Relação entre o relevo e a rede de drenagem na análise da condição de equilíbrio no alto rio Piranga (MG)

Authors

  • William Zanete Bertolini Universidade Federal da Fronteira Sul, Campus Chapecó
  • Luis Felipe Soares Cherem Universidade Federal de Goiás, Campus Samambaia

DOI:

https://doi.org/10.35699/2237-549X..13417

Keywords:

geomorphological equilibrium, upper Piranga river, Minas Gerais, slope

Abstract

The relationship between landforms, slope processes and fluvial channels is a key point in many geomorphological theories, for the importance of adjustment between erosional processes, base level and environmental conditions under which this happens. The channel slope and hillside valleys define the potential energy for water flow to material transport on the fluvial system. Thus, it should be expected that in accordance with higher slopes the fluvial gradients would be higher too; the same way lower slopes should be associated with lower channel gradients. That is the prerogative checked here and considered by Strahler (1950; 1977) as representative condition of geomorphological equilibrium. It was tested by the analysis of eight river basins of 3rd order in the upper Piranga River at Minas Gerais – Brazil. This study was based on the verification of fluvial systemand its morphodynamical conditions by the way the equilibriumcondition of relief. It was checked: (i) the correlation between channelgradients and slope hillsides on these drainage basins; (ii) the mainchannels longitudinal profiles and (iii) Hack’s index (SL) to mainchannels and its segments of upper, medium and lower river. Theresults show lack of correlation between river gradients and averageslope of valleys, which reflects a misfiting between slope processes andchannel incision. This setting is supported by longitudinal profiles andHack’s index and confirms a recent reorganization of fluvial systemin the upper Piranga River drainage basin.

References

AMBILI, V.; NARAYAMA, A.C. Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India. Geomorphology. 217, p.37-47. 2014.

BISHOP, P.; HOEY, T.B.; JANSEN, J.D; ARTZA, I.L. Knickpoint recession rate and catchment area: the case of uplifted rivers in eastern Scotland. Earth Surface Processes and Landforms. 30 (6), p.767-778, 2005.

BULL, William B. Tectonic geomorphology of mountains: a new approach to paleosismology. Blackwell Publishing. 2007.

BURBANK, Douglas W.; ANDERSON, Robert S. Tectonic Geomorphology. Blackwell Publishing. 2001.

CHEREM, L.F.S.; VARAJÃO, C.A.C.; BRAUCHER, R.; BOURLÈS, D.; SALGADO, A.A.R.; VARAJÃO, A.C. Long-term evolution of denudational escarpments in southeastern Brazil. Geomorphology. 173-174, p. 118–127. 2012.

CHEREM, Luis F.S.; VARAJÃO, César A.C.; MAGALHÃES JUNIOR, Antonio P.; SALGADO, André A.; OLIVEIRA, Letícia A.F.de.; BERTOLINI, William Z.; VARAJÃO, Angélica F.D.C. O papel das capturas fluviais na morfodinâmica das bordas interplanálticas do sudeste do Brasil. Revista Brasileira de Geomorfologia. v.14, n.4. p.299-308, 2013.

CHRISTOFOLETTI, Antonio. La noción de equilíbrio en geomorfologia fluvial. Revista de Geografía Norte Grande. 8: p.69-86. 1981.

CARSON, M.A.; KIRKBY, M.J. Hillslope form and process. Cambridge: Cambridge University Press. 1972.

DAVIS, William M. The Geographical Cycle. Geographical Journal of Royal Society. nº 14. p.481-504. 1899.

DELGADO, I. de M.; SOUZA, J.D de.; SILVA, J.C.da.; FILHO, N.C.da S.; SANTOS, R A.dos.; PEDREIRA, A.J.; GUIMARÃES, J.T.; ANGELIM, J.A.de A.; VASCONCELOS, A.M.; GOMES, I.P.; FILHO, J.V de L.; VALENTE, C.R.; PERROTTA, M.M e HEINECK, C.A. Geotectônica do Escudo Atlântico (cap. V). In: BIZZI, L.A.; SCHOBBENHAUS, C.; VIDOTTI, R.M.; GONÇALVEZ, J.H (eds). Geologia, Tectônica e Recursos Minerais do Brasil. CPRM, Brasília. 2003.

DUVALL, Alisson.; KIRBY, Eric.; BURBANK, Douglas. Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research. v.109, 2004.

DYLIK, Jan. The significance of the slope in geomorphology. Bulletin de la Societé des Sciences et des Lettres de Lodz v. XIX, 3.EATON, Brett C.; CHURCH, Michael. A graded stream response relation for bed load-dominated streams. Journal of Geophysical Research. v. 109, p. 2004.

GILBERT, Karl G. Report on the Geology of Henry Mountains. U.S. Geog. And Geol. Surv., Rocky Mountain Region. 1877.

GILBERT, Karl G. The convexity of hilltops. The Journal of Geology. v.17, n.4. p.344-350. 1909.

GUEDES, Ivan C.; ETCHEBEHERE, Mario L de C.; MORALES, Norberto.; STEVAUX, José C.; SANTONI, Gisele de C. Análise morfotectônica da bacia do rio Santo Anastácio, SP, através de parâmetros fluvio-morfométricos e de registros paleossísmicos. Geociências. v.28, n.4, UNESP, São Paulo. p.247-362. 2009.

HACK, John T. Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper. 294B. 1957.

HACK, John T. Interpretation of erosional topography in humid temperate regions. American Journal of Science. 258A, p.80-97, 1960.

HACK, John T. Geomorphology of the Shenandoah Valley Virginia and West Virginia and Origin of the Residual Ore Deposits. U.S. Geological Survey. Professional Paper 484 Washington, U.S, 1965.

HACK, John T. Stream-profile analysis and stream-gradient index. Journal Research U.S. Geol. Survey. v.1, n.4 p.421-429, 1973.HACK, John.T. Dynamic equilibrium and landscape evolution. In: MELHORN, W.; FLEMAL, R. (eds) Theories of Landform Development (chapiter 5): Publications in Geomorphology. SUNY Binghanton, 1975.

HORTON, R.E. Erosional development of streams and their drainage basins: a hydrophysical approach to quantitative morphology. Geol Soc. Am. Bull., v.56, n.3, p.275-370, 1945.

HUDDART, D.; STOTT, T. Fluvial processes and landform – sediment assemblages. In: Earth Environments: past, present and future. Wiley-Blackwell. West Sussex, UK, 2010.

IBGE. Carta topográfica Capela Nova (MG) Folha SF-23-X-A-VI-4. Escala 1:50.000. 1976.

IBGE. Carta topográfica Senhora dos Remédios (MG) Folha SF-23-X-C-III-2. Escala 1:50.000. 1976.

KELLER, Edward A.; PINTER, Nicholas. Active tectonics: earthquakes, uplift and landscape. 2ªed. New Jersey, Prentice Hall. 362 p. 2002.

LEOPOLD, Luna. B.; MADDOCK, T. The hydraulic geometry of stream channels and some physiographic implications. U.S. Geol. Sur. Prof. Paper. 252, Washington, EUA. 1953.

LIMA, Adalto G. Índice de gradiente de canal: significados e diretrizes para aplicação. Brazilian Geographical Journal. v.4, n.2, p.680-692. 2013.

LIMA, Adalto G. Uso da relação declive-área para avaliação de interferências neotectônicas em perfil longitudinal de rio. Boletim de Geografia UEM. Maringá, v.32, n.2, p.158-172. 2014.

MACKIN, J Hoover. Concept of graded river. Bulletin of the Geological Society of America. v. 59, p.463-612. 1948.

MARENT, Breno R. Geomorfogênese dos degraus escalonados do sudeste de Minas. Instituto de Geociências da UFMG. Belo Horizonte (Tese de Doutorado). 190 p. 2016.

MELLO, Claudio L.; METELO, Cynthia M.S.; SUGUIO, Kenitiro.; KOHLER, Heinz C. Quaternary sedimentation, neotectonics and the evolution of the Doce river middle valley lake system (southeastern Brazil). Revista do Instituto Geológico. IG São Paulo 20 (1/2), p.29-36. 1999.

MONTGOMERY, David R. Slope distributions, threshold hillslopes, and steady-state topography. American Journal of Science 301, p.432–454. 2001.

PENCK, Walther. Morphological analysis of landforms. New York, St. Martin’Press. Tradução de Hella Czeck e K.C. Boswell. 1953.

PHILLIPS, Jonathan D.; LUTZ, J David. Profile convexities in bedrock and alluvial streams. Geomorphology. 102, p.554-566. 2008.

RADAM BRASIL. Mapa geomorfológico. Folha Rio de Janeiro/Vitória SF23/24. Escala 1:1.000.000. Levantamento de Recursos Naturais. v.32. Ministério das Minas e Energia. 1983.

SAADI, Allaoua. Ensaio sobre a morfotectônica de Minas Gerais: tensões intra-placa, descontinuidades crustais e morfogênese. Belo Horizonte. Instituto de Geociências – UFMG. (Tese de livre docência). 290 p. 1991.

SOUZA, Carla J. de O. Interpretação morfotectônica da bacia do rio Doce. Instituto de Geociências – UFMG. (Dissertação de mestrado). 146 p. 1995.

SEEBER, L.; GORNITZ, V. River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics. 92 p.335-367. 1983.

SILVA, Telma M.; MONTEIRO, Hevelyn da S.; CRUZ, Marcela A.; MOURA, Josilda R da S de. Anomalias de drenagem e evolução da paisagem no médio vale do rio Paraíba do Sul (RJ/SP). Anuário do Instituto de Geociências. UFRJ, v.29 – 2. p.210-224. 2006.

STRAHLER, Arthur N. Equilibrium theory of erosional slopes approached by frequency distribution analysis. American Journal of Science. v.248, p.673-696 (Parte I) e p.800-814 (Parte II). 1950.

STRAHLER, Arthur N. Quantitative slope analysis. Bulletin of the Geological Society of America. v.67, p.571-596. 1956.

STRAHLER, Arthur N. Geografía Física. 3ªed. Ediciones Omega S.A. Barcelona. 1977.

ZANCOPÉ, Mario H de C.; PEREZ FILHO, Archimedes.; CARPI Jr. Anomalias no perfil longitudinal e migração dos meandros do Rio Mogi Guaçu. Revista Brasileira de Geomorfologia. v.10, n.1; p.31-42. 2009.

Published

2017-01-27

Issue

Section

Artigos

How to Cite

Relação entre o relevo e a rede de drenagem na análise da condição de equilíbrio no alto rio Piranga (MG). (2017). Revista Geografias, 12(1), 102-118. https://doi.org/10.35699/2237-549X..13417

Most read articles by the same author(s)