Tratamento do biofilme intracanal de Enterococcus faecalis com suspensões de diferentes nanopartículas e irrigantes convencionais

Autores

  • Josiane de Almeida Universidade Federal de Santa Catarina
  • Gabriela V. Santos Universidade Federal de Santa Catarina
  • Morgana T. Orsi Universidade Federal de Santa Catarina
  • Bruna C. Cechella Universidade Federal de Santa Catarina
  • Anarela V. Bernardi Universidade Federal de Santa Catarina
  • Wilson T. Felippe Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.7308/aodontol/2015.51.1.04

Palavras-chave:

Biofilmes, Desinfecção, Enterococcus faecalis, Nanopartículas metálicas

Resumo

Objetivo: O objetivo deste estudo foi avaliar e comparar a efetividade das soluções de hipoclorito de sódio (NaOCl) 1% e 5%, clorexidina (CHX) 2%, suspensões de nanopartículas de prata (Np Ag) 1% e nanopartículas de óxido de zinco (Np ZnO) 26% contra o biofilme de E. faecalis.

Material e Métodos: Setenta e seis dentes humanos unirradiculados foram modelados, montados em um aparato específico e esterilizados. Após, 100 µL de uma suspensão de E. faecalis foi inserida nos canais, sendo renovada diariamente por 7 dias. Quatro segmentos radiculares foram analisados por meio de microscopia eletrônica de varredura (MEV) para confirmar a presença do biofilme. Os segmentos radiculares remanescentes foram divididos aleatoriamente em 6 grupos (n = 12), de acordo com a solução irrigadora empregada: G1) solução salina 0,85% (controle); G2) NaOCl 1%; G3) NaOCl 5%; G4) CHX 2%; G5) suspensão de Np Ag 1%; e G6) suspensão de Np ZnO 26%. Concluída a irrigação, a susceptibilidade do biofilme às soluções irrigadoras (n = 10) foi determinada pelo método de plaqueamento e contagem de unidades formadoras de colônias (UFC). Uma análise por meio de MEV foi conduzida em 2 segmentos de cada grupo para visualização da estrutura do biofilme. O conjunto de dados, representados pelos valores médios de UFC para cada grupo, foi analisado estatisticamente pelos testes Kruskal-Wallis e Mann- Whitney (p < 0,05).

Resultados: A efetividade das soluções de NaOCl 5% e Np Ag 1% contra o biofilme intracanal de E. faecalis foi superior comparada à solução salina 0,85% (p < 0,05). NaOCl 5% reduziu 100% das UFC comparado ao grupo controle, seguido pela suspensão de Np Ag 1% (97,6%), Np ZnO 26% (96,1%), NaOCl 1% (94,1%) e CHX 2% (93,1%).

Conclusão: Com base na metodologia aplicada, as soluções de NaOCl 5% e Np Ag 1% apresentaram excelente efetividade contra o biofilme de E. faecalis estabelecido no canal radicular.

Downloads

Não há dados estatísticos.

Referências

Nair PNR, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after ‘‘one-visit’’ endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005;99:231–52.

Anderson AC, Hellwig E, Vespermann R, Wittmer A, Schmid M, Karygianni L, et al. Comprehensive analysis of secondary dental root canal infections: a combination of culture and culture-independent approaches reveals new insights. Plos One. 2012;7:e49576.

Portenier I, Waltimo TMT, Haapasalo M. Enterococcus faecalis – the root canal survivor and ‘star’ in post-treatment disease. Endod. Topics. 2003;6:135-59.

Sedgley CM, Lennan SL, Appelbe OK. Survival of Enterococcus faecalis in root canals ex vivo. Int. Endod. J. 2005;38:735–42.

Love RM. Enterococcus faecalis: a mechanism for its role in endodontic failure. Int. Endod. J. 2001;34:399-405.

Chávez de Paz LE, Bergenholtz G, Svensäter G. The effects of antimicrobials on endodontic biofilm bacteria. J. Endod. 2010;36:70-7.

Wang Z, Shen T, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus feacalis biofilms in dentin canals. J. Endod. 2012;38:1376-9.

Case PD, Bird PS, Kahler WA, George R, Walsh LJ. Treatment of root canal biofilms of Enterococcus faecalis with ozone gas and passive ultrasound activation. J. Endod. 2012;38:523-6.

Nair PN, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after ‘one-visit’ endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005;99:231-52.

Ricucci D, Siqueira JF, Jr. Biofilms and apical periodontitis study of prevalence and association with clinical histopathologic findings. J. Endod. 2010;36:1277-88.

Gomes BP, Vianna ME, Zaia AA, Almeida JFA, Souza-Filho FJ, Ferraz CCR. Chlorhexidine in endodontics. Braz Dent J. 2013;24:89-102.

Shen Y, Stojicic S, Qian W, Olsen I, Haapasalo M. The synergistic antimicrobial effect by mechanical agitation and two chlorexidine preparations on biofilm bacteria. J. Endod. 2010;36:100-4.

Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014;40:285-90.

Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J. Endod. 2008;34:1515-20.

Sivieri-Araujo G, Santos LMS, Queiroz IOA, Wayama MT, Martins CM, Dezan-Júnior E, et al. Avaliação das nanopartículas de prata como solução irrigadora. Dent. Press Endod. 2013;3:16- 23.

Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent. Mater. 2012;28:842-52.

Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. 2012;28:561-72.

Melo MAS, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. 2013;29:199-210.

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27:76-83.

Shrestha A, Shi Z, Neoh KG, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J. Endod. 2010;36:1030-5.

Dunavant TR, Regan JD, Glickman GN, Solomon ES, Honeyman AL. Comparative evaluation of endodontic irrigants against Enterococcus faecalis biofilm. J. Endod. 2006;32:527-31.

Del Carpio-Perochena AE, Bramante CM, Duarte MA, Cavenago BC, Villas-Boas MH, Graeff MS, et al. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. J Endod. 2011;37:1134-8.

Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, Souza, FJ Filho. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral. Radiol. Endod. 2004;97:79-84.

Stojicic S, Shen Y, Qian W, Johnson B, Haapasalo

M. Antibacterial and smear layer removal ability of a novel irrigant, QMiX. Int. Endod. J. 2012;45:363-71.

Fardal O, Turnbull RS. A review of the literature on use of chlorhexidine in dentistry. J. Am. Dent. Assoc. 1986;112:863-9.

Zaura-Arite E, Van Marle J, Ten Cate JM. Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J. Dent. Res. 2001; 80:1436–40.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. Mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000;52:662-8.

Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.

Jung BO, Kim CH, Choi KS, Lee YM, Kim J-J. Preparation of amphiphilic chitosan and their antimicrobial activities. J. Appl. Polym. Sci. 1999;72:1713-19.

Padmavathy N, Vijayaraghavan R. Enhanced Bioactivity of ZnO nanoparticles: an antimicrobial study. Sci. Technol. Adv. Mater. 2008;9:4-11.

Lovrić J, Cho SJ, Winnik FM, Maysinger D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 2005;12:1227-34.

Johnson SA, Goddard PA, Iliffe C, Timmins B, Rickard AH, Robson G, et al. Comparative susceptibility of resident and transient hand bacteria to para-chloro-meta-xylenol and triclosan. J. Appl. Microbiol. 2002;93:336-44.

Dunne WM Jr, Mason EO Jr, Kaplan SL. Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 1993;37:2522-6.

Jakubovics NS, Kolenbrander PE. The road to ruin: the formation of disease-associated oral biofilms. Oral Diseases. 2010;16:729-39.

Liu Y, Li J, Qiu X, Burda C. Bactericidal activity of nitrogen doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J. Photochem. Photobiol:A Chemistry. 2007;190:94-100.

Prosser BL, Taylor D, Dix BA, Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob. Agents Chemother. 1987;31:1502-6.

Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 2011;45:3367-73.

Kim JE, Kim H, Na SS, Maeng EH, Kim MK, Song YJ. In vitro cytotoxicity of SiO2 or ZnO nanoparticles with different sizes and surface charges on U373MG human glioblastoma cells. Int. J. Nanomed. 2014;15:235-41.

Gomes, JE Filho, Silva FO, Watanabe S, Cintra LT, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J. Endod. 2010;36:1698-702.

Pan CH, Liu WT, Bien MY, Lin IC, Hsiao TC, Ma CM, et al. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses. Int. J. Nanomed. 2014;2:3631-43.

Barkhordari A, Barzegar S, Hekmatimoghaddam H, Jebali A, Rahimi Moghadam S, Khanjani N. The toxic effects of silver nanoparticles on blood mononuclear cells. Int. J. Occup. Environ. Med. 2014;5:164-8.

Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;17:11.

Downloads

Publicado

2016-06-14

Como Citar

Almeida, J. de, Santos, G. V., Orsi, M. T., Cechella, B. C., Bernardi, A. V., & Felippe, W. T. (2016). Tratamento do biofilme intracanal de Enterococcus faecalis com suspensões de diferentes nanopartículas e irrigantes convencionais. Arquivos Em Odontologia, 51(1). https://doi.org/10.7308/aodontol/2015.51.1.04

Edição

Seção

Artigos