Monitoramento de integridade estrutural utilizando inteligência artificial

desafios, avanços e aplicações

Autores

DOI:

https://doi.org/10.35699/2965-6931.2023.47533

Palavras-chave:

detecção de danos estruturais, inteligência computacional, aprendizado de máquina, aprendizado profundo

Resumo

Este artigo apresenta uma revisão sistemática e traz reflexões críticas acerca da utilização de técnicas de inteligência artificial para identificação de deterioração estrutural por meio de sinais de vibração (i.e., acelerações, deslocamentos, etc). Abordagens baseadas em aprendizado de máquina e aprendizado profundo são consideradas promissoras para aumentar a segurança e otimizar os cronogramas de manutenção preventiva. Entretanto, alguns autores reconhecem as preocupações decorrentes de métodos estritamente supervisionados, da natureza do tipo “caixa-preta” dos modelos e de suas interpretabilidades por operadores humanos. A contribuição deste trabalho consiste, portanto, em fornecer informações relevantes sobre o atual paradigma de detecção de danos, possibilitando previsões em tempo real, não destrutivas e confiáveis sobre a segurança da construção no âmbito da Indústria 4.0. Além disso, os desafios relacionados ao emprego de inteligência computacional para reconhecimento de padrões e tomada de decisão no monitoramento de anomalias estruturais são relatados e examinados em estudos de casos recentes.

Biografia do Autor

  • Victor Higino Meneguitte Alves, Universidade Federal de Juiz de Fora (UFJF)

    Graduando em Engenharia Civil pela Universidade Federal de Juiz de Fora. Técnico em Eletromecânica pelo Centro Federal de Educação Tecnológica, CEFET-MG. Divulgador científico no CIDENG-CNPq, Grupo de Pesquisa em Ciência de Dados aplicada à Engenharia. Atualmente realiza iniciação científica no Departamento de Mecânica Aplicada e Computacional, com ênfase em detecção e localização de danos estruturais à partir de dados dinâmicos.

  • Vinicius Antonio Meneguitte Alves, Universidade Federal de Juiz de Fora (UFJF)

    Graduando em Engenharia Civil pela Universidade Federal de Juiz de Fora (UFJF). Técnico em Eletromecânica pelo Centro Federal de Educação Tecnológica (CEFET-MG).

  • Alexandre Abrahão Cury, Universidade Federal de Juiz de Fora (UFJF)

    Engenheiro Civil (2006) e mestre em Modelagem Computacional pela Universidade Federal de Juiz de Fora (2008). Doutor em Engenharia Civil pela Universidade Paris-Est (2010). Atua nos temas: monitoramento de integridade estrutural, análise de vibrações, detecção de danos, identificação modal e confiabilidade estrutural. Professor associado no Departamento de Mecânica Aplicada e Computacional. Pesquisador de Produtividade do CNPq desde 2013.

Referências

ABDELJABER, O.; AVCI, O.; KIRANYAZ, S.; GABBOUJ, M.; INMAN, D. J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, v. 388, p. 154-170, 2017. DOI:10.1016/j.jsv.2016.10.043

ALAZZAWI, Osama; WANG, Dansheng. A novel structural damage identification method based on the acceleration responses under ambient vibration and an optimized deep residual algorithm. Structural Health Monitoring, v. 21, n. 6, p. 2587-2617, 2022. DOI:10.1177/14759217211065009

ALVES, Victor; CURY, Alexandre. A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements. Structural Control and Health Monitoring, v. 28, n. 7, p. e2748, 2021. DOI:10.1002/stc.2748

ALVES, Victor; CURY, Alexandre. An automated vibration-based structural damage localization strategy using filter-type feature selection. Mechanical Systems and Signal Processing, v. 190, p. 110145, 2023. DOI:10.1016/j.ymssp.2023.110145

AMIN, A.; BIBO, A.; PANYAM, M.; TALLAPRAGADA, P. Wind Turbine Gearbox Fault Diagnosis Using Cyclostationary Analysis and Interpretable CNN. Journal of Vibration Engineering & Technologies, p. 1-11, 2023. DOI: 10.1007/s42417-023-00937-1

ARRIETA, Alejandro Barredo et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion, v. 58, p. 82-115, 2020. DOI: 10.1016/j.inffus.2019.12.012

AVCI, O.; ABDELJABER, O.; KIRANYAZ, S.; HUSSEIN, M.; GABBOUJ, M.; INMAN, D. J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical systems and signal processing, v. 147, p. 107077, 2021. DOI:10.1016/j.ymssp.2020.107077

AZIMI, Mohsen; ESLAMLOU, Armin Dadras; PEKCAN, Gokhan. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors, v. 20, n. 10, p. 2778, 2020. DOI: 10.3390/s20102778

BRUSA, E.; CIBRARIO, L.; DELPRETE, C.; DI MAGGIO, L. G. Explainable AI for machine fault diagnosis: understanding features’ contribution in machine learning models for industrial condition monitoring. Applied Sciences, v. 13, n. 4, p. 2038, 2023. DOI: 10.3390/app13042038

CHAMANGARD, M.; GHODRATI AMIRI, G.; DARVISHAN, E.; RASTIN, Z. Transfer Learning for CNN-Based Damage Detection in Civil Structures with Insufficient Data. Shock and Vibration, v. 2022, 2022. DOI: 10.1155/2022/3635116

CIREŞAN, D. C.; MEIER, U.; GAMBARDELLA, L. M.; SCHMIDHUBER, J. Deep, big, simple neural nets for handwritten digit recognition. Neural computation, v. 22, n. 12, p. 3207-3220, 2010. DOI: 10.1162/NECO_a_00052

CURY, Alexandre; CRÉMONA, Christian; DIDAY, Edwin. Application of symbolic data analysis for structural modification assessment. Engineering Structures, v. 32, n. 3, p. 762-775, 2010. DOI:10.1016/j.engstruct.2009.12.004

CURY, Alexandre; RIBEIRO, Diogo; UBERTINI, Filippo; TODD, Michael D. Structural health monitoring based on data science techniques. Springer, 2022. DOI:10.1007/978-3-030-81716-9

DANESHJOO, Z.; SHOKRIEH, M. M.; FAKOOR, M. A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects. Theoretical and Applied Fracture Mechanics, v. 94, p. 46-56, 2018. DOI: 10.1016/j.tafmec.2017.12.002

DONG, Chuan-Zhi; CATBAS, F. Necati. A review of computer vision–based structural health monitoring at local and global levels. Structural Health Monitoring, v. 20, n. 2, p. 692-743, 2021. DOI: 10.1177/1475921720935585

FINOTTI, R. P.; DE SOUZA BARBOSA, F.; CURY, A. A.; GENTILE, C. A novel natural frequency-based technique to detect structural changes using computational intelligence. Procedia engineering, v. 199, p. 3314-3319, 2017. DOI:10.1016/j.proeng.2017.09.438

FINOTTI, R. P.; BARBOSA, F. D. S.; CURY, A. A.; PIMENTEL, R. L. Numerical and Experimental Evaluation of Structural Changes Using Sparse Auto-Encoders and SVM Applied to Dynamic Responses. Applied Sciences, v. 11, n. 24, p. 11965, 2021. DOI:10.3390/app112411965

FIGUEIREDO, E.; PARK, G.; FIGUEIRAS, J.; FARRAR, C.; WORDEN, K. Structural health monitoring algorithm comparisons using standard data sets. Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2009. DOI: 10.2172/961604

GHIASI, Ramin; GHASEMI, Mohammad Reza; CHAN, Tommy HT. Optimum feature selection for SHM of benchmark structures using efficient AI mechanism. Smart Struct. Syst, v. 27, p. 623-640, 2021. DOI: 10.12989/sss.2021.27.4.623

GUI, G.; PAN, H.; LIN, Z.; LI, Y.; YUAN, Z. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection. KSCE Journal of Civil Engineering, v. 21, p. 523-534, 2017. DOI: 10.1007/s12205-017-1518-5

JOHNSON, E. A.; LAM, H. F.; KATAFYGIOTIS, L. S.; BECK, J. L. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. Journal of engineering mechanics, v. 130, n. 1, p. 3-15, 2004. DOI: 10.1061/(ASCE)0733-9399(2004)130:1(3)

Li, H.; Li, S.; Ou, J.; Li, H. Reliability assessment of cable-stayed bridges based on structural health monitoring techniques. Structure and Infrastructure Engineering, v. 8, n. 9, p. 829-845, 2012. DOI: 10.1080/15732479.2010.496856

LULECI, Furkan; CATBAS, F. Necati; AVCI, Onur. Generative adversarial networks for labeled acceleration data augmentation for structural damage detection. Journal of Civil Structural Health Monitoring, v. 13, n. 1, p. 181-198, 2023a.

LULECI, Furkan; AVCI, Onur; CATBAS, F. Necati. Improved undamaged-to-damaged acceleration response translation for Structural Health Monitoring. Engineering Applications of Artificial Intelligence, v. 122, p. 106146, 2023c. DOI: 10.1016/j.engappai.2023.106146

LULECI, Furkan; CATBAS, F. Necati; AVCI, Onur. CycleGAN for undamaged-to-damaged domain translation for structural health monitoring and damage detection. Mechanical Systems and Signal Processing, v. 197, p. 110370, 2023b. DOI:10.1016/j.ymssp.2023.110370

LUO, B; WANG, H.; LIU, H.; LI, B.; PENG, F. Early fault detection of machine tools based on deep learning and dynamic identification. IEEE Transactions on Industrial Electronics, v. 66, n. 1, p. 509-518, 2018. DOI: 10.1109/TIE.2018.2807414

MARINIELLO, G.; PASTORE, T.; MENNA, C.; FESTA, P.; ASPRONE, D. Structural damage detection and localization using decision tree ensemble and vibration data. Computer‐Aided Civil and Infrastructure Engineering, v. 36, n. 9, p. 1129-1149, 2021. DOI:10.1111/mice.12633

MEIXEDO, A.; SANTOS, J.; RIBEIRO, D.; CALÇADA, R.; TODD, M. Damage detection in railway bridges using traffic-induced dynamic responses. Engineering Structures, v. 238, p. 112189, 2021. DOI:10.1016/j.engstruct.2021.112189

MORALES, Fabricio A. O.; CURY, Alexandre A. Analysis of thermal and damage effects over structural modal parameters. Structural engineering and mechanics: An international journal, v. 65, n. 1, p. 43-51, 2018. DOI:10.12989/sem.2018.65.1.043

MAECK, Johan; DE ROECK, Guido. Damage assessment using vibration analysis on the Z24-bridge. Mechanical Systems and Signal Processing, v. 17, n. 1, p. 133-142, 2003. DOI: 10.1006/mssp.2002.1550

MOUGHTY, John J.; CASAS, Joan R. A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions. Applied Sciences, v. 7, n. 5, p. 510, 2017. DOI: 10.3390/app7050510

RYTTER, A. Vibrational based inspection of civil engineering structures. 1993. Tese de doutorado – Denmark: Department of Building Technology and Structural, Aalborg University, Aalborg, 1993.

SONY, S.; GAMAGE, S.; SADHU, A.; SAMARABANDU, J. Vibration-based multiclass damage detection and localization using long short-term memory networks. Structures, v. 35, p. 436-451, 2022. DOI: 10.1016/j.istruc.2021.10.088

TAN, Yi; ZHANG, Limao. Computational methodologies for optimal sensor placement in structural health monitoring: A review. Structural Health Monitoring, v. 19, n. 4, p. 1287-1308, 2020. DOI: 10.1177/1475921719877579

TIAN, W.; CHENG, X.; LIU, Q.; YU, C.; GAO, F.; CHI, Y. Meso-structure segmentation of concrete CT image based on mask and regional convolution neural network. Materials & Design, v. 208, p. 109919, 2021. DOI:10.1016/j.matdes.2021.109919

WANG, Teng; LU, Guoliang; YAN, Peng. A novel statistical time-frequency analysis for rotating machine condition monitoring. IEEE

Transactions on Industrial Electronics, v. 67, n. 1, p. 531-541, 2019. DOI: 10.1109/TIE.2019.2896109

YUAN, Fuh-Gwo (Ed.). Structural health monitoring (SHM) in aerospace structures. Woodhead Publishing, 2016. DOI: 10.1016/C2014-0-00994-X

ZACHARAKIS, Ilias; GIAGOPOULOS, Dimitrios. Vibration-Based Damage Detection Using Finite Element Modeling and the Metaheuristic Particle Swarm Optimization Algorithm. Sensors, v. 22, n. 14, p. 5079, 2022. DOI: 10.3390/s22145079

ZHANG, Yixiao; LEI, Ying. Data anomaly detection of bridge structures using convolutional neural network based on structural vibration signals. Symmetry, v. 13, n. 7, p. 1186, 2021. DOI: 10.3390/sym13071186

Publicado

2024-02-21

Como Citar

Monitoramento de integridade estrutural utilizando inteligência artificial: desafios, avanços e aplicações. Revista da UFMG, Belo Horizonte, v. 30, n. fluxo contínuo, 2024. DOI: 10.35699/2965-6931.2023.47533. Disponível em: https://periodicos.ufmg.br/index.php/revistadaufmg/article/view/47533. Acesso em: 22 dez. 2024.