THE RELATIONSHIP BETWEEN CAUSALITY MODELS AND STUDENTS’ PERFORMANCE IN INVESTIGATIVE ACTIVITIES

A RELAÇÃO ENTRE MODELOS DE CAUSALIDADE E DESEMPENHO DE ESTUDANTES EM ATIVIDADES INVESTIGATIVAS

Authors

DOI:

https://doi.org/10.1590/1983-21172022240155

Keywords:

Causalidade, Atividade investigativa, Ensino de Ciências

Abstract

This work aims to explore the relationship between causality models and the experimental performance of students during investigative activities. Ninety-two first-year high school students from a federal public school participated in this research. Students were asked about the causality of variables before and after carrying out investigative activities through a computer simulation. The results suggest that the participants who presented an adequate model of causality of the variables involved tended to present more adequate experimentation strategies, resulting in better experimental performance and higher scores in the final test.

Downloads

Download data is not yet available.

Author Biography

Alessandro Gomes, Universidade Federal de São João del-Rei

Licenciatura em Física;

Mestre em Educação;

Doutor em Educação;

Professor adjunto na Universidade Federal de São João del-Rei

References

Associação Nacional de Pós-Graduação e Pesquisa em Educação. (2019). Ética e pesquisaem Educação: subsídios. Rio de Janeiro: ANPEd.

Bender, A. (2020). What is causal cognition? Frontiers in psychology, 11:3.

Carvalho, A. M. P. (2018). Fundamentos teóricos e metodológicos do ensino por investigação. Revista Brasileira de Pesquisa em Educação em Ciências, 765-794.

Croker, S. & Buchanan, H. (2011). Scientific reasoning in a real‐world context: The effect of prior belief and outcome on children’s hypothesis‐testing strategies. British Journal of Developmental Psychology, 29(3), 409-424.

Dunbar, K. N. & Klahr, D. (2012). Scientific thinking & reasoning. In K. J. Holyoak & R. Morrison (Eds.), Oxford handbook of thinking & reasoning (pp. 701-718). Oxford University Press.

Evangelou, F. & Kotsis, K. (2019). Real vs virtual physics experiments: comparison of learning outcomes among fifth grade primary school students. A case on the concept of frictional force. International Journal of Science Education, 41(3), 330-348.

Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337(6102), 1623-1627.

Hall, N. (2004). Two Concepts of Causation. In: Collins, J.; Hall, N. & Paul, L. A. (Eds.), Causation and Counterfactuals (pp. 225-276). Mit Press.

Halpern, J. Y. (2016). Actual causality MiT Press. Jonassen, D. (2009).Model Building for Conceptual Change. In: Vosniadou, S. (Ed), International Handbook of Research on Conceptual Change (pp. 676- 693). Routledge.

Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921.

Klahr, D.; Zimmerman, C. & Matlen, B. J. (2019). Improving students’ scientific thinking. In: Dunlosky, J. & Rawson, K. A. (Eds.), The Cambridge handbook of cognition and education (pp. 67-99). Cambridge University Press.

Klayman, J. & Ha, Y. W. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological review, 94(2), 211-228.

Köksal-Tuncer, Ö. & Sodian, B. (2018). The development of scientific reasoning: Hypothesis testing and argumentation from evidence in young children. Cognitive Development, 48, 135-145.

Koslowski, B. (2013). Scientific reasoning: Explanation, confirmation bias, and scientific practice. In: Feist, G. J. & Gorman, M. E. (Eds.) Handbook of the psychology of science (pp. 151-192). Springer Publishing Company.

Koslowski, B.; & Masnick, A. (2011). Causal Reasoning and Explanation. In: Goswami, U. (Ed.), The Wiley-Blackwell Handbook of Childhood Cognitive Development (pp. 377-298).

Wiley-Blackwell. Kuhn, D. (2012). The development of causal reasoning. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 327-335.

Kuhn, D. (2016). What do young science students need to learn about variables? Science Education, 100(2), 392-403.

Kuhn, D.; Ramsey, S. & Arvidsson, T. S. (2015). Developing multivariable thinkers. Cognitive Development, 35, 92-110.

Lehrer, R. & Schauble, L. (2015). Development of scientific thinking. In: Lerner, R. M.; Liben, S. & Mueller, U. (Eds.), Handbook of child psychology and developmental science: Cognitive processes (vol. 2, pp 671-714). John Wiley & Sons.

Lombard, M. & Gardenfors, P. (2017). Tracking the evolution of causal cognition in humans. Anthropol Sci, 95, 219-234.

Losee, J. (Ed.). (2017). Theories of causality: from antiquity to the present. Routledge.

Mainardes, J. & Carvalho, I. C. M. (2019). Autodeclaração de princípios e de procedimentos éticos na pesquisa em Educação. In Ética e pesquisa em educação: subsídios. Rio de Janeiro: ANPEd , p. 129-132.

Masnick, A. M.; Klahr, D. & Knowles, E. R. (2017). Data-driven belief revision in children and adults. Journal of Cognition and Development, 18(1), 87-109.

Moreira, M. A. (2011). Metodologias de pesquisa em ensino Editora Livraria da Física.

Muentener, P. & Bonawitz, E. (2017). The development of causal reasoning. In: Waldmann, M. (Ed.), The Oxford handbook of causal reasoning (pp. 677-698). Oxford University Press.

Nascimento, R. D. & Gomes, A. D. T. (2018). A relação entre o conhecimento conceitual e o desempenho de estudantes em atividades investigativas. Revista Brasileira de Pesquisa em Educação em Ciências, 935-965.

Potvin, P. (2023). Response of science learners to contradicting information: A review of research. Studies in Science Education, 59(1), 67-108.

Sandoval, W. A.; Sodian, B.; Koerber, S. & Wong, J. (2014). Developing children’s early competencies to engage with science. Educational Psychologist, 49(2), 139-152.

Sasseron, L. H. (2015). Alfabetização científica, ensino por investigação e argumentação: relações entre ciências da natureza e escola. Ensaio Pesquisa em Educação em Ciências, 17, 49-67.

Sasseron, L. H. (2020). Interações discursivas e argumentação em sala de aula: a construção de conclusões, evidências e raciocínios. Ensaio Pesquisa em Educação em Ciências, 22, e20073, 1-29.

Schalk, L.; Edelsbrunner, P. A.; Deiglmayr, A.; Schumacher, R. & Stern, E. (2019). Improved application of the control-of-variables strategy as a collateral benefit of inquiry- based physics education in elementary school. Learning and Instruction, 59, 34-45.

Schulz, L. E. & Gopnik, A. (2004). Causal learning across domains. Developmental psychology, 40(2), 162-176.

Schwichow, M.; Osterhaus, C. & Edelsbrunner, P. A. (2020). The relation between the control-of-variables strategy and content knowledge in physics in secondary school. Contemporary Educational Psychology, 63, 101923.

Stender, A.; Schwichow, M.; Zimmerman, C. & Härtig, H. (2018). Making inquiry-based science learning visible: the influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40(15), 1812-1831.

Vosniadou, S. (2019). The development of students’ understanding of science. In: Frontiers in Education, 4:32.

Waldmann, M. R. (2017). Causal reasoning: An introduction. In M. Waldmann (Ed.). The Oxford handbook of causal reasoning (pp.1-17). Oxford University Press

Wellman, H. M. & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual review of psychology, 43(1), 337-375.

Woodward, J. (2005). Making things happen: A theory of causal explanation. Oxford University Press.

Zimmerman, C. & Croker, S. (2013). Learning science through inquiry. In G. J. Feist & M. E. Gorman (Eds.), Handbook of the psychology of science (pp. 49-70). Springer Publishing Company.

Published

2023-11-14

Issue

Section

RESEARCH REPORTS