Evaluation of resistance to compression of composite resins

Authors

  • André Luiz Teixeira de Souza Universidade Vale do Rio Verde
  • Fernanda M. M. P. Cabral de Oliveira Universidade Vale do Rio Verde
  • Marcos Ribeiro Moysés Universidade Vale do Rio Verde
  • Claudine Pereira de Assis Universidade Vale do Rio Verde
  • José Carlos Rabelo Ribeiro Universidade Vale do Rio Verde
  • Sérgio Candido Dias Universidade Vale do Rio Verde

Keywords:

Composite resins, Compressive strength, Materials testing

Abstract

The objective of the present study was to assess the mechanical behavior in response to compression of seven different polymerizable composite resins: G1- Tetric Ceram (Ivoclar Vivadent), G2- Durafil VS (Heraeus Kulser), G3- Esthet X (Dentsply), G4- Charisma (Heraeus Kulser), G5- Filtek Supreme (3M ESPE), G6- Filtek Z250 (3M ESPE), and G7-Filtek P60 (3M ESPE). Eight samples of each resin were prepared using a nylon matrix which provided cylinders measuring 4 mm in diameter and 8 mm in height. The resins were inserted in successive layers and each layer was photopolymerized for the period of time recommended by the manufacturer using an halogen light apparatus (Optilight 600 Gnatus), with monitored light intensity. The mechanical testing machine EMIC DL 2000 (EMIC), with an activator speed of 0.5 mm per minute and a load cell of 2000 kg force was used for the assays. Data were analyzed statistically by ANOVA and by the Tukey test (p<0.05). The results showed that G6, G7, G4 and G3 presented the highest means and were statistically similar to one another; G1 and G5 presented similar intermediate results, and G2 presented the lowest mean resistance to compression, which was significantly different from the other groups. It could be concluded that the best mechanical behavior in response to compression were found in micro-hybrid resins except for Tetric Ceram. The micro-particles resin was less resistant (Durafill VS). The nano-particle resin (Filtek Supreme) showed an intermediate behavior.

Downloads

Download data is not yet available.

References

Benitez ABE, Gonçalves Filho M, Dinelli W. Resinas compostas para dentes posteriores – estudos in vitro da resistência à compressão em função de tempo de polimerização e material. J B C. 2000; 23:19-23.

Bowen, RL. Use of epoxy resins in restorative materials. J Dent Res. 1956; 35:360-9.

Chalifoux PR. Aesthetic guidelines for posterior composite restorations. Pract Periodontics Aesthet Dent. 1996; 8:39-48.

Reis AC, Panzeri H, Agnelli JAM. Caracterização microestrutural de uma resina condensável condensada manual e mecanicamente. Brazilian Oral Res. 2000; (supl abstr B119) 14:122.

Lutz F Krejci I, Barbakow F. The importance of proximal curing in posterior composite resin restorations. Quintessence Int. 1992; 23:605-7.

Torstenson B, Branwstrom M. Composite resin contraction gaps measured with a fluorescent resin technique. Dent Mater. 1988; 4:238-42.

Craig RG., Powers JM. Materiais Dentários Restauradores. 11. ed. São Paulo: Livraria e Editora Santos; 2004; 38-44.

Baharav H, Abraham D, Cardash HS, Helft M. Effect of exposure time on the depth of polymerization of a visible light cured composite resin. J Oral Rehabil. 1988; 15:167-72.

Bakke JC, Duke ES, Norling BK, Windler S, Mayhem RB. Fracture strength of class II preparations with posterior composite. IADR/AADR Abstracts, art. 1578,1985.

Oliveira FC, Denehy GE, Boyer DB. Fracture resistance of endodontically prepared teeth using various restorative materials. J Am Dent Assoc. 1987; 115:57-60.

Roulet JF. The problems associated with substituting composite resins for amalgam: a status report on posterior composites. J Dent. 1988; 16:101-13.

Willems G, Lambrechts P, Braem M, Vanherle G. Composite resins in the 21st century. Quintessence Int. 1993; 24:641-58.

Mills RW, Uhl A, Blackwell GB, Jandt KD. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials. 2002; 23:2955-63.

Miranda Júnior WG, Ballester RY, Braga RR. O problema da polimerização de resinas compostas. In Cardoso RJA; Gonçalves EAN. Odontologia estética. 2002; 3:32-42.

Maciel D, Dias AL, Moysés MR, Ribeiro JCR, Dias SC, Reis AC. Influência do prazo de validade de resinas compostas na resistência à compressão. Arquivos em Odontologia. 2005; 41:193-272.

Brosh T., Ganor Y., Belov I., Pilo R. Analysis of strength properties of light-cured resin composites. Dent Mater. 1999; 15:174-9.

MacGregor KM, Cobb DS, Denehy GE. Physical properties of new packable composites vs. a convencional hybrid. J. Dent. Res. 2000; 79: 366; Special Issue. Abstr. 1777.

Moschetti MB, Bertoja G, Pires LAG, Mota EG, Oshima HS. Comparação da resistência à compressão de resinas compostas. In: Anais da 21a. Reunião da Sociedade Brasileira de Pesquisa Odontológica – SBPqO; 2004 set, 8-12; Águas de Lindóia (SP). São Paulo: SBPqO; 2004. p.79.

Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc. 2003; 134:1382-90.

Published

2016-03-02

How to Cite

Souza, A. L. T. de, Oliveira, F. M. M. P. C. de, Moysés, M. R., Assis, C. P. de, Ribeiro, J. C. R., & Dias, S. C. (2016). Evaluation of resistance to compression of composite resins. Arquivos Em Odontologia, 43(1). Retrieved from https://periodicos.ufmg.br/index.php/arquivosemodontologia/article/view/3427

Issue

Section

Artigos

Most read articles by the same author(s)