Stress distribution on maxillary central incisorunder similar traumatic situations with different loading forces: a 3-D finite element analysis.

  • Bruno Rocha da Silva Universidade Federal do Ceará
  • Nayane Cavalcante Ferreira Universidade Federal do Ceará
  • José Jeová Siebra Moreira- Neto Universidade Federal do Ceará
  • Francisco Ilson da Silva Jr Universidade Federal do Ceará
  • Edson Holanda Teixeira Universidade Federal do Ceará
  • Andréa Silvia Walter de Aguiar Universidade Federal do Ceará

Resumo

Aim: The present study aimed to analyze the stress distribution in the dentoalveolar structures of a maxillary central incisor submitted to two situations of impact loading. Materials and Methods: The following loading forces were applied using a three-dimensional finite element model: a force of 500 N at an angle of 45° on the buccal surface of the crown and a 2000 N force acting in the same direction and surface of the tooth. Results: Harmful stress was observed in the second situation, suggesting damage to both the tooth and adjacent tissue. However, the damage found in soft tissues such as dental pulp, was negligible. Conclusion: Injuries resulting from the traumatic situations were more damaging to the integrity of the tooth and its associated hard-tissue structures. Uniterms: Tooth injuries. Finite element analysis. Biomechanics. Computing methodologies. Threedimensional imaging.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bruno Rocha da Silva, Universidade Federal do Ceará
LIBS, Laboratório Integrado de Biomoléculas, Universidade Federal do Ceará, Fortaleza, CE, Brasil
Nayane Cavalcante Ferreira, Universidade Federal do Ceará
Universidade Federal do Ceará, Fortaleza, CE, Brasil
José Jeová Siebra Moreira- Neto, Universidade Federal do Ceará
Departamento de Dentística, Universidade Federal do Ceará, Fortaleza, CE, Brasil
Francisco Ilson da Silva Jr, Universidade Federal do Ceará
Departamento de Engenharia Mecânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
Edson Holanda Teixeira, Universidade Federal do Ceará
LIBS, Laboratório Integrado de Biomoléculas, Universidade Federal do Ceará, Fortaleza, CE, Brasil
Andréa Silvia Walter de Aguiar, Universidade Federal do Ceará
Departamento de Dentística, Universidade Federal do Ceará, Fortaleza, CE, Brasil

Referências

1. Bastone EB, Freer TJ, McNamara JR. Epidemiology of dental trauma: A review of the literature. Aust Dent J. 2000; 45:2-9.
2. Ravishankar TL, Kumar MA, Ramesh N, Chaitra TR. Prevalence of traumatic dental injuries to permanent incisors among 12-year-old school children in Davangere, South India. Chin J Dent Res. 2010; 13:57-60.
3. Thelen DS, Bårdsen A. Traumatic dental injuries in an urban adolescent population in Tirana, Albania. Dent Traumatol. 2010; 26:284-90.
4. Andreasen JO, Andreasen FM, Andersson L. Textbook and color atlas of traumatic injuries to the teeth. 4th ed. Oxford: Blackwell Munksgaard; 2007.
5. Huang HM, Tsai CY, Lee HF, Lin CT, Yao WC, Chiu WT et al. Damping effects on the response of maxillary incisor subjected to a traumatic impact force: a nonlinear finite element analysis.
J Dent. 2006; 34:261-8.
6. Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, Desiate A. Finite Element Method (FEM), mechanobiology and biomimetic
scaffolds in bone tissue engineering. Int J Biol Sci. 2011; 7:112-32.
7. Silva BR, Silva FI Jr, Moreira Neto JJS, Aguiar ASW. Finite Element Method application in dentistry: analysis of scientific production from
1999 to 2008. Int J Dent. 2009; 8:197-201.
8. Vasudeva, G. Finite element analysis: a boon to dental research. Internet J Dent Sci. 2009; 6:1-6.
9. Dejak B, Mlotkowski A. Finite element analysis of strength and adhesion of cast posts compared to glass fiber-reinforced composite resin posts in anterior teeth. J Prosthet Dent. 2011; 105:115-26.
10. Szucs A, Bujtar P, Sandor GK, Barabas J. Finite element analysis of the human mandible to assess the effect of removing an impacted third molar. J Can Dent Assoc. 2010; 76:72-7.
11. Poiate IAVP, Vasconcellos AB, Andueza A, Pola IRV, Poiate E Jr. Three dimensional finite element analyses of oral structures by computerized tomography. J Biosci Bioeng. 2008; 106:606-9.
12. Silva BR, Moreira Neto JJS, Silva FI Jr, Aguiar ASW. Finite element analysis applied to dentoalveolar trauma: methodology description. ISRN Dentistry. 2011; 16:1-7.
13. Poiate IAVP, Vasconcellos AB, Poiate E Jr, Dias KRHC. Stress distribution in the cervical region of an upper central incisor in a 3D finite element model. Braz Oral Res. 2009; 23:161-8.
14. Poiate IAVP, Vasconcellos AB, Santana RB, Poiate E Jr. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element
analysis. J Periodontol. 2009; 80:1859-67.
15. Huang HM, Ou KL, Wang WN, Chiu WT, Lin CT, Lee SY. Dynamic finite element analysis of the human maxillary incisor under impact loading in various directions. J Endod. 2005; 31:723-7.
16. Miura J, Maeda Y. Biomechanical model of incisor avulsion: a preliminary report. Dent Traumatol. 2008; 24:454-7.
17. Stuart CH, Schwartz SA, Beeson TJ. Reinforcement of immature roots with a new resin filling material. J Endod. 2006; 32:350-3.
18. Andreasen JO, Andreasen FM, Meja`re I, Cvek M. Healing of 400 intra-alveolar root fractures. 1. Effect of pre-injury and injury factors such as sex, age, stage of root development, fracture type,
location of fracture and severity of dislocation. Dent Traumatol. 2004; 20:192–202.
19. Nyashin YI, Nyashin MY. Biomechanical modelling of periodontal ligament behavior under various mechanical loads. Acta Bioeng Biomech. 2000; 2:67-74.
20. Bechtle S, Habelitz S, Klocke A, Fett T, Schneider GA. The fracture behavior of dental enamel. Biomaterials. 2010; 31:375-84.
21. Baldassiri M, Margolis HC, Beniash E. Compositional determinants of mechanical properties of enamel. J Dent Res. 2008; 87:645-9.
22. Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res.
2010; 89:1187-97.
23. Poolthong S, Mori T, Swain MV. Determination of elastic modulus of dentin by small spherical diamond indenters. Dent Mater J. 2001; 20:227-36.
24. Majorana A, Pasini S, Bardellini E, Keller E. Clinical and epidemiological study of traumatic root fractures. Dent Traumatol. 2002; 18:77-80.
25. De Las Casas EB, Cornacchia TP, Gouvêa PH, Cimini CA Jr. Abfraction and anisotropy--effects of prism orientation on stress distribution. Comput Methods Biomech Eng. 2003; 6:65-73.
26. Natali AN. Denta biomechanics. London: Taylor & Francis/CRC Press; 2003.
27. Limbert G, Middleton J, Laizans J, Dobelis M, Knets I. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects. Comput Methods
Biomech Biomed Eng. 2003; 6:337-45.
28. Natali AN, Carniel EL, Pavan PG, Sander FG, Dorow C, Geiger M. A visco-hyperelasticdamage constitutive model for the analysis of
the biomechanical response of the periodontal
ligament. J Biomech Eng. 2008; 130:73-9.
29. Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite Element Method. Med Eng Phys. 2000; 22:359-70.
30. Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil. 2003; 30:60-7.
Publicado
2016-06-10
Como Citar
Silva, B. R. da, Ferreira, N. C., Neto, J. J. S. M.-, Jr, F. I. da S., Teixeira, E. H., & Aguiar, A. S. W. de. (2016). Stress distribution on maxillary central incisorunder similar traumatic situations with different loading forces: a 3-D finite element analysis. Arquivos Em Odontologia, 49(2). Recuperado de https://periodicos.ufmg.br/index.php/arquivosemodontologia/article/view/3626
Seção
Artigos