Topic modeling
Summarize and organize data corpus using machine learning algorithms
Keywords:
Modeling topics, Machine learning, Latent Dirichlet allocation, Latent semantic indexingAbstract
The research compares the results and performance of the Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) models of Machine Learning when applied Topic Modeling in documents of formal channels of scientific communication, consisting of 2006 scientific articles and expanded abstracts from the XIII to the XVII National Meeting of Research in Information Science (ENANCIB). The steps of empirical research are the collection of data for the constitution, cleaning, manipulation, combination, normalization, treatment and transformation of data from the corpus to connect to machine learning models. The models summarized and organized the data corpus into topics that are made up of terms and weights. The LSI model presented a greater variety between the terms and weights contained in each topic, different from the LDA model which presented a greater similarity in the results, thus making it easier for the domain specialist to create the assumption for the names of the topics.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Autores que publicam na Revista Múltiplos Olhares em Ciência da Informação mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista. Contratos adicionais poderão ser assumidos, separadamente, pelos autores, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (exemplo: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.