A Relação entre o Conhecimento Conceitual e o Desempenho de Estudantes em Atividades Investigativas

Autores

DOI:

https://doi.org/10.28976/1984-2686rbpec2018183935

Palavras-chave:

Atividades investigativas, conhecimento conceitual, conhecimento procedimental, controle de variáveis.

Resumo

Esse trabalho busca identificar a influência do conhecimento conceitual sobre o desempenho de estudantes na execução de uma atividade investigativa, realizada em duplas, por meio de uma simulação computacional. O desempenho dos estudantes foi avaliado segundo um conjunto de fatores: o total de experimentos realizados, a exploração do campo experimental, a percentagem de variáveis independentes pesquisadas; e a quantidade de testes adequados e consistentes realizados. Participaram da pesquisa 160 alunos do primeiro ano do Ensino Médio de uma escola pública federal de Belo Horizonte. Os resultados sugerem que alunos que apresentam um maior conhecimento conceitual sobre o domínio teórico da atividade também apresentam estratégias mais adequadas de controle de variáveis e de experimentação. Com base nos resultados obtidos, são discutidas as implicações educacionais e propostas novas possibilidades de pesquisa na área.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rafaela Dinali Nascimento, Universidade Federal de São João del-Rei

Graduanda em Engenharia Elétrica

Alessandro Damásio Trani Gomes, Universidade Federal de São João del-Rei

Licenciatura em Física;

Mestre em Educação;

Doutor em Educação;

Professor adjunto na Universidade Federal de São João del-Rei

Referências

Alexander, P. A., & Judy, J. E. (1988). The interaction of domain-specific and strategic knowledge in academic performance. Review of Educational Research, 58(4), 375–404. https://doi.org/10.3102/00346543058004375
Amsel, E., & Brock, S. (1996). The development of evidence evaluation skills. Cognitive Development, 11(4), 523–550. https://doi.org/10.1016/S0885-2014(96)90016-7
Bassoli, F. (2014). Atividades práticas e o ensino-aprendizagem de ciência(s): mitos, tendências e distorções. Ciência & Educação, 20(3), 579–593. https://doi.org/10.1590/1516-73132014000300005  
Bogdan, A. M. (2016). Student reasoning from data tables: data interpretation in light of student ability and prior belief. (Doctoral thesis). The Ohio State University.
Borges, A. T. (2002). Novos rumos para o laboratório escolar de ciências. Caderno Catarinense de Ensino de Física, 19(3), 291–313.
Borges, O. N., Borges, A. T., & Vaz, A. M. (2005). Os planos dos estudantes para resolver problemas práticos. Revista Brasileira de Ensino de Física, 27(3), 435–446. https://doi.org/10.1590/S1806-11172005000300022
Bybee, R. W. (2011). Scientific and engineering practices in K–2 classrooms. Science Teacher, 78(9), 34–40.
Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13–19. https://doi.org/10.1016/S0193-3973(99)00046-5
Carvalho, A. M. P. (2013). Ensino de Ciências por Investigação. 1. ed. São Paulo: Cengage Learning.
Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70(5), 1098–1120. https://doi.org/10.1111/1467-8624.00081
Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.). Handbook of Research on Conceptual Change (pp. 61–82). Hillsdale, NJ: Erlbaum.
Croker, S., & Buchanan, H. (2011). Scientific reasoning in a real world context: The effect of prior belief and outcome on children’s hypothesis testing strategies. British Journal of Developmental Psychology, 29(3), 409–424. https://doi.org/10.1348/026151010X496906
Deboer, G.E. (2006). Historical perspectives on inquiry teaching in schools. In L. B. Flick, & N. G. Lederman (Eds.). Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht, The Netherlands: Springer, p. 17–35.
Dedić, Z. R. (2014). Metacognitive knowledge in relation to inquiry skills and knowledge acquisition within a computer-supported inquiry learning environment. Psychological Topics, 23(1), 115–141.
Driver, R., Squires, A., Rushworth, P., & Robinson, V. W. (1994). Making sense of secondary science: research into children’s ideas. London: Routledge.
Dunbar K. N., & Klahr, D. (2012). Scientific thinking and reasoning. In K. J. Holyoak, & R. Morrison (Eds.), Cambridge Handbook of Thinking and Reasoning (pp. 701–718). Cambridge, England: Cambridge University Press. https://doi.org/10.1093/oxfordhb/9780199734689.013.0035
Edelsbrunner, P. A., Schalk, L., Schumacher, R., & Stern, E. (2016). Variable control and conceptual change: A large-scale quantitative study in elementary school. Recuperado de <http://osf.io/n6gev>.
Faria, A. F., & Vaz, A. M. (2014) Pensamento científico em artigos publicados de 2010 a 2014 em periódicos de Ensino de Física. In: Atas do XV Encontro de Pesquisa em Ensino de Física. Maresias, São Paulo.
Frederiksen, J. R., White, B. Y., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806–836. https://doi.org/10.1002/(SICI)1098-2736(199909)36:7<806::AID-TEA5>3.0.CO;2-2
Gilbert, J. K., & Boulter, C. (Eds). (2000). Developing models in science education. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-010-0876-1
Gomes, A. D. T., Borges, A. T., & Justi, R. (2008a). Students’ performance in investigative activity and their understanding of activity aims. International Journal of Science Education, 30(1), 109–135. https://doi.org/10.1080/09500690701697520
Gomes, A. D., Borges, A. T., & Justi, R. (2008b). Processos e conhecimentos envolvidos na realização de atividades práticas: revisão da literatura e implicações para a pesquisa. Investigações em Ensino de Ciências, 13(2), 187–207.

Gonçalves, M. E. R., & Carvalho, A. M. P. (1994). Conhecimento físico nas primeiras séries do 1º grau: o problema do submarino. Cadernos de Pesquisa, 90, 72–80.
Gott, R., & Roberts, R. (2008). Concepts of evidence and their role in open-ended practical investigations and scientific literacy: background to published papers. Durham, UK: The School of Education, Durham University.
Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? or can students learn something from doing experiments. Journal of Research in Science Teaching, 37(7), 655–675. https://doi.org/10.1002/1098-2736(200009)37:7<655::AID-TEA3>3.0.CO;2-E
Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748–769. https://doi.org/10.1002/tea.20020
Kang, S., Scharmann, L.C., & Noh, T. (2004). Reexamining the role of cognitive conflict in science concept learning. Research in Science Education, 34(1), 71–96. https://doi.org/10.1023/B:RISE.0000021001.77568.b3
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898–921. https://doi.org/10.1002/tea.10115
Klahr, D. (2000). Exploring science: The cognition and development of discovery process. Cambridge: MIT Press.
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children’s scientific thinking. Science, 333(6045), 971–975. https://doi.org/10.1126/science.1204528
Klayman, J., & Ha, Y. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological Review, 94(2), 211–228. https://doi.org/10.1037/0033-295X.94.2.211
Koslowiski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, Massachusetts: MIT Press.
Kuhn, D. (2016). What do young science students need to learn about variables? Science Education, 100(2), 392-403. https://doi.org/10.1002/sce.21207
Kuhn, D., Amsel, E., & O’loughlin, M. (1988). The development of scientific thinking skills. San Diego, California: Academic Press.
MEC. (1999). Parâmetros Curriculares Nacionais: Ensino Médio. Brasília: MEC/SEMTEC.
Millar, R. (2010). Practical work. In J. Osborne, & J. Dillon. good practice in science teaching: What research has to say (pp. 108–134). Glasgow: Open University Press.
Millar, R., & Driver, R. Beyond Processes. Studies in Science Education, 14(1), 23–62. https://doi.org/10.1080/03057268708559938
Morris, B. J., Croker, S., Masnick, A., & Zimmerman, C. The emergence of scientific reasoning. In Kloos, H., Morris, B.J. & Amaral, J. L. (Eds.). Current topics in children’s learning and cognition (pp. 61–82). InTech, Rijeka, Croatia.
Nascimento, R. D., & Gomes, A. D. T. (2017). Análise da validade e da fidedignidade de um questionário para identificação do conhecimento conceitual sobre plano inclinado e aceleração. Amazônia: Revista de Educação em Ciências e Matemáticas, 13(26), 56–68. http://dx.doi.org/10.18542/amazrecm.v13i26.4284
National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington: National Academy Press.
National Research Council (2012). A framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177–196. https://doi.org/10.1007/s10972-014-9384-1
Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., ..., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle.Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003
Penha, S. P., Carvalho, A. M. P., & Vianna, D. M. (2015). Laboratório didático investigativo e os objetivos da enculturação científica: análise do processo. Revista de Educação, Ciências e Matemática, 5(2), 6–23.
Penner, D. E., & Klahr, D. (1996). The interaction of domain-specific knowledge and domain-general discovery strategies: A study with sinking objects. Child Development, 67(6), 2709–2727. https://doi.org/10.2307/1131748
Rhoton, J. (2010). (Ed.). Science education leadership: Best practices for the new century. NSTA Press.
Roberts, M. J., & Newton, E. J. (2001). Understanding strategy selection. International Journal of Human-Computer Studies, 54(1), 137–154. https://doi.org/10.1006/ijhc.2000.0434
Ross, J. A. (1888). Controlling variables: A meta-analysis of training studies. Review of Educational Research, 58(4), 405–437. https://doi.org/10.3102/00346543058004405
Roth, W. M. (1995). Authentic School Science. Dordrecht: Kluwer. https://doi.org/10.1007/978-94-011-0495-1
Sasseron, L. H., & Carvalho, A. M. P. (2003). O conhecimento físico em uma perspectiva intercultural. In Atas do IV Encontro Nacional de Pesquisa em Educação em Ciências. Bauru, SP.
Schauble, L. (1990) Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49(1), 31–57. https://doi.org/10.1016/0022-0965(90)90048-D
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102–119. https://doi.org/10.1037/0012-1649.32.1.102
Schwichow, M., Zimmerman, C., Croker, S., & Härtig, H. (2016). What students learn from hands on activities. Journal of Research in Science Teaching, 53(7), 980–1002. https://doi.org/10.1002/tea.21320
Siegler, R. S. (1999). Strategic development. Trends in Cognitive Science, 11(3), 430–435. https://doi.org/10.1016/S1364-6613(99)01372-8
Silveira, F. L. (1993). Validação de testes de lápis e papel. In M. A. Moreira, & F. L. Silveira. Instrumentos de Pesquisa em Ensino e Aprendizagem. Porto Alegre: EDIPUCRS.
Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children’s differentiation of hypothetical beliefs from evidence. Child Development, 62(4), 753–766. https://doi.org/10.2307/1131175
Sophian, C. (1997). Beyond competence: The significance of performance for conceptual development. Cognitive Development, 12(3), 281–303. https://doi.org/10.1016/S0885-2014(97)90001-0
Sousa, J. M., Malheiros, A. P. S., & Figueiredo, N. (2015). Desenvolvendo práticas investigativas no Ensino Médio: o uso de um Objeto de Aprendizagem no estudo da Força de Lorentz. Caderno Brasileiro de Ensino de Física, 32(3), 988–1006. https://doi.org/10.5007/2175-7941.2015v32n3p988
Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51(1), 1–10. https://doi.org/10.2307/1129583
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions. In D. L., Gabel (Ed). Handbook of Research on Science Teaching and Learning (pp. 177–210). New York: MacMillan.
Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: foundational theories of core domains. Annual Review of Psychology,43, 337–375. https://doi.org/10.1146/annurev.ps.43.020192.002005
Zimmerman, C. (2007) The development of scientific thinking skills in elementary and middle school. Developmental Review, 27(2), 172–223. https://doi.org/10.1016/j.dr.2006.12.001

Downloads

Publicado

2018-12-15

Como Citar

Nascimento, R. D., & Gomes, A. D. T. (2018). A Relação entre o Conhecimento Conceitual e o Desempenho de Estudantes em Atividades Investigativas. Revista Brasileira De Pesquisa Em Educação Em Ciências, 18(3), 935–965. https://doi.org/10.28976/1984-2686rbpec2018183935