Universidade Federal do Ceará- UFC
  • Patrícia Lima Thé Universidade Federal do Ceará- UFC
  • Juliano Sartori Mendonça Universidade Federal do Ceará- UFC
  • Carlos Augusto Fernandes Universidade Federal do Ceará- UFC
  • Lidiany Karla Azevedo Rodrigues Universidade Federal do Ceará- UFC
  • Monica Yamauti Universidade Federal do Ceará- UFC

Resumo

Objective: This study aimed to evaluate the effectiveness of different mechanical methods for the removal of demineralized dentin. Methods: Healthy human third molars were prepared in such a way that the flat occlusal surfaces of the dentin were exposed and longitudinally sectioned in a vestibular-lingual direction. One section of each tooth was submitted to the pH-cycling model, while the other section was kept intact. The tooth sections were joined, and a single operator performed dentin removal using a steel bur, a hand instrument,
or a polymer bur. The tooth’s sections were then separated, and digital images were obtained. The depth of the prepared cavities and the microhardness measurements were checked and analyzed statistically using the Kruskal-Wallis One-Way ANOVA in Ranks, the Tukey test, while desmineralized dentin were compared using the One-Way ANOVA, and the Holm-Sidak method (p < 0.05). Results: The steel bur produced the deepest cavities in mineralized and demineralized dentin. The polymer bur generated the shallowest cavities
in demineralized dentin. The measurements of microhardness of the deepest surfaces of the cavities prepared in demineralized dentin indicated that the steel bur and hand instrument presented similar values, while those values produced by polymer burs proved to be lower. Conclusion: The effectiveness of the removal of demineralized dentin varied among the three methods used in this study. The polymer bur proved to be the most conservative of the methods used. By contrast, the steel bur and hand instrument showed a similar
effectiveness in the removal of dentin, according to the microhardness of the remaining dentin, even though they produced different cavity depths.
Uniterms: Tooth demineralization. Dental cavity preparation. Hardness tests.
INTRODUCTION Caries is a dynamic process of demineralization
and remineralization that can lead to lesion formation in enamel and dentin. Fusayama, Okuse, Hosoda (1966)1 described two layers of carious dentin: (1)
the outer carious dentin (or caries-infected dentin), which is contaminated with bacteria and in which the collagen fibers are degraded and cannot be
remineralized; and (2) the inner carious dentin (socalled caries-affected dentin), which is bacteria-free with limited denaturation of the collagen and which
can be remineralized. The conventional dentistry approach to caries
treatment has been surgery, removing diseased tissue and replacing it with a dental restorative material. This approach was deemed necessary given our
team’s understanding of the disease process and the limitations of available materials2. Mechanical caries removal traditionally involves the use of
conventional tungsten carbide

Downloads

Não há dados estatísticos.

Biografia do Autor

Camila Ferraz, Universidade Federal do Ceará- UFC

School of Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Patrícia Lima Thé, Universidade Federal do Ceará- UFC

School of Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Juliano Sartori Mendonça, Universidade Federal do Ceará- UFC

Department of Restorative Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Carlos Augusto Fernandes, Universidade Federal do Ceará- UFC

Department of Restorative Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Lidiany Karla Azevedo Rodrigues, Universidade Federal do Ceará- UFC

Department of Restorative Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Monica Yamauti, Universidade Federal do Ceará- UFC

School of Dentistry, College of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.

Referências

1. Fusayama T, Okuse K, Hosoda H. Relationship between hardness, discoloration, and microbial invasion in carious dentin J Dent Res. 1966;
45:1033-46.
2. Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003; 134:87-95.
3. Bussadori SK, Castro LC, Galvão AC. Papain gel: a new chemo-mechanical caries removal agent. J Clin Pediatr Dent. 2005; 30:115-9.
4. Neves AA, Coutinho E, De Munck J, Van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of cariesexcavation
techniques: a micro-CT investigation. J Dent. 2011a; 39:154-62.
5. Mount GJ. Minimal intervention dentistry: rationale of cavity design. Oper Dent. 2003; 28:92-9.
6. Silva NR, Carvalho RM, Pegoraro LF, Tay FR,Thompson VP. Evaluation of a self-limiting concept in dentinal caries removal. J Dent Res.
2006; 85:282-6.
7. Boston DW. New device for selective dentin caries removal. Quintessence Int. 2003; 34:678- 85.
8. Allen KL, Salgado, TL, Janal MN, Thompson VP. Removing carious dentin using polymer instrument without anesthesia versus a carbide bur with anesthesia. J Am Dent Assoc. 2005; 136:643-51.
9. Marquezan M, Corrêa FN, Sanabe ME, Rodrigues Filho LE, Hebling J, Guedes-Pinto AC, et al. Artificial methods of dentine caries induction: a
hardness and morphological comparative study. Arch Oral Biol. 2009; 54:1111-7.
10. Ten Cate JM. In vitro studies of the effects of fluoride on de- and remineralization. J Dent Res. 1990; 69:634-6.
11. Ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982; 16:201-10.
12. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res. 1995; 9:175-93.
13. Argenta RM, Tabchoury CP, Cury JA. A modified pH cycling model to evaluate fluoride effect on enamel demineralization. Pesqui Odontol Bras. 2003; 17:241-6.
14. Banerjee A, Kidd EA, Watson TF. In vitro validation of carious dentin removed using different excavation criteria. Am J Dent. 2003;
16:228-30.
15. Craig RG, Gehring PE, Peyton FA. Relation of structure to the microhardness of human dentin. J Dent Res. 1959; 38:624-30.
16. Celiberti P, Francescut P, Lussi A. Performance of four dentine excavation methods in deciduous teeth. Caries Res. 2006; 40:117-23.
17. Zhang X, Tu R, Yin W, Zhou X, Li X, Hu D. Micro-computerized tomography assessment of fluorescence aided caries excavation (FACE)
techniques. Aust Dent J. 2013; 58:461-7.
18. Banerjee A, Kellow S, Mannocci F, Cook RJ, Watson TF. An in vitro evaluation of microtensile bond strengths of two adhesive bonding agents to residual dentine after caries removal using three excavation techniques. J Dent. 2010a; 38:480-9.
19. Cajazeira MRR, Santos MEO. Ultrastructural analysis of the dentin surface of primary molarssubmitted to different methods udes for removal of carious tissue. Pesqui Bras Odontopediatria Clin Integr. 2007; 7:265-9.
20. Banerjee A, Sherriff M, Kidd EA, Watson TF. A confocal microscopic study relating the autofluorescence of carious dentine to its microhardness. Br Dent J. 1999; 187:206-10.
21. Buzalaf MA, Hannas AR, Magalhães AC, Rios D, Honório HM, Delbem AC. pH-cycling models for in vitro evaluation of the efficacy of
fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010; 18:316-34.
22. Mount, GJ. A new paradigm for operative dentistry. Aust Dent J. 2007; 52:264-70.
23. Neves AA, Coutinho E, Cardoso MV, Lambrechts P, Van Meerbeek B. Current concepts and techniques for caries excavation and adhesion to
residual dentin. J Adhes Dent. 2011b; 13:7-22.
24. Banerjee A, Cook R, Kellow S, Shah K, Festy F, Sherriff M, et al. A confocal micro-endoscopic investigation of the relationship between
the microhardness of carious dentine and its autofluorescence. Eur J Oral Sci. 2010b; 118:75- 9.
25. Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mater Res A. 2003;
66:850-3.

Downloads

Publicado

2016-06-14

Como Citar

Ferraz, C., Thé, P. L., Mendonça, J. S., Fernandes, C. A., Rodrigues, L. K. A., & Yamauti, M. (2016). Effectiveness of different removal methods of artificially demineralized dentin. Arquivos Em Odontologia, 50(2). Recuperado de https://periodicos.ufmg.br/index.php/arquivosemodontologia/article/view/3650

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)