The impact of artificial intelligence in life sciences through bioinformatics
DOI:
https://doi.org/10.35699/2965-6931.2023.47996Keywords:
bioinformática, inteligencia artificial, aprendizaje automáticoAbstract
In recent years, artificial intelligence (AI) techniques have revolutionized research in the life sciences. This became possible thanks to the emergence of new methods and technologies that allowed the generation of high quality and large-scale biological data. Allied to this, bioinformatics techniques have allowed the modeling and resolution of biological problems so that the applications of machine learning models have raised new perspectives. In this paper, we will address the impacts of AI on the life sciences, with particular emphasis on those mediated by bioinformatics, advances in AI models and algorithms, and the consequences for research in the life sciences.
Downloads
References
ABBASI, Maryam et al. Designing optimized drug candidates with Generative Adversarial Network. Journal of Cheminformatics, 14, n. 1, 2022. 40.
ALQURAISHI, Mohammed. AlphaFold at CASP13. Bioinformatics, 35, n. 22, 2019. 4862-4865.
ANAND, Namrata; HUANG, Po-Ssu. Generative modeling for protein structures. Proceedings of the 32nd International Conference on Neural Information Processing Systems, 31, 2018. 7505-7516.
ANISHCHENKO, Ivan. et al. De novo protein design by deep network hallucination. Nature, 600, n. 7889, 2021. 547-552.
ANSTINE, Dylan M.; ISAYEV, Olexandr. Generative Models as an Emerging Paradigm in the Chemical Sciences. Journal of the American Chemical Society, 145, n. 16, 2023. 8736-8750.
BAI, Qifeng et al. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. WIREs Computational Molecular Science, 12, n. 3, 2021. e1581.
BENGIO, Yoshua; COURVILLE, Aaron; VINCENT, Pascal. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, n. 8, 2013. 1798-1828.
BIAN, Yuemin; XIE, Xiang-Qun. Generative chemistry: drug discovery with deep learning generative models. Journal of Molecular Modeling, 27, n. 3, 2021. 71-89.
BILODEAU, Camille et al. Generative models for molecular discovery: Recent advances and challenges. WIREs Computational Molecular Science, 12, n. 5, 2022.
BRANDES, Nadav et al. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics, 38, n. 8, 2022. 2102-2110.
BRANDES, Nadav et al. Genome-wide prediction of disease variant effects with a deep protein language model. Nature Genetics, 2023.
CALLAWAY, Ewen. AI tools are designing entirely new proteins that could transform medicine. Nature, 619, n. 7969, 2023. 236-238.
CHEN, Ziqi et al. Shape-conditioned 3D Molecule Generation via Equivariant Diffusion Models. Preprint, 2023. Disponível em: <https://arxiv.org/abs/2308.11890>. Acesso em: 5 Setembro 2023.
CHENTHAMARAKSHAN, Vijil et al. Accelerating drug target inhibitor discovery with a deep generative foundation model. Science Advances, 9, n. 25, 2023.
DEFRESNE, Marianne; BARBE, Sophie; SCHIEX, Thomas. Protein Design with Deep Learning. International Journal of Molecular Sciences, 22, n. 21, 2021. 11741.
DILL, Ken A.; MACCALLUM, Justin L. The Protein-Folding Problem, 50 Years On. Science, 338, n. 6110, 2012. 1042-1046.
DING, Wenze; GONG, Haipeng. Predicting the Real-Valued Inter-Residue Distances for Proteins. Advanced Science, 7, n. 19, 2020. 2001314.
DU, Zongyang et al. The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16, n. 12, 2021. 5634-5651.
DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern Classification. 2ª. ed.
FERRUZ, Noelia; SCHMIDT, Steffen; HÖCKER, Birte. ProtGPT2 is a deep unsupervised language. Nature Communications, 13, n. 1, 2022. 4348.
GAO, Wenhao et al. Deep Learning in Protein Structural Modeling and Design. Patterns, 1, n. 9, 2020. 100142.
GONZALEZ, Rafael C.; WOODS, Richard E. Digital Image Processing. 4ª. ed.
GOODFELLOW, Ian J. et al. Generative Adversarial Networks. Advances in Neural Information Processing System, 2014. 2672-2680.
GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning.
HAN, Minwoo et al. Recognition of the ligand-induced spatiotemporal residue pair pattern of β2-adrenergic receptors using 3-D residual networks trained by the time series of protein distance maps. Computational and Structural Biotechnology Journal, 20, 2022. 6360-6374.
HAYKIN, Simon. Neural Networks: A Comprehensive Foundation. 2ª. ed.
HOLT, Charles A.; ROTH, Alvin E. The Nash equilibrium: A perspective. Proceedings of the National Academy of Sciences, 101, n. 12, 2004. 3999-4002.
HOPFIELD, J. J. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, n. 8, 1982. 2554-2558.
HUANG, Po-Ssu; BOYKEN, Scott E.; BAKER, David. The coming of age of de novo protein design. Nature, 537, n. 7620, 2016. 320-327.
JUMPER, John et al. Highly accurate protein structure prediction with AlphaFold. Nature, 596, n. 7873, 2021. 583-589.
KINGMA, Diederik P.; WELLING, Max. Auto-Encoding Variational Bayes, 2013.
LECUN, Yan et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1, n. 4, 1989. 541-551.
LI, Chuan et al. An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: a Case Study on Functional States for G-Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 62, n. 6, 2022. 1399-1410.
LI, Xuanyi et al. Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors. Journal of Cheminformatics, 12, n. 1, 2020. 42.
LI, Yuesen et al. DrugGPT: A GPT-based Strategy for Designing Potential Ligands Targeting Specific Proteins. Preprint, 2023. Disponível em: <https://doi.org/10.1101/2023.06.29.543848>. Acesso em: 5 Setembro 2023.
LI, Zhaoyu et al. Protein Loop Modeling Using Deep Generative Adversarial Network. IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2017. 1085-1091.
LIN, Zeming et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379, n. 6637, 2023. 1123-1130.
MAO, Jiashun et al. Application of a deep generative model produces novel and diverse functional peptides against microbial resistance. Computational and Structural Biotechnology Journal, 21, 2023. 463-471.
MARIANO, Diego et al. A Brief History of Bioinformatics Told by Data Visualization. Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science. Belo Horizonte: Springer, Cham. 2020. p. 235-246.
METHOD of the Year 2021: Protein structure prediction. Nature Methods, 19, n. 1, 2022.
MIN, Seonwoo; LEE, Byunghan; YOON, Sungroh. Deep learning in bioinformatics. Briefings in Bioinformatics, 18, n. 5, 2017. 851–869.
MISHRA, Sarbani et al. Introduction to the World of Bioinformatics. A Guide to Applied Machine Learning for Biologists, 2023. 105-126.
MITCHELL, Tom M. Machine learning.
MOLNAR, Christoph. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2ª. ed.
NASH, John F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36, n. 1, 1950. 48-49.
PLANTE, Ambrose et al. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs. Molecules, 24, n. 11, 2019. 2097.
PRAVALPHRUEKUL, Nutaya et al. De Novo Design of Molecules with Multiaction Potential from Differential Gene Expression using Variational Autoencoder. Journal of Chemical Information and Modeling, 63, n. 13, 2023. 3999-4011.
RAO, Roshan. et al. Transformer protein language models are unsupervised structure learners. International Conference on Learning Representations, 2020.
RIVES, Alexander. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. PNAS, 118, n. 15, 2019.
ROSSETTO, Allison; ZHOU, Wenjin. GANDALF: Peptide Generation for Drug Design Using Sequential and Structural Generative Adversarial Networks. Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2020.
RUMELHART, David E.; HINTON, Geoffrey E.; WILLIAMS, Ronald J. Learning representations by back-propagating errors. Nature, 323, n. 6088, 1986. 533-536.
SANCHEZ-LENGELING, Benjamin; ASPURU-GUZIK, Alán. Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361, n. 6400, 2018. 360-365.
SANTOS, Lucas M. D. et al. Peptide-Protein Interface Classification Using Convolutional Neural Networks. Advances in Bioinformatics and Computational Biology. BSB 2023. Lecture Notes in Computer Science. Curitiba: Springer, Cham. 2023. p. 112-122.
SANTOS, Lucas M. D.; MELO-MINARDI, Raquel C. D. Identifying Large Scale Conformational Changes in Proteins Through Distance Maps and Convolutional Networks. Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science. Búzios: Springer, Cham. 2022. p. 56-67.
SENIOR, Andrew W. et al. Improved protein structure prediction using potentials from deep learning. Nature, 577, n. 7792, 2020. 706–710.
SOHL-DICKSTEIN, Jascha et al. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: [s.n.]. 2015. p. 2256–2265.
SOUSA, Tiago et al. Generative Deep Learning for Targeted Compound Design. Journal of Chemical Information and Modeling, 61, n. 11, 2021. 5343-5361.
SURANA, Shraddha. et al. PandoraGAN: Generating antiviral peptides. SN COMPUT. SCI., 4, n. 607, 2023.
THOMAS, Morgan; BENDER, Andreas; GRAAF, Chris D. Integrating structure-based approaches in generative molecular design. Current Opinion in Structural Biology, 79, 2023. 102559.
TONG, Xiaochu et al. Generative Models for De Novo Drug Design. Journal of Medicinal Chemistry, 64, n. 19, 2021. 14011-14027.
TORRISI, Mirko; POLLASTRI, Gianluca; LE, Quan. Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 2020. 1301-1310.
VASWANI, Ashish et al. Attention is All you Need. Advances in Neural Information Processing Systems, 30, 2017. 6000–6010.
VERLI, Hugo. Bioinformática: da biologia à flexibilidade molecular.
VERT, Jean-Philippe. How will generative AI disrupt data science in
drug discovery?. Nature Biotechnology, 41, n. 6, 2023. 750-751.
WATSON, Joseph L. et al. De novo design of protein structure and function with RFdiffusion. Nature, 620, n. 7976, 2023. 1089-1100.
XIE, Xuezhi; VALIENTE, Pedro A.; KIM, Philip M. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics, 39, n. 1, 2023.
ZENG, Xiangxiang et al. Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3, n. 12, 2022. 100794.
ZHANG, Shuang et al. Applications of transformer-based language models in bioinformatics: a survey. Bioinformatics Advances, 3, n. 1, 2023.