Miconia albicans (Sw.) Triana (canela-de-velho), the new trend plant from the Brazilian
Cerrado: contribution to species identification and pharmacological aspects
Diego Tavares Iglesias1; Rúbia Santos Fonseca2*
DOI: https://doi.org/10.35699/2447-6218.2022.38438
Abstract
Miconia albicans (canela-de-velho) is a species widely distributed in the Cerrado. In recent years, its leaves have been
commercialized for the preparation of medicinal teas. The genus Miconia is highly diverse in the Cerrado, and the high
morphological similarity of the species often results in misidentification, even by specialists. The aim of this paper is
to contribute to the identification of M. albicans, and its distinction from other Cerrado species with morphological
similarity. In addition, a literature review of the species was performed in search of studies on potential biological
and pharmacological activity. Nineteen samples of plants marketed as “canela-de-velho” and/or Miconia albicans
were acquired from fairs in six municipalities in Minas Gerais, Brazil. The species were properly identified and con-
flicting characters were determined. Based on these characters, a survey of all species with morphological similarity
in Cerrado was carried out. Thirteen species similar to M. albicans were found, and an illustrated identification key
was developed. As for the review of biological activity, only M. albicans presents anti-inflammatory activity identified
by one study. M. albicans and six of the 13 identified species showed cytotoxicity at high concentration levels in stu-
dies with in vitro and in vivo analyses. M. albicans accumulates aluminum in the leaves, which are the organs used
to prepare the infusion. Currently, there are no clinical trials to validate the use of M. albicans as herbal medicine.
Indiscriminate use and lack of scientific evidence, besides not producing the desired results, can cause adverse effects.
Keywords: Medicinal plant. Phytotherapy. Taxonomy. Melastomataceae.
Miconia albicans (Sw.) Triana (canela-de-velho), a nova planta tendência do Cerrado
brasileiro: contribuição para identificação de espécies e aspectos farmacológicos
Resumo
Miconia albicans (canela-de-velho) é uma espécie amplamente distribuída no Cerrado. Nos últimos anos suas folhas
têm sido amplamente comercializadas para o preparo de chás medicinais. O gênero Miconia apresenta alta diversidade
no Cerrado. A elevada similaridade morfológica entre essas espécies promove erros de identificação, inclusive por
especialistas. O objetivo do trabalho é contribuir para o reconhecimento da espécie Miconia albicans e a sua distinção
de outras espécies similares do Cerrado. Além disso, foi realizada revisão de literatura sobre a atividade biológica das
espécies com similaridade morfológica. Foram adquiridas 19 amostras de plantas comercializadas como “canela-de-
-velho” e/ou Miconia albicans em feiras de seis municípios de Minas Gerais, Brasil. As espécies foram devidamente
identificadas e os caracteres conflituosos foram determinados. A partir desses caracteres foi realizado o levantamento
de todas as espécies com similaridade morfológica no Cerrado. Foram encontradas 13 espécies similares a M. albicans;
uma chave ilustrada de identificação foi elaborada. Apenas M. albicans apresenta atividade anti-inflamatória indicada
por um estudo. M. albicans e seis das 13 espécies similares, apresentaram citotoxicidade a níveis de concentração
elevados, em análises in vitro e/ou in vivo. Estudos demonstraram que M. albicans acumula alumínio em suas folhas,
órgãos usados para o preparo das infusões. Inexistem ensaios clínicos para validar o uso dessa espécie como fitoterá-
1
Universidade Federal de Minas Gerais. Montes Claros, MG. Brasil.
https://orcid.org/0000-0002-9160-9959
2
Universidade Federal de Minas Gerais. Montes Claros, MG. Brasil.
https://orcid.org/0000-0001-7257-874X
*Autor para correspondência: rubiafonseca@hotmail.com
Recebido para publicação em 21 de abril de 2022. Aceito para publicação em 25 de maio de 2022.
e-ISSN: 2447-6218 / ISSN: 2447-6218. Atribuição CC BY.
CADERNO DE CIÊNCIAS AGRÁRIAS
Agrarian Sciences Journal
2
Iglesias S. T.; Fonseca R. S.
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
pico. O uso indiscriminado, associado à carência de provas científicas, além de não produzir os resultados desejados,
pode causar efeitos adversos.
Palavras-chave: Planta medicinal. Fitoterapia. Taxonomia. Melastomataceae.
Introduction
Brazil has the largest plant diversity on the planet
(Forzza et al., 2012). An important part of’ this biodi-
versity is in the Cerrado, which accounts for 23% of the
country’s area, occurring in all geographic regions except
the south (IBGE, 2004). This savanna is the richest in
the world and one of the priority areas for conservation
(Myers et al., 2000). The cerrado has been historically
managed by its peoples due to the abundance of food
species, especially fruit and medicinal plants, which pro-
vided support to traditional extractive activities (Dias and
Laureano, 2010).
Melastomataceae is among the main plant fami-
lies of the Cerrado, with about 500 species (BFG, 2015).
Miconia Ruiz & Pav. is the richest genus of this family,
with 67 species in the Cerrado (BFG, 2015). A large
number of species of Miconia are traditionally used for
different medicinal purposes (Serpeloni et al., 2011, An-
drade e Silva, 2002). However, this genus includes many
morphologically similar species and, therefore, they are
often misidentified (Rezende et al., 2014; Caddah and
Goldenberg, 2013).
Misrecognition of species is one of the main
problems faced by ethnobotanists (Luczaj 2010), as the
adulteration of species with therapeutic use is common
in retail shops and street markets (Coulaud-Cunha et
al., 2004). For example, “espinheira-santa” (Maytenus
ilicifolia Mart. Ex. Reiss - Celastraceae), a species used
in the relief of rheumatism, is commonly replaced by
the morphologically related Sorocea bomplandii Bailon
(Moraceae), but with unknown toxicity (Coulaud-Cunha
et al., 2004). Adulteration of medicinal plants is often
related to periods of increased demand for the species
(Coulaud-Cunha et al., 2004; Mitra and Kannan, 2007,
Posadzki et al., 2013). Market demand for a medicinal
species varies temporally in response to many factors,
including consumption fads (Bussmann and Sharon,
2006).
Miconia albicans (Sw.) Triana is the trend medi-
cinal plant in the Brazilian cerrado. This species is widely
distributed in Brazil, mainly in open Cerrado formations
(Meirelles, 2015). Popularly known as “canela-de-velho”
(old man’s shin), the leaf infusion of M. albicans has been
widely used by cerrado communities to relief digestive
disturbances and mainly rheumatism (Cruz and Kaplan,
2004; Seperloni et al., 2011). However, the use of M.
albicans has not yet been regulated (ANVISA, 2016),
since the steep growth of interest is recent and studies
on the species are still in the early stages. Therefore, the
sale of the medicine called “canela-de-velho” has been
banned in Brazil (Ministério da Saúde, 2018). However,
“canela-de-velho” is easily found commercially in crude
form or as by-products. This study aims to contribute to
the recognition of M. albicans and its distinction from
morphologically related species in the Cerrado domain,
providing identification keys, diagnoses, illustrations,
and we propose new research directions for M. albicans.
Material and methods
The species morphologically related to M. al-
bicans, occurring in the Cerrado, were selected from
three steps. Step one: Samples of leaves and branches
marketed as “canela-de-velho and/or Miconia albicans
were purchased in the following municipalities of Minas
Gerais located near Cerrado areas: Belo Horizonte (10),
Bocaiúva (1), Diamantina (1), Jaíba (1), Januária (1), and
Montes Claros (5). From the analysis of these samples,
four distinct species were recognized: M. albicans (11),
M. macrothyrsa (4), M. rubiginosa (3), and M. cinerascens
(1). We did not find mixture of species within the same
sample.
Step two: The botanical descriptions of these
species were compared to that of M. albicans and the
conflicting characteristics were identified. The characteris-
tics included: habit - schrubs or small trees; leaves - oval,
oblong, elliptic, or oboval, strongly bicolored (adaxial
surface green, abaxial surface canescent, ocher or rusty),
usually smaller than 15 cm long, and dense indument
in the abaxial leaf surface and on young branches. Step
three: The presence of the set of conflict characteristicistics
was investigated in all species of the genus occurring in
Cerrado sensu lato, using the database BFG (2019).
To construct the identification keys, we use the
diagnostic characteristics from species descriptions in
floristic-taxonomic studies conducted locally and in other
cities of the state, taxonomic reviews, princeps works
(Candido, 2005; Cogniaux, 1887/1888; Rezende et al.,
2014; Martins et al., 1996; Meirelles, 2015, Meirelles et
al., 2016), and analysis of voucher specimens authentica-
ted by specialists. The biological activity of these species
was reviewed using six electronic databases without a
time frame: Pubmed, SciFinder, Web of Science, Science
Direct, SciELO, and Google Scholar. The key term used
in the search was the species scientific name.
3
Miconia albicans
(Sw.) Triana (canela-de-velho), the new trend plant from the Brazilian Cerrado: contribution to species identification and pharmacological aspects
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
Results and discussion
Characterization and identification of morphologically
related species
Thirteen species morphologically related to Mico-
nia albicans were determined for the Cerrado sensu lato:
Miconia alborufescens Naudin, M. astrocalyx Meirelles &
R.Goldenb., M. burchellii Triana, M. cinerascens Miq.,
M. fallax
DC.,
M. herpetica
DC.,
M. hyemalis
A.St.-Hil.
& Naudin,
M. leucocarpa
DC.,
M. macrothyrsa
Benth.,
M. rubiginosa
(Bonpl.) DC.,
M. sclerophylla
Triana,
M.
stenostachya
DC and
Miconia weddelli
Naudin. Among
this species, M.
alborufescens
,
M. astrocalyx
,
M. fallax
,
M. herpetica, and M. stenostachya belong to the same
clade as Miconia albicans, suggesting phylogenetic pro-
ximity (Meirelles, 2015). M. fallax and M. stenostachya
have been described as very similar to M. albicans in the
Cerrado, leading to conflicts in the identification (Re-
zende et al., 2014). Studies have shown that M. albicans
exhibits large variation in leaf size and plant architecture
between different habitats (Silveira and Oliveira, 2013).
This phenotypic plasticity, added to the morphological
similarity with other species, causes even more conflicts
in its identification.
Miconia albicans and most morphologically rela-
ted species are often associated to secondary vegetation
and commonly found in borders and disturbed areas
(Araújo and Romero, 2016; Goldenberg, 2004; Saporetti
Jr., 2003). In a similar manner, this group has a preference
for acid soils which explains its frequency in dystrophic
and nutrient-poor soils of the Cerrado (Haridasan and
Araújo, 1988). Ethnobotanical studies indicate that tra-
ditional communities prioritize areas with anthropogenic
disturbance for the collection of medicinal plants (Gavin,
2009; Stepp and Moerman, 2001; Voeks, 2004). Conse-
quently, the distribution pattern of Miconia species favors
high indiscriminate extractivism of co-current species.
The World Health Organization proposes the
valuation and conservation of biodiversity, in associa-
tion with studies that integrate products, practices, and
practitioners (WHO, 2013). Although it is not the focus
of this study, the adulteration of M. albicans samples with
three other morphologically related species (M. macro-
thyrsa, M. rubiginosa, and M. cinerascens) was confirmed.
Adulteration is defined as a fraudulent act of partially or
totally replace the herbal product with another product
(Posadzki et al., 2013). This practice is common in plant
commodity trade (Mitra and Kannan, 2007). However, it
is often unintentional and related to lack of knowledge
about the plants and similarity in morphology and aroma
of the species (Mitra and Kannan, 2007). Adulteration,
besides causing economic damage to consumer, can re-
sult in serious health problems due to the ingestion of
non-indicated species. Thus, there is a need to develop
methods to support research on ethnopharmacology and
ethnobiology, considering the diversity and endemisms
of the Brazilian flora (Albuquerque and Hanazaki, 2006).
To avoid misidentification of the species of interest, we
constructed an identification key to diagnose species
morphologically related to Miconia albicans from the
Cerrado sensu lato.
Identification key for Miconia albicans and morphologically related species.
1.
Inflorescence with scorpioid distal branches (Fig.1a).
2.
Sessile to subsessile leaves (Fig. 1b) .......................................................................................................... Miconia fallax
2.
Petiolate leaves.
3.
Leaf margin ciliate (Fig. 1c) ................................................................................................ 10. Miconia macrothyrsa
3.
Leaf margin eciliate.
4.
Abaxial surface with dendritic or stellate trichomes (Fig. 1d-e).
5.
Abaxial surface whitish ......................................................................................................... Miconia weddellii
5.
Abaxial surface yellowish.
6.
Petal margins with glandular-stipitate trichomes, fruit with persistent calyx lobes ..........................
.............................................................................................................................3.
Miconia astrocalyx
6. Petals glabrous, fruit with deciduous calyx lobes .................................................... 7. Miconia herpetica
4. Abaxial surface with amorphous or arachnoid trichomes (Fig. 1f).
7. Branches with stellate trichomes, Petal margins ciliate ....................................... 13. Miconia stenostachya
4
Iglesias S. T.; Fonseca R. S.
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
7. Branches with arachnoid trichomes, Petal margins eciliate .......................................... 1. Miconia albicans
1.
Inflorescence with non-scorpioid distal branches.
8.
Panicle with glomerular distal branches (Fig. 1g).
9.
Branches with stellate trichomes (Fig. 1e).
10.
Leaf base cordate (Fig. 1h) ........................................................................................... 2. Miconia alborufescens
10. Leaf base rounded or attenuate (Fig. 1i-j) ..................................................................... 5. Miconia cinerascens
9. Branches with stellate and dendritic trichomes (Fig. 1d-e).
11. Abaxial surface with dendritic indument. (Fig. 1d)
..................................................
12. Miconia sclerophylla
11.
Abaxial surface with stellate or dendritic-stellate indument (Fig. 1d-e).
12.
Abaxial surface with stellate indument (Fig. 1e).
13.
Connective with ventral auricules (Fig. 1k) ........................................................ 9. Miconia leucocarpa
13. Connective without ventral auricules .......................................................................... Miconia burchellii
12. Abaxial surface with dendritic-stellate indument (Fig. 1d-e).
14. Leaf abaxial surface completely covered by indument, epiderm visible..........................................
............................................................................................................................9.
Miconia leucocarpa
14. Leaf abaxial surface sparsely to moderately covered by indument, epiderm non-visible
................
...............................................................................................................................8.
Miconia hyemalis
8. Panicle with non-glomerular distal branches ............................................................................. 11. Miconia rubiginosa
1.
Miconia albicans
(Sw.) Triana, Trans. Linn. Soc. London. 28: 116, 1871.
Based on the descriptions of Cogniaux
(1887/1888), Martins (1996), and Meirelles (2015),
the following are the diagnostic characteristics of the
species:
Branches and leaf abaxial surface with indument
whitish and trichomes arachnoid. Branches cylindrical.
Leaves Petiolate; Blade oblong to ovate, margin entire
to slightly serrate in the upper third, ciliate; one pair of
lateral nerves, with a faint additional marginal pair. Inflo-
rescence with scorpioid distal branches. Petals Glabrous.
Fruit unripe red; fruit ripe jade green.
It is possible to differentiate
Miconia albicans
only
using the vegetative characteristics described, making it
practical to identify it. However, to differentiate the other
species from each other will require the reproductive
characteristics listed in the identification key.
2.
Miconia alborufescens
Naudin, Ann. Sci. Nat., Bot.
to be. 3.16: 160. 1850.
It differs from M. albicans in the shape of the
limb cordate (vs. oblong to oval), two pairs of lateral ribs
(vs. one pair of lateral ribs), and a less obvious marginal
pair, usually inflorescence glomerulus panicle (vs. scor-
pioid panicle), fruit ripe red (vs. jade green) (Cogniaux,
1887/1888; Meirelles, 2015).
3.
Myconia astrocalyx Meirelles & R.Goldenb., Phytotaxa
257: 188. 2016.
It differs from M. albicans by its indument rusty-
-yellow (vs. canescent) on the branches and abaxial leaf
surface, consisting of stellate trichomes (vs. arachnoid)
(Meirelles et al., 2016).
4.
Miconia burchellii Triana, Trans. Linn. Soc. London
28: 116, 1871.
It differs from M. albicans by its branches ge-
nerally tetragonal (vs. cylindrical), trichomes stellate
or dendritic (vs. arachnoid), inflorescence glomerulus
panicle (vs. scorpioid panicle) (Cogniaux, 1887/1888).
5
Miconia albicans
(Sw.) Triana (canela-de-velho), the new trend plant from the Brazilian Cerrado: contribution to species identification and pharmacological aspects
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
Figure 1-a Inflorescence with scorpioid distal branches. b. Leaves sessile. c. Leaf margin ciliate. d. Dendritic tricho-
me. e. Stellate trichome. f. Arachnoid trichome. g. Panicle with glomerular distal branches. h. Leaf base
cordate. i. Leaf base rounded. j. Leaf base attenuate. k. Connective with ventral auricules.
5.
Miconia cinerascens
Miq., Linnaea 22: 543, 1849.
It differs from M. albicans by trichomes stellate
(vs. arachnidoid), leaf margin dentate, except at the base
(vs. whole or slightly serrated at the top), inflorescence
glomerulus panicle (vs. scorpioid) (Cogniaux, 1887/1888;
Martins, 1996).
6.
Miconia fallax
DC., Prodr. 3: 181, 1828.
It differs from M. albicans in its leaves sessile
to subsessile (vs. distinctly petiolate), petals ciliate to
glandular (vs. glabrous), ripe fruit black (vs. jade green)
(Martins, 1996).
7.
Miconia herpetica
DC., Prodr. 3: 181, 1828.
It differs from M. albicans by its indument yel-
low to rusty-yellow (vs. canescent), trichomes stellate
or dendritic (vs. arachnoid) (Rezende, 2014; Meirelles,
2015).
8.
Miconia hyemalis
A.St.-Hil. & Naudin, Ann. Sci. Nat.,
Bot. to be. 3.16: 142. 1851.
It differs from
M. albicans
by the indument dendri-
tic-stellate (vs. arachnoid), leaf margin dentate (vs. entire
or slightly serrated at the top), inflorescence glomerulus
panicle (vs. scorpioid panicle) (Martins, 1996).
9.
Miconia leucocarpa DC., Prodr. 3: 182. 1828.
It differs from M. albicans by branches with in-
dument ocher-rusty (vs. canescent), trichomes stellate
or dendritic (vs. arachnoid), inflorescence glomerulus
panicle (vs. scorpioid) (Martins, 1996; Rezende, 2014).
6
Iglesias S. T.; Fonseca R. S.
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
10.
Miconia macrothyrsa
Benth.,
J.
Bot. (Hooker) 2:
312. 1840.
It differs from
M. albicans
by indument rusty
(
vs
. canescent), trichomes stellate (
vs
. arachnoid), leaf
lobe generally broadly elliptic to suborbicular (vs. oval
to oblong), leaf margin serrate-ciliate (
vs
. non-ciliate)
(Martins, 1996).
11.
Miconia rubiginosa
(Bonpl.) DC., Prodr. 3: 183,
1828.
It differs from M. albicans by its indument rusty
(vs. canescent), trichomes stellate (vs. arachnoid), inflo-
rescence non-scorpioid panicle (vs. scorpioid) (Martins,
1996; Rezende, 2014).
12.
Miconia sclerophylla Triana, Trans. Linn. Soc. Lon-
don 28 (1): 119, 1871.
It differs from M. albicans by its trichomes den-
dritic (vs. arachnoid), inflorescence glomerulus panicle
(vs. scorpioid) (Candido, 2005).
13.
Miconia stenostachya DC. Prodr. 3: 181, 1828.
It differs from M. albicans by its branches tetra-
gonal (vs. cylindrical), trichomes stellate (vs. arachnoid),
petals ciliate to glandular (vs. glabrous) (Martins, 1996;
Meirelles, 2015).
14.
Miconia weddelli
Naudin, Ann. Sci. Nat. Bot. Ser.
3, 16: 144, 1850.
It differs from M. albicans by its trichomes stellate
(vs. arachnoid), petals glandular-ciliate (vs. glabrous)
(Meirelles, 2015).
Pharmacological aspects of Miconia albicans and mor-
phologically related species
Due to the wide area of occurrence of M. albi-
cans, its common names and popular uses vary. In Rio
de Janeiro, ethnobotanical studies report its vernacular
(common) name as a “abranda-fogo” (fire softener) and
leaves are used for bath preparation (Maioli-Azevedo
and Fonseca-Kruel, 2007). In Espirito Santo, it is called
“camará-mirim” (small camará) and is used for fruit con-
sumption and firewood (Crepaldi and Peixoto, 2010). In
Mexico, it is used for oral inflammations and is called by
the indigenous name “pak tesua” (Leonti et al., 2001).
In states where the cerrado occurs, M. albicans is better
known as “canela-de-velho” and is consumed as tea (in-
fusion) (Lisboa et al., 2017; Almeida et al., 2014). The
vernacular “canela-de-velho” has received widespread
digital media advertising and tutor videos, some of which
clearly misidentify the plant material presented.
The biological activity and pharmacological po-
tential was studied in only four of the 13 morphologically
related species of the cerrado: M. albicans, M. fallax,
M. rubiginosa, and M. stenostachya (Table 1), however,
without clinical tests. The anticlastogenic, antimutage-
nic, and antinociceptive activities of M. albicans were
shared with the other species, while the antioxidant and
inflammatory activities were restricted to M. albicans. The
anti-inflammatory activity may be related to its popular
use in the treatment of musculoskeletal pain caused by
diseases traditionally known as “rheumatism” (Cruz and
Kaplan, 2004).
The qualitative chemical analysis of the extracts
of M. albicans, M. rubiginosa, and M. stenostachya showed
similar composition, containing mainly flavonoids, pheno-
lic compounds, and tannins (Serpeloni, 2008). Studies of
the three species, M. albicans, M. cabucu, and M. stenos-
tachya, were carried out using in vivo (Serpeloni, 2008)
and in vitro (Serpeloni, 2011) analyses. Serpeloni (2011)
found that, at high concentrations, the extracts presented
cytotoxic activity in the in vitro tests, with M. albicans at
the lowest concentration (30 μg/mL) and M. stenostachya
at the highest concentration (60 μg/mL). Neither species
showed mutagenic activity in both tests (Serpeloni, 2008;
2011), but the in vivo tests showed moderate genotoxic
activity (Serpeloni, 2008). Phytochemical and toxicity
variations between different plant species create a high
risk for their use in popular medicine (Bochner et al.,
2012). These studies demonstrate the potential and lack
of information about Miconia species, prompting further
research regarding the pharmacological viability of these
species and safe intake concentrations. It is of note that
prior to any pharmacological evaluation, the certification
of the species identity must be prioritized.
An important characteristicistic of Melastoma-
taceae that must be evaluated for human consumption
is the aluminum accumulation capacity. The ability is
common in some plant groups such as the genus Miconia,
occurring in 82% of the species evaluated (Jansen et al.,
2002). M. albicans has a high concentration of aluminum
in fruits (Pasta et al., 2019) and leaves (Haridasan and
Araújo, 1988), which is the part used for the preparation
of infusions (Lisboa et al., 2017). The presence of alumi-
num (Al) in teas has been related to acidic soils where
the plants occur (Karak and Bhagat, 2010). Currently,
aluminum is known to be an accelerating factor of brain
aging and may contribute to the development of Alzhei-
mer’s disease (Bondy, 2016). However, in other species,
the preparation of the infusion reduces the amount of
aluminum to be consumed in comparison with fresh leaf,
reducing the health risk (Li et al., 2015). Because of the
high consumption of M. albicans, research is urgently
needed to perform pharmacological, toxicological, and
clinical trials with the infusion to ensure the safety of its
consumption.
7
Miconia albicans
(Sw.) Triana (canela-de-velho), the new trend plant from the Brazilian Cerrado: contribution to species identification and pharmacological aspects
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
Table 1 Biological activity of species morphologically related to Miconia albicans (Sw.) Triana in Cerrado sensu lato.
Biological activity
Species
Anticarcinogenic
Miconia fallax
Miconia albicans, Miconia rubigino-
sa, Miconia stenostachya
Serpeloni et al., 2008
Antiinflammatory Miconia albicans Vasconcelos et al., 2006
Miconia albicans, Miconia fallax, Mi-
conia rubiginosa
Miconia albicans, Miconia rubigino-
sa, Miconia stenostachya
Miconia albicans, Miconia fallax, Mi-
conia rubiginosa
Rodrigues et al., 2008; Celotto et al. 2003
Serpeloni et al., 2011
Vasconcelos et al., 2006; Silva et al., 2002; Spessoto
et al., 2003
Antioxidant Miconia albicans Pieroni et al., 2011
Trypanocidal Miconia fallax, Miconia stenostachya Cunha et al., 2003
Conclusion
Miconia albicans is the most popular medicinal
plant in the cerrado. The species is used as infusion for
the relief of rheumatism. In the Cerrado sensu lato, 12
species are morphologically related with Miconia albicans
(canela-de-velho) with potential for misidentification due
to the similarity of growth habit and bicolored leaves. Mi-
conia albicans
is distinguished by the arachnoid-canescent
indument in the leaves and the cylindrical branches. Other
characteristics such as scorpioid inflorescence, unripe red
and ripe jade green fruits are also important for accurate
species identification. Analysis of commercially available
canela-de-velho samples indicates the presence of three
other similar species, confirming adulteration due to
misidentification. The identification key associated with
diagnostic information allows the recognition of this spe-
cies and correlates in the Cerrado sensu lato. Preliminary
information regarding the composition and biological
activity of the leaf extract suggests that variations in the
quantity of the components may change their biological
activity. M. albicans has anti-inflammatory biological
activity, but there are no clinical tests to validate its
pharmacological use. M. albicans accumulates aluminum
in the leaves, which are the organs used to prepare the
infusion. Because of the potential toxic effect of alumi-
num and the lack of information about its concentration
in infusions, studies in this line are urgent and of great
public health.
Acknowledgement
We thank Helyx Ivan Ribeiro Silva for the dra-
wings. This research received no specific grant from any
funding agency in the public, commercial, or not-for-profit
sectors.
References
Albuquerque, U. P.; Hanazaki, N. 2006. As pesquisas etnodirigidas na
descoberta de novos fármacos de interesse médico e farmacêutico:
fragilidades e pespectivas. Brazilian Journal of Pharmacognosy, 16:
678689. Doi: https://doi.org/10.1590/S0102-695X2006000500015.
Almeida, M. Z.; Léda, P. H. O.; Silva, M. Q. O. R.; Pinto, A.; Lisboa,
M.; Guedes, M. L. M. L.; Peixoto, A. L. 2014. Species with medicinal
and mystical-religious uses in São Francisco do Conde, Bahia, Brazil:
a contribution to the selection of species for introduction into the local
Unified Health System. Brazilian Journal of Pharmacognosy 4: 171184.
Doi: https://doi.org/10.1016/j.bjp.2014.04.006.
Andrade e Silva, M. L.; Cunha, W. R.; Pedro, C.; Aparecida Garcia, P.;
Martins, C. 2002. Evaluation of the analgesic activity of an ethanol
extract of Miconia fallax. Bollettino Chimico Farmaceutico, 141: 158
160.
ANVISA - Agência Nacional de Vigilância Sanitária. 2016. Memento
Fitoterápico. Brasília, ANVISA. Available from: https://www.gov.
br/anvisa/pt-br/assuntos/farmacopeia/formulario-fitoterapico/
MementoFitoterapico1.pdf.
Araújo, I. M.; Romero, R. 2016. A tribo Miconieae (Melastomataceae)
no Parque Estadual do Biribiri, Diamantina, Minas Gerais, Brasil.
Rodriguésia, 67: 953970. Doi: https://doi.org/10.1590/2175-
7860201667407.
BFG - The Brazil Flora Group. 2015. Growing knowledge: an overview
of seed plant diversity in Brazil. Rodriguésia, 66: 10851113. Doi:
https://doi.org/10.1590/2175-7860201566411.
Bochner, R.; Fiszon,
J.
T.; Assis, M. A.; Avelar, K. E. S. 2012. Problemas
associados ao uso de plantas medicinais comercializadas no Mercadão
de Madureira, município do Rio de Janeiro, Brasil. Revista Brasileira
de Plantas Medicinais, 14: 537547. Doi: https://doi.org/10.1590/
s1516-05722012000300017.
Bondy, S. C. 2016. Low levels of aluminum can lead to behavioral and
morphological changes associated with Alzheimer’s disease and age-
related neurodegeneration. Neurotoxicology, 52: 222229. https://
doi.org/10.1016/j.neuro.2015.12.002.
Anticlastogenic
Antimicrobial
Antimutagenic
Antinociceptive
8
Iglesias S. T.; Fonseca R. S.
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
Bussmann, R. W.; Sharon, D. 2006. Traditional medicinal plant use in
Northern Peru: tracking two thousand years of healing culture. Journal
of Ethnobiology and Ethnomedicine, 2: 47.
Caddah, M. K.; Goldenberg, R. 2013. Miconia atlantica, a new species
of Melastomataceae from the eastern mountains of Brazil. Brittonia,
65: 351356. Doi: https://doi.org/10.1186/1746-4269-2-47.
Candido, C. P. 2005. A família Melastomataceae na Serra do Cabral:
tribos Melastomeae, Merianieae e Miconieae. Campinas: Universidade
Estadual de Campinas, 99f. Dissertação de Mestrado. Available from:
tinyurl.com/2p8ufjky.
Celotto, A. C.; Nazario, D. Z.; Spessoto, M. A.; Martins, C. H. G.; Cunha,
W. R. 2003. Evaluation of the in Vitro Antimicrobial Activity of Crude
Extracts of Three Miconia Species. Brazilian Journal of Microbiology, 34:
339340. Doi: https://doi.org/10.1590/s1517-83822003000400010.
Cogniaux, A. 1887/1888. Miconia, Melastomataceae. p. 212424.
In: Martius, C.F.P.; Eichler, A.G., eds. Flora Brasiliensis, 14(4). Frid.
Fleischer, Lipsiae. Available from: tinyurl.com/4evberbj.
Coulaud-Cunha, S.; Oliveira, R. S.; Waissmann, W. 2004. Venda livre
de Sorocea bomplandii Bailon como Espinheira Santa no município do
Rio de Janeiro-RJ. Brazilian Journal of Pharmacognosy, 14: 5153. Doi:
https://doi.org/10.1590/s0102-695x2004000300019.
Crepaldi, M. O. S.; Peixoto, A. L. 2010. Use and knowledge of plants by
“Quilombolas as subsidies for conservation efforts in an area of Atlantic
Forest in Espírito Santo State, Brazil. Biodiversity and Conservation,
19: 3760. Doi: https://doi.org/10.1007/s10531-009-9700-9.
Cruz, A. V. M.; Kaplan, M. A. C. 2004. Uso medicinal de espécies das
famílias Myrtaceae e Melastomataceae no Brasil. Floram, 11: 4752.
Available from: tinyurl.com/yckj8wr7.
Cunha, W. R.; Martins, C.; Ferreira, D. S.; Crotti, A. E. M.; Lopes, N.
P.; Albuquerque, S. 2003. In vitro trypanocidal activity of triterpenes
from
Miconia
species. Planta Medica, 69: 470472. Doi: https://doi.
org/10.1055/s-2003-39719.
Dias,
J.
E.; Laureano, L. C. 2010. Farmacopéia popular do cerrado.
Goiás, Articulação Pacari.
Forzza, R. C.; Baumgratz, J. F. A; Bicudo, C. E. M.; Canhos, D. A. L.;
Carvalho, A. A. Jr.; Coelho, M. A. N.; Costa, A. F.; Costa, D. P.; Hopkins,
M. G.; Leitman, P. M.; Lohmann, L. G.; Lughadha, E. N.; Maia, L. C.;
Martinelli, G.; Menezes, M.; Morim, M. P.; Peixoto, A. L.; Pirani, J.
R.; Prado, J.; Queiroz, L. P.; Souza, S.; Souza, V. C.; Stehmann, J. R.;
Sylvestre, L. S.; Walter, B. M. T.; Zappi, D. C. 2012. New Brazilian
floristic list highlights conservation challenges. BioScience, 62: 3945.
Doi: https://doi.org/10.1525/bio.2012.62.1.8.
Furtado, R. A.; Rodrigues, E. P.; Araujo, F. R. Oliveira, W. L.; Furtado,
M. A.; Castro, M. B.; Cunha, W. R.; Tavares, D. C. 2008. Ursolic
acid and oleanolic acid suppress preneoplastic lesions induce by 1,
2-dimethylhydrazine in rat colon. Toxicologic Pathology, 36: 576580.
Doi: https://doi.org/10.1177/0192623308317423.
Gavin, M. C. 2009. Conservation implications of rainforest use patterns:
Mature forests provide more resources but secondary forests supply
more medicine. Journal of Applied Ecology 46: 12751282. Doi: https://
doi.org/10.1111/j.1365-2664.2009.01713.x.
Goldenberg, R. 2004. O gênero Miconia (Melastomataceae) no Estado
do Paraná, Brasil. Acta Botanica Brasilica, 18: 927947. Doi: https://
doi.org/10.1590/S0102-33062004000400024.
Haridasan, M.; Araújo, G. M. 1988. Aluminium acummulating
species in two forest communities in the cerrado region of central
Brazil. Forest Ecology and Management, 24: 1526. Doi: https://doi.
org/10.1016/0378-1127(88)90021-7.
IBGE - Instituto Brasileiro de Geografia e Estatística. 2004. Mapa de
biomas do Brasil. Rio de Janeiro, IBGE.
Jansen, S.; Watanabe, T.; Smets, E. 2002. Aluminium Accumulation
in Leaves of 127 Species in Melastomataceae, with Comments on
the Order Myrtales. Annals of Botany 90: 5364. Doi: https://doi.
org/10.1093/aob/mcf142.
Karak, T.; Bhagat, R. M. 2010. Trace elements in tea leaves, made tea
and tea infusion: a review. Food Research International, 43: 22342252.
Doi: https://doi.org/10.1016/j.foodres.2010.08.010.
Leonti, M.; Vibrans, H.; Sticher, O.; Heinrich, M. 2001.
Ethnopharmacology of the Popoluca, Mexico: An Evaluation. Journal
of pharmacy and pharmacology, 53: 16531669. Doi: https://doi.
org/10.1211/0022357011778052.
Lisboa, M. S. Pinto, A. S.; Barreto, P. A.; Ramos, Y. J.; Silva, M. Q.
O. R.; Caputo, M. C.; Almeida, M. Z. 2017. Estudo etnobotânico
em comunidade quilombola Salamina/Putumujú em Maragogipe,
Bahia. Revista Fitos, 11: 1118. Doi: https://doi.org/10.5935/2446-
4775.20170006.
Li, L.; Fu, Q. L.; Achal, V.; Liu, Y. 2015. A comparison of the potential
health risk of aluminum and heavy metals in tea leaves and tea infusion
of commercially available green tea in Jiangxi, China. Environmental
monitoring and assessment, 187:228. Doi: https://doi.org/10.1007/
s10661-015-4445-2.
Luczaj, L. 2010. Plant identification credibility in ethnobotany: a closer
look at Polish ethnographic studies. Journal of Ethnobiology and
Ethnomedicine, 6: 116. Doi: https://doi.org/10.1186/1746-4269-6-36.
Maioli-Azevedo, V.; Fonseca-Kruel, V. S. 2007. Plantas medicinais e
ritualísticas vendidas em feiras livres no Município do Rio de Janeiro, RJ,
Brasil: estudo de caso nas zonas Norte e Sul. Acta Botanica Brasilica, 21:
263275. Doi: https://doi.org/10.1590/S0102-33062007000200002.
Martins, A. B.; Semir, J.; Goldenberg, R.; Martins, E. 1996. O Gênero
Miconia
Ruiz & Pav. (Melastomataceae) no estado de São Paulo. Acta
Botanica Brasilica, 10: 267316. Doi: https://doi.org/10.1590/S0102-
33061996000200005.
Meirelles,
J.
2015. Filogenia de
Miconia
seção
Miconia
subseção
Seriatiflorae e revisão taxonômica do clado albicans (Melastomataceae,
miconieae). Campinas: Universidade Estadual de Campinas, 217f. Tese
de Doutorado. Available from: tinyurl.com/mvdmet3j.
Meirelles, J.; Lima, D. F.; Goldenberg, R. 2016.
Miconia astrocalyx
(Melastomataceae, Miconieae): a new species from Brazilian
Cerrado. Phytotaxa, 257: 187192. Doi: https://doi.org/10.11646/
phytotaxa.257.2.9.
Ministério da Saúde. 2018. Resolução 1.417, de de julho de
2018. Diário Oficial da União, Brasília, DF. Available from: tinyurl.
com/yckvymdm.
Mitra, S. K.; Kannan, R. 2007. A Note on Unintentional Adulterations
in Ayurvedic Herbs. Ethnobotanical Leaflets, 11: 1115. Available from:
https://opensiuc.lib.siu.edu/ebl/vol2007/iss1/3/.
Myers, N.; Mittermeier, R. A.; Mittermeier, C. G.; Fonseca, G. A. B.;
Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature,
403: 853858. Doi: https://doi.org/10.1038/35002501.
Pasta, P. C.; Durigan, G.; Moraes, I. C. F.; Ribeiro, L. F.; Haminiuk,
C. W. I.; Branco, I. G. 2019. Physicochemical properties, antioxidant
potential and mineral content of Miconia albicans (Sw.) Triana: a fruit
with high aluminium content. Brazilian Journal of Botany, 42: 209216.
Doi: https://doi.org/10.1007/s40415-019-00532-3.
9
Miconia albicans
(Sw.) Triana (canela-de-velho), the new trend plant from the Brazilian Cerrado: contribution to species identification and pharmacological aspects
Cad. Ciênc. Agrá., v. 14, p. 0109, DOI: https://doi.org/10.35699/2447-6218.2022.38438
Pieroni, L. G.; Rezende, F. M.; Ximenes, V. F.; Dokkedal, A. L. 2011.
Antioxidant activity and phenols from the methanolic extract of Miconia
albicans (Sw.) Triana leaves. Molecules, 16: 94399450. Doi: https://
doi.org/10.3390/molecules16119439.
Posadzki, P.; Watson, L.; Ernst, E. 2013. Contamination and adulteration
of herbal medicinal products (HMPs): An overview of systematic reviews.
European Journal of Clinical Pharmacology, 69: 295307. Doi: https://
doi.org/10.1007/s00228-012-1353-z.
Rezende, A. R.; Romero, R.; Goldenberg, R. 2014. Sinopse de Miconia
seção Miconia DC. (Melastomataceae) no estado de Minas Gerais, Brasil.
Bioscience Journal, 30: 273287. Available from: tinyurl.com/4r6n8mzd.
Rodrigues, J.; Michelin, D. C.; Rinaldo, D.; Zocolo, G. J.; Santos, L. C.;
Vilegas, W.; Salgado, H. R. N. 2008. Antimicrobial Activity of
Miconia
Species (Melastomataceae). Journal of Medicinal Food, 1: 120126.
Doi: https://doi.org/10.1089/jmf.2007.557.
Saporetti Jr., A. W.; Neto, J. A. A. M.; Almado, R. 2003. Fitossociologia
de sub-bosque de cerrado em talhão de Eucalyptus grandis W. Hill ex
Maiden no município de Bom Despacho-MG. Árvore, 27: 905910. Doi:
https://doi.org/10.1590/S0100-67622003000600017.
Serpeloni,
J.
M.; Vilegas, W.; Varanda, E. A.; Cólus, I. M.
S.
2008.
Avaliação in vivo da anticlastogenicidade de extratos de plantas
medicinais do gênero Miconia através do teste do micronúcleo. Semina,
29: 4756. Doi: https://doi.org/10.5433/1679-0367.2008v29n1p47.
Serpeloni, J. M.; Barcelos G. R. M., Mori, M. P.; Yanagui, K.; Vilegas,
W.; Varanda, E. A.; Cólus, I. M. S. 2011. Cytotoxic and mutagenic
evaluation of extracts from plant species of the Miconia genus and their
influence on doxorubicin-induced mutagenicity: an in vitro analysis.
Experimental and Toxicologic Pathology, 63: 499504. Doi: https://
doi.org/10.1016/j.etp.2010.03.011.
Silveira, F. A. O.; Oliveira, E. G. 2013. Does plant architectural
complexity increase with increasing habitat complexity? A test with a
pioneer shrub in the Brazilian Cerrado. Brazilian Journal of Biology, 73:
271277. Doi: https://doi.org/10.1590/S1519-69842013000200007.
Spessoto, M. A.; Ferreira, D. S.; Crotti, A. E. M.; Silva, M. L. A.; Cunha,
W. R. 2003. Evaluation of the analgesic activity of extracts of
Miconia
rubiginosa
(Melastomataceae). Phytomedicine, 10: 606609. Doi:
https://doi.org/10.1078/094471103322331629.
Stepp, J. R.; Moerman, D. E. 2001. The importance of weeds in
ethnopharmacology. Journal of ethnopharmacology, 75: 1923. Doi:
https://doi.org/10.1016/S0378-8741(00)00385-8.
Vasconcelos, M. C.; Royo, V. A.; Ferreira, D. S.; Crotti, A. E. M.; Andrade
e Silva, M. L.; Carvalho, J. C. T.; Bastos, J. K.; Cunha, W. R. 2006. In
vivo analgesic and anti-inflammatory activities of ursolic acid and
oleanoic acid from
Miconia albicans
(Melastomataceae). Zeitschrift
für Naturforschung C, 61: 477482. Doi: https://doi.org/10.1515/
znc-2006-7-803.
Voeks, R. A. 2004. Disturbance pharmacopoeias: Medicine and myth from
the humid tropics. Annals of the Association of American Geographers,
94: 868888. Doi: https://doi.org/10.1111/j.1467-8306.2004.00439.x.
WHO - World Health Organization. 2013. WHO traditional medicine
strategy: 20142023. Geneva, WHO Press. Available from: tinyurl.
com/344667wu.