“Lana Tai – no dia em que nasceu uma aquarela”

composing via audio descriptors

Authors

Keywords:

Music composition, Computer-aided orchestration, Extended techniques, Audio descriptors, Pure Data

Abstract

This article is a review of a music creative processes in which it was applied compositional strategies combined to sound spectral analysis based on audio descriptors. This procedure supported the creation of the work “Lana Tai – no dia em que nasceu uma aquarela” for string orchestra. For that, some instrumental mixtures and orchestration were made using a Sound DataBase. In this particular case, a virtual environment in Pure Data (PD) software, using the library for analysis fucntions PDescriptors, analyzed some potential orchestral settings. All the results, issues and compositional reflections were used to create “Lana Tai – no dia em que nasceu uma aquarela”. This approach rises up a new contribution in the development of research in both creative processes and the creation of new unpublished works.

Downloads

Download data is not yet available.

Author Biographies

Ivan Eiji Simurra, University of Campinas (Brazil) - UNICAMP

Ivan Eiji Simurra is a composer, researcher and DJ at the NICS-UNICAMP (Núcleo Interdisciplinar de Comunicação Sonora). He studied composition with Silvio Ferraz, Denise Garcia, José Augusto Mannis, Jônatas Manzolli and Eduardo Álvares. His works are performed in Brazil, Argentina, Chile, United States, Portugal, Ireland, Israel, Greece and Russia. He is currently developing his doctoral research, in Creative Processes, under the guidance of Prof. Dr. Jônatas Manzolli and with the support of FAPESP.

Jônatas Manzolli, University of Campinas (Brazil) - UNICAMP

Jônatas Manzolli has a degree in Computational Applied Mathematics (1983) and in Composition and Conducting (1987) and a master's degree in Applied Mathematics (1988) both from Unicamp and a PhD from the University of Nottingham (1993) in the context of musical composition. He is currently a Professor at the Institute of Arts at Unicamp. Composer and mathematician, researches the interaction between Art and Technology interweaving music creation, music computing and cognitive sciences. His artistic production relates instrumental music, electroacoustics, multimedia works for dance and sound installations.

References

ASSAYAG, G.; RUEDA, C.; LAURSON, M.; AGON, C.; DELERUE, O. (1999). Computer-assisted composition at ircam: From patchwork to openmusic. Computer Music Journal, vol. 23, no. 3, p. 59 – 72.

BALLET, G.; BORGHESI, R.; HOFFMANN, P.; LÉVY, F. (1999). Studio Online 3.0: An Internet “Killer Application” for Remote Access to IRCAM Sounds and Processing tools. Journées d’Informatique Musicale. France.

BARBEDO, J. G. A.; LOPES, A. (2007). Automatic genre classification of musical signals. EURASIP Journal on Applied Signal Processing, v. 2007, n. 1, p.157. 4. BERLIOZ, H. (1844) Treatise on Instrumentation by Hector Berlioz and Richard Strauss, translated by Theodore Front, published by Edwin F. Kalmus, NY, NY 1948.

BOGDANOV, D.; WACK, N.; GÓMEZ, E.; et al. (2013). Essentia: An audio analysis library for music information retrieval. Proceedings of ISMIR.

BOULEZ, P. (1987). Timbre and composition – timbre and language. Contemporary Music Review. Vol. 2. Translated by R. Robertson. p.161-171

BYRD, D; FINGERHUT, M. (2002). The History of ISMIR – A Short Happy Tale. D-lib Magazine, Vol. 8, No. 11.

CARPENTIER, G. (2008). Approche computationelle de l’orchestration musicale – Optimization multicritère sous contraintes de combinaisons instrumentales dans de grandes banques de sons. Ph.D. Thesis, University Pierre et Marie Curie, Paris.

CARTWRIGHT, M.; PARDO, B. (2013). Social-Eq: Crowdsourcing An Equalization Descriptor Map. n. 14o International Conference - ISMIR. Curitiba - Brazil.

DESHPANDE, H.; SINGH, R.; NAM, U. (2001). Classification of music signals in the visual domain. Proceedings of the Conference on Digital Audio Effects. p.1–4.

DIELEMAN, S.; SCHRAUWEN, B. (2013). Multiscale Approaches To Music Audio Feature Learning. 14o International Conference - ISMIR - Curitiba - Brazil.

DOWNIE, J. S.; EHMANN, A. F.; BAY, M.; JONES, M. C. (2010). The Music Information Retrieval Evaluation eXchange: Some Observations and Insights. International MIR Systems Evaluation Laboratory. University of Illinois.

ESLING, P.; AGON, C. (2013). Multiobjective Time Series Matching for Audio Classification and Retrieval. IEEE Transactions on Audio, Speech, and Language Processing, v. 21, n. 10, p.2057–2072.

ESLING, P.; AGON, C. (2010). Composition of sound mixtures with spectral maquettes. Ann Arbor, MI: MPublishing, University of Michigan Library.

ESLING, P.; CARPENTIER, G.; AGON, C. (2010). Dynamic musical orchestration using genetic algorithms and a spectro-temporal description of musical instruments. Applications of Evolutionary Computation. p.371–380. Springer.

FUJISHIMA, T. (1999). Realtime Chord Recognition of Musical Sound: a System Using Common Lisp Music. CCRMA, Stanford University. 4 pgs.

GOMEZ, E. 2006. Tonal description of music audio signals, Ph.D. dissertation, MTG, Universitat Pompeu Fabra, Barcelona, Spain.

HARVEY, J. (1980). The Composer’s View: Atonality. The Musical Times, p.699.

HUMMEL, T. A. (2005). Simulation of human voice timbre by orchestration of acoustic music instruments. Proceedings of ICMC. p.185.

LAMBROU, T.; KUDUMAKIS, P.; SPELLER, R.; SANDLER, M.; LINNEY, A. (1998). Classification of audio signals using statistical features on time and wavelet transform domains. Acoustics, Speech and Signal Processing. Proceedings of the 1998 IEEE International Conference on. v. 6, p.3621–3624.

LAURSON, M., KUUSKANKARE, M. (2002). PWGL: A Novel Visual Language based on Common Lisp, CLOS and OpenGL. In Proceedings of International Computer Music Conference, Gothenburg, Sweden. p.142–145.

MALT, M.; JOURDAN, E. (2008). Zsa.Descriptors: a library for real-time descriptors analysis. In 5th Sound And Music Computing Conference, Berlin, Allemagne.

MALT, M.; JOURDAN, E. (2009). Real-Time Uses of Low Level Sound Descriptors as Event Detection Functions Using the Max/MSP Zsa.Descriptors Library. SBCM, Recife, Brazil.

MANZOLLI, J. (1988). Um Modelo Matemático para Timbre Orquestral. Dissertação de mestrado, IMECC, Unicamp.

McADAMS,S. & BATTIER, M. (2005). Creation and perception of a contemporary musical work: The Angel of Death by Roger Reynolds. Ircam, Paris.

MONTEIRO, A. (2012). Criação e Performance Musical no Contexto dos Instrumentos Digitais. Dissertação de Mestrado. Núcleo Interdisciplonar de Comunicação Sonora – NICS/UNICAMP. Universidade Estadual Campinas. 159 pgs.

PADOVANI, J.; FERRAZ, S. (2011). Proto-História, Evolução e Situação Atual das Técnicas Estendidas na Criação Musical e na Performance. Música Hodie, Vol.11.

PAMPALK, E. (2006). Computational models of music similarity and their application in music information retrieval. Tese de Doutorado. Austria: Vienna University of Technology.

Orchestration. W Norton & Company Incorporated. 33. PUCKETTE, M. S. (1996). Pure Data. Proceedings, International Computer Music Conference. San Francisco: International Computer Music Association. p.269–272.

PSENICKA, D. (2003). Sporch: An algorithm for orchestration based on spectral analyses of recorded sounds. Proceedings of ICMC. p.184.

ROSE, F.; HETRICK, J. E. (2009). Enhancing orchestration technique via spectrally based linear algebra methods. Computer Music Journal, v. 33, n. 1, p. 32–41. 36. RIMSKY-KORSAKOV, N. (1922). Principles of Orchestration. ed. by Maximilian Steinberg. Traduzido por Edward Agate; New York: Dover Publications.

SCHAFER, M. (1997). A afinação do mundo. Título original em inglês: The Tuning of the World. 1977. Editora UNESP.

SHEH A, ELLIS D.P.W. (2003). Chord segmentation and recognition using EM-trained hidden Markov models. International Conference On MIR, Baltimore, USA.

SHEPARD, R. N. (1982). Structural representations of musical pitch. In Deutsch, D., editor, The Psychology of Music, First Edition. Swets & Zeitlinger.

THEODORIDIS, S.; KOUTROUMBAS. (2009). Pattern Recognition. Academic press. 967 pgs.

THOSHKAHNA, B.; NSABIMANA, F.; RAMAKRISHNAN, K. R. (2011). A Transient Detection Algorithm For Audio Using Iterative Analysis Of Stft. 12th International Society for MIR Conference.

WANG, A. (2003). An Industrial Strength Audio Search Algorithm. ISMIR.

Published

2015-11-10

How to Cite

Simurra, Ivan Eiji, and Jônatas Manzolli. 2015. “‘Lana Tai – No Dia Em Que Nasceu Uma aquarela’: Composing via Audio Descriptors”. Per Musi, no. 32 (November):1-26. https://periodicos.ufmg.br/index.php/permusi/article/view/38463.

Issue

Section

Articles in Portuguese/Spanish