Análise de limas endodônticas submetidas a biocorrosão por bactérias redutoras de sulfato in vitro

Autores

  • Fabiano Luiz Heggendorn Instituto Nacional de Tecnologia
  • Lúcio Souza Gonçalves Universidade Estácio de Sá
  • Viviane de Oliveira Freitas Lione Universidade Federal do Rio de Janeiro
  • Walter Barreiro Cravo Junior Instituto Nacional de Tecnologia
  • Márcia Lutterbach Universidade Estácio de Sá

DOI:

https://doi.org/10.7308/aodontol/2019.55.e20

Palavras-chave:

Endodontia, Cavidade pulpar, Produtos biológicos, Corrosão, Desulfovibrio

Resumo

Objetivo: Avaliar as alterações químicas presentes na superfície metálica de limas endodônticas fraturadas em canais radiculares, in vitro, após a inoculação intrarradicular de culturas de BRS de três cepas microbianas, Desulfovibrio desulfuricans (uma cepa oral e outra ambiental) e Desulfovibrio fairfieldensis.

Métodos: foram analisadas 5 limas kerr #90, sendo uma Lima Kerr nova, sem tratamento, e as outras 4 limas fraturadas dentro de canais radiculares in vitro, com posterior inoculação de Desulfovibrio desulfuricans, cepa oral e ambiental, e Desulfovibrio fairfieldensis e um grupo controle sem inoculação bacteriana, por 477 dias. Os grupos foram analisados no modo EDS (Espectrometria de Energia Dispersiva de Raios-x) do microscópio eletrônico de varredura (FEI-Inspect-S50).

Resultados: A presença do S, Cl e O foram relacionados ao processo biocorrosivo, assim como a redução dos elementos de liga nesta área.

Conclusão: As análises no modo EDS demonstraram biocorrosão ao longo da superfície metálica das limas quando empregado o biofármaco BACCOR, nas três diferentes cepas empregadas, indicada pela redução dos elementos formadores da liga metálica, Fe, Ni e Cr, com a associação da presença de elementos indicadores de biocorrosão como O, Cl e S.

Downloads

Não há dados estatísticos.

Referências

Wefelmeier M, Eveslage M, Burklein S, Otto K, Kaup M. Removing fratured endodontic instruments with a modified tube technique using a light-curing composite. J Endod. 2015;41(5):733-6.

Wohlgemuth P, Cuocolo D, Vandrangi P, Sigurdsson A. Effectiveness of the gentlewave system in removing separatade instruments. J Endod. 2015;41(11): 1895-8.

Yang Q, Shen Y, Huang D, Zhou X, Gao Y, Haapasado M. Evaluantion of two trephine techniques for removal of fractured rotary nickel-titanium instruments from root canals. J Endod. 2017;43(1):116-20.

Pedir SS, Mahran AH, Beshr K, Baroudi K. Evaluation of the Factors and Treatment Options of Separated Endodontic Files Among Dentists and Undergraduate Students in Riyadh Area. J Clin Diagn Res. 2016;10(3):ZC18-ZC23.

Heggendorn FL, Gonçalves LS, Dias E.P, Lione VOF, Lutterbach MTS. Biocorrosion of endodontic files through the action of two species of sulfate-reducing bacteria: desulfovibrio desulfuricans and desulfovibio fairfieldensis. J Contemp Dent Pract. 2015;16(8):665-73.

Videla HA. Biocorrosão, biofouling e biodeterioração de materiais. 1th ed. São Paulo: Edgard Biucher; 2003.

Larry LB, Hamilton WA. Sulphate-reducing bacteria environmental and engineered systems. New York: Cambridge University Press; 2007.

Ounsi HE, Al-Shalan T, Salamed Z, Grandini S, Ferrari M. Quantitative and qualitative elemental analysis of different niqueltitanium rotary instruments by using scanning electron microscopy and energy dispersive spectroscopy. J Endod. 2008;34(1):53-5.

Lopes FA, Morin P, Oliveira R. Melo LF. Interaction of desulfovibrio desulfuricans biofilmes with stainless steel surface and its impact on bacterial metabolism. J Appl Microbiol. 2006;101(5):1087-95.

Heggendorn FL, Gonçalves LS, Dias EP, Silva Junior A, Galvão MM, Lutterbach, MTS. Detection of sulphate-reducing bacteria in human saliva. Acta Odontol Scand. 2013;71(6):1458-63.

Heggendorn FL, Gonçalves LS, Dias EP, Heggendorn C, Lutterbach MTS. Detection of sulpphate-reducing bacteria and others cultivable facultative bacteria in dental tissues. Acta stomatol Croat. 2014;48(2):116-22.

Jorand FDA, Debuy S, Kamagate SF, Engels-Deutsch M. Evaluation of a biofilms formation by desulfovibrio fairfieldensis on titanium implants. Lett Appl Microbiol. 2014;60:279-87.

Brown DA, Beveridge TJ, Keevil CW, Sherriff BL. Evaluation of microscopic techniques to observe iron precipitation in a natural microbial biofilm. FEMS Microbiol Ecol. 1998;26:297-310.

Stowe S, Parirokh M, Asgary S, Eghbal MJ. The benefits of using low accelerating voltage to assess endodontic instruments by scanning electron microscopy. Aust Endod J. 2004;30(1):5-10.

Surman SB, Walker JT, Gobbard DT. Morton LHG, Keevil CW, Weaver W, et al. Comparison of microscope techniques for the examination of biofilms. J Microbiol Methods. 1996;25:57-70.

Popović J, Gašić J, Radičević G. The investigation of ultrasound efficacy in cleaning the surface of new endodontic instruments. Srp Arh CeloK Lek. 2009;137(7-8):357-62.

Parirokh M, Asgary S, Eghbal MJ. An energydispersive X-ray analysis and SEM study of debris remaining on endodontic instruments after ultrasonic cleaning and autoclave sterilization. Aust Endod J. 2005;31(2):53-8.

Remoundaki E, Kousi P, Joulian C. Battaglia-Brunet F, Hatzikioseyian A, Tsezos M. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. J Hazard Mater. 2008;153:514-24.

Lens P, Massone A, Rozzi A. Verstraete W. Effect of sulfate concentration and scraping on aerobic fixed biofilm reactors. Water Res. 1995;29(3):857-70.

White C, Gadd GM. Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett. 2000;183:313-8.

Pickering FB. Physical metallurgy of stainless steel developments. Int Met Rev. 1976:227-68.

Costerton JW, Lewandowski Z, Debeer D, Caldwell D, Korber D, James G. Biofilms, the customized Microniche. J Bacteriol. 1994;176(8):2137-42.

Videla HA, Herrera LK. Microbiologically influenced corrosion: looking to the future. Int Microbiol. 2005;8(3):169-80.

Geiger SL, Ross TJ, Barton LL. Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microsc Res Tech. 1993;25:429-33.

Lin CC, Jay JA. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Environ Sci Technol. 2007;41(19):6691-7.

Jhobalia CM, Hu A, Gu T, Nesic S. Biochemical Engineering Approaches to MIC. In: Corrosion, 2005, Houston.

Hullebusch EDV, Zandvoort MH, Lens PNL. Metal immobilisation by biofilms: Mechanism and analytical tools. Rev Environ Sci Biotechnol. 2003;2(1):9-33.

Dunsmore BC, Jacobsen A, Hall-stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol. 2002;29(6):347-53.

Yuan SJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Inorganic – Organic hybrid coatings on stainless steel by layer-bylayer deposition and surface-initiated atomtransfer-radical polymerization for combating biocorrosion. ACS Appl Mater Interfaces. 2009;1(3):640-52.

Isa Z, Grusenmeyer S, Verstraete W. Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microbiol. 1986;51(3):580-7.

Chen G, Ford TE, Clayton CR. Interaction of sulfate-reducing bacteria with molybdenum dissolved from sputterdeposited molybdenum thin films and pure molybdenum powder. J Colloid Interface Sci. 1998;204(2):237-46.

Purish LM, Asaulenko LG, Abdulina DR. Vasil’ev VN, Latinskaia GA. Role of Polymer complexes in the formation of biofilms by corrosive bacteria on steel surfaces. Appl Biochem Microbiol. 2012;48(3):262-9.

Downloads

Publicado

2019-12-23

Como Citar

Heggendorn, F. L., Gonçalves, L. S., Lione, V. de O. F., Cravo Junior, W. B., & Lutterbach, M. (2019). Análise de limas endodônticas submetidas a biocorrosão por bactérias redutoras de sulfato in vitro. Arquivos Em Odontologia, 55. https://doi.org/10.7308/aodontol/2019.55.e20

Edição

Seção

Artigos