Analysis of endodontic files submitted to biocorrosion by sulfate reducing bacteria in vitro

Authors

  • Fabiano Luiz Heggendorn Instituto Nacional de Tecnologia
  • Lúcio Souza Gonçalves Universidade Estácio de Sá
  • Viviane de Oliveira Freitas Lione Universidade Federal do Rio de Janeiro
  • Walter Barreiro Cravo Junior Instituto Nacional de Tecnologia
  • Márcia Lutterbach Universidade Estácio de Sá

DOI:

https://doi.org/10.7308/aodontol/2019.55.e20

Keywords:

Endodontics, Dental pulp cavity, Biological products, Corrosion, Desulfovibrio

Abstract

Aim: To evaluate the chemical alterations present on the metallic surface of root canal fractured endodontic files in vitro after the intraradicular inoculation of BRS cultures of three microbial strains, Desulfovibrio desulfuricans (one oral and one environmental strain), and Desulfovibrio fairfieldensis.

Methods: Five kerr #90 files were analyzed, one new untreated Kerr file and the other 4 files fractured within root canals in vitro, with a subsequent inoculation of Desulfovibrio desulfuricans (oral and environmental strains), and Desulfovibrio fairfieldensis, as well as a control group without bacterial inoculation for 477 days. The groups were analyzed using the scanning electron microscope (FEI-Inspect-S50) EDS (X-ray Dispersive Energy Spectrometry) mode.

Results: The presence of S, Cl, and O were related to the biocorrosive process, as well as the reduction of alloying elements in this area.

Conclusion: The EDS mode analysis showed biocorrosion along the metallic surface of the files when the BACCOR biopharmaceutical was used in the three different strains employed in this study, indicated by the reduction of the alloying elements – Fe, Ni, and Cr – with the association of the presence of indicator elements of biocorrosion, such as O, Cl, and S.

Downloads

Download data is not yet available.

References

Wefelmeier M, Eveslage M, Burklein S, Otto K, Kaup M. Removing fratured endodontic instruments with a modified tube technique using a light-curing composite. J Endod. 2015;41(5):733-6.

Wohlgemuth P, Cuocolo D, Vandrangi P, Sigurdsson A. Effectiveness of the gentlewave system in removing separatade instruments. J Endod. 2015;41(11): 1895-8.

Yang Q, Shen Y, Huang D, Zhou X, Gao Y, Haapasado M. Evaluantion of two trephine techniques for removal of fractured rotary nickel-titanium instruments from root canals. J Endod. 2017;43(1):116-20.

Pedir SS, Mahran AH, Beshr K, Baroudi K. Evaluation of the Factors and Treatment Options of Separated Endodontic Files Among Dentists and Undergraduate Students in Riyadh Area. J Clin Diagn Res. 2016;10(3):ZC18-ZC23.

Heggendorn FL, Gonçalves LS, Dias E.P, Lione VOF, Lutterbach MTS. Biocorrosion of endodontic files through the action of two species of sulfate-reducing bacteria: desulfovibrio desulfuricans and desulfovibio fairfieldensis. J Contemp Dent Pract. 2015;16(8):665-73.

Videla HA. Biocorrosão, biofouling e biodeterioração de materiais. 1th ed. São Paulo: Edgard Biucher; 2003.

Larry LB, Hamilton WA. Sulphate-reducing bacteria environmental and engineered systems. New York: Cambridge University Press; 2007.

Ounsi HE, Al-Shalan T, Salamed Z, Grandini S, Ferrari M. Quantitative and qualitative elemental analysis of different niqueltitanium rotary instruments by using scanning electron microscopy and energy dispersive spectroscopy. J Endod. 2008;34(1):53-5.

Lopes FA, Morin P, Oliveira R. Melo LF. Interaction of desulfovibrio desulfuricans biofilmes with stainless steel surface and its impact on bacterial metabolism. J Appl Microbiol. 2006;101(5):1087-95.

Heggendorn FL, Gonçalves LS, Dias EP, Silva Junior A, Galvão MM, Lutterbach, MTS. Detection of sulphate-reducing bacteria in human saliva. Acta Odontol Scand. 2013;71(6):1458-63.

Heggendorn FL, Gonçalves LS, Dias EP, Heggendorn C, Lutterbach MTS. Detection of sulpphate-reducing bacteria and others cultivable facultative bacteria in dental tissues. Acta stomatol Croat. 2014;48(2):116-22.

Jorand FDA, Debuy S, Kamagate SF, Engels-Deutsch M. Evaluation of a biofilms formation by desulfovibrio fairfieldensis on titanium implants. Lett Appl Microbiol. 2014;60:279-87.

Brown DA, Beveridge TJ, Keevil CW, Sherriff BL. Evaluation of microscopic techniques to observe iron precipitation in a natural microbial biofilm. FEMS Microbiol Ecol. 1998;26:297-310.

Stowe S, Parirokh M, Asgary S, Eghbal MJ. The benefits of using low accelerating voltage to assess endodontic instruments by scanning electron microscopy. Aust Endod J. 2004;30(1):5-10.

Surman SB, Walker JT, Gobbard DT. Morton LHG, Keevil CW, Weaver W, et al. Comparison of microscope techniques for the examination of biofilms. J Microbiol Methods. 1996;25:57-70.

Popović J, Gašić J, Radičević G. The investigation of ultrasound efficacy in cleaning the surface of new endodontic instruments. Srp Arh CeloK Lek. 2009;137(7-8):357-62.

Parirokh M, Asgary S, Eghbal MJ. An energydispersive X-ray analysis and SEM study of debris remaining on endodontic instruments after ultrasonic cleaning and autoclave sterilization. Aust Endod J. 2005;31(2):53-8.

Remoundaki E, Kousi P, Joulian C. Battaglia-Brunet F, Hatzikioseyian A, Tsezos M. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. J Hazard Mater. 2008;153:514-24.

Lens P, Massone A, Rozzi A. Verstraete W. Effect of sulfate concentration and scraping on aerobic fixed biofilm reactors. Water Res. 1995;29(3):857-70.

White C, Gadd GM. Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol Lett. 2000;183:313-8.

Pickering FB. Physical metallurgy of stainless steel developments. Int Met Rev. 1976:227-68.

Costerton JW, Lewandowski Z, Debeer D, Caldwell D, Korber D, James G. Biofilms, the customized Microniche. J Bacteriol. 1994;176(8):2137-42.

Videla HA, Herrera LK. Microbiologically influenced corrosion: looking to the future. Int Microbiol. 2005;8(3):169-80.

Geiger SL, Ross TJ, Barton LL. Environmental scanning electron microscope (ESEM) evaluation of crystal and plaque formation associated with biocorrosion. Microsc Res Tech. 1993;25:429-33.

Lin CC, Jay JA. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Environ Sci Technol. 2007;41(19):6691-7.

Jhobalia CM, Hu A, Gu T, Nesic S. Biochemical Engineering Approaches to MIC. In: Corrosion, 2005, Houston.

Hullebusch EDV, Zandvoort MH, Lens PNL. Metal immobilisation by biofilms: Mechanism and analytical tools. Rev Environ Sci Biotechnol. 2003;2(1):9-33.

Dunsmore BC, Jacobsen A, Hall-stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol. 2002;29(6):347-53.

Yuan SJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Inorganic – Organic hybrid coatings on stainless steel by layer-bylayer deposition and surface-initiated atomtransfer-radical polymerization for combating biocorrosion. ACS Appl Mater Interfaces. 2009;1(3):640-52.

Isa Z, Grusenmeyer S, Verstraete W. Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiological aspects. Appl Environ Microbiol. 1986;51(3):580-7.

Chen G, Ford TE, Clayton CR. Interaction of sulfate-reducing bacteria with molybdenum dissolved from sputterdeposited molybdenum thin films and pure molybdenum powder. J Colloid Interface Sci. 1998;204(2):237-46.

Purish LM, Asaulenko LG, Abdulina DR. Vasil’ev VN, Latinskaia GA. Role of Polymer complexes in the formation of biofilms by corrosive bacteria on steel surfaces. Appl Biochem Microbiol. 2012;48(3):262-9.

Published

2019-12-23

How to Cite

Heggendorn, F. L., Gonçalves, L. S., Lione, V. de O. F., Cravo Junior, W. B., & Lutterbach, M. (2019). Analysis of endodontic files submitted to biocorrosion by sulfate reducing bacteria in vitro. Arquivos Em Odontologia, 55. https://doi.org/10.7308/aodontol/2019.55.e20

Issue

Section

Artigos