Integrating Python and Microsoft Excel in teaching parametric optimization in Process Engineering
DOI:
https://doi.org/10.35699/2237-5864.2025.52342Keywords:
parametric optimization, didactic methodology, Microsoft Excel, Python, Chemical EngineeringAbstract
This study presents a teaching methodology for parametric optimization in a Chemical Engineering class at the Federal University of Rio Grande do Norte (Brazil), using Microsoft Excel and Python. The methodology was organized into three progressive phases. In the first, a questionnaire was applied to assess the students' prior knowledge. In the second, more realistic optimization problems were discussed in class, highlighting the limitations of traditional analytical approaches and presenting the basic functionalities of the tools adopted. In the final phase, students were challenged to solve a complex optimization problem involving a network of heat exchangers, using the two tools mentioned. Although 57.14% of the students opted for non-computerized analytical methods in the questionnaire proposed in the initial phase, the problem in the final phase was successfully solved, resulting in a score of 8.0 in the numerical assessment. This reflects the success of the intervention carried out during phase 2, guided by the results obtained in phase 1 of the research. Python and Excel have proven to be effective tools for teaching parametric optimization, even in small and heterogeneous classes.
Downloads
References
ADJIMAN, Claire S.; ANDROULAKIS, Ioannis. P.; FLOUDAS, Christodoulos. A. A global optimization method, αBB, for general twice-differentiable constrained NLPs. Implementation and computational results. Computers & Chemical Engineering, v. 22, n. 9, p. 1159-1179, ago. 1998. DOI: https://doi.org/10.1016/S0098-1354(98)00218-X. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S009813549800218X. Acesso em: 19. set. 2023. DOI: https://doi.org/10.1016/S0098-1354(98)00218-X
AVRIEL, Mordecai; WILLIAMS, Adrian C. An extension of geometric programming with applications in engineering optimization. Journal of Engineering Mathematics, v. 5, n. 2, p. 187-194, abr. 1971. DOI: https://doi.org/10.1007/BF01535411. Disponível em: https://link.springer.com/article/10.1007/BF01535411. Acesso em: 21 set. 2023. DOI: https://doi.org/10.1007/BF01535411
BRIONES, Laura; ESCOLA, Jose María. Application of the Microsoft Excel Solver tool in the solution of optimization problems of heat exchanger network systems. Education for Chemical Engineers, v. 26, p. 41-47, jan. 2019. DOI: https://doi.org/10.1016/j.ece.2018.10.003. Disponível em: https://www.sciencedirect.com/science/article/pii/S1749772818300125. Acesso em: 01 out. 2023. DOI: https://doi.org/10.1016/j.ece.2018.10.003
CACCAVALE, Fiammetta; GARGALO, Carina Loureiro da Costa Lira; GERNAEY, Krist V.; KRÜHNE, Ulrich. SPyCE: a structured and tailored series of Python courses for (bio)chemical engineers. Education for Chemical Engineers, v. 45, p. 90-103, out. 2023. DOI: https://doi.org/10.1016/j.ece.2023.08.003. Disponível em: https://www.sciencedirect.com/science/article/pii/S1749772823000404. Acesso em: 07 jan. 2024. DOI: https://doi.org/10.1016/j.ece.2023.08.003
DOMÍNGUEZ, Juan Carlos; ALONSO, Maria Virginia; GONZÁLEZ, Emilio José; GUIJARRO, M. Isabel; MIRANDA, Ruben; OLIET, Mercedes; RIGUAL, Victoria; TOLEDO, Jose M.; VILLAR-CHAVERO, M. Mar; YUSTOS, Pedro. Teaching chemical engineering using Jupyter notebook: problem generators and lecturing tools. Education for Chemical Engineers, v. 37, p. 1-10, out. 2021. DOI: https://doi.org/10.1016/j.ece.2021.06.004. Disponível em: https://www.sciencedirect.com/science/article/pii/S1749772821000397. Acesso em: 30 out. 2023. DOI: https://doi.org/10.1016/j.ece.2021.06.004
FERREIRA, Eugénio Campos; LIMA, Ricardo; SALCEDO, Romualdo. Spreadsheets in chemical engineering education - A tool in process design and process integration. International Journal of Engineering Education, Grã-Bretanha, v. 20, n. 6, p. 928-938, jan. 2004. Disponível em: https://sigarra.up.pt/fcnaup/en/PUB_GERAL.PUB_VIEW?pi_pub_base_id=52905. Acesso em: 18 fev. 2025.
GOLMAN, Boris; YERMUKHAMBETOVA, Assiya. An Excel VBA‐based educational module for simulation and energy optimization of spray drying process. Computer Applications in Engineering Education, v. 27, n. 5, p. 1103-1112, ago. 2019. DOI: https://doi.org/10.1002/cae.22139. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/cae.22139. Acesso em: 29 set. 2023. DOI: https://doi.org/10.1002/cae.22139
GOR, Gennady. Python for chemical engineers: an efficient approach to teach non-programmers to program. In: Spring ASEE Middle Atlantic Section Conference, Newark, New Jersey, abr. 2022. DOI: https://doi.org/10.18260/1-2--40065. Disponível em: https://peer.asee.org/40065. Acesso em: 07 jan. 2024.
INGUVA, Pavan; BHUTE, Vijesh J.; CHENG, Thomas Nok Him; WALKER, Pierre J. Introducing students to research codes: a short course on solving partial differential equations in Python. Education for Chemical Engineers, v. 36, p. 1-11, jul. 2021. DOI: https://doi.org/10.1016/j.ece.2021.01.011. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1749772821000117. Acesso em: 28 set. 2023. DOI: https://doi.org/10.1016/j.ece.2021.01.011
MA, Liang; MA, Ruina; CHABLAT, Damien; BENNIS, Fouad. Human arm simulation for interactive constrained environment design. International Journal on Interactive Design and Manufacturing, v. 7, n. 1, p. 27-36, abr. 2013. DOI: https://doi.org/10.1007/s12008-012-0162-z. Disponível em: https://link.springer.com/journal/12008. Acesso em: 14 set. 2023. DOI: https://doi.org/10.1007/s12008-012-0162-z
PERLINGEIRO, Carlos Augusto G. Engenharia de processos: análise, simulação e síntese de processos químicos. São Paulo, Brasil: Blucher, 2005.
RUDD, Dale F.; WATSON, Charles. C. Strategy of process Engineering. Nova York, United States: John Wiley & Sons, 1968.
SCHNEIDER, Patrick; XHAFA, Fatos. Anomaly detection and complex event processing over IoT Data Streams: with application to eHealth and patient data monitoring. Elsevier, 2022. Disponível em: https://www.sciencedirect.com/book/9780128238189/anomaly-detection-and-complex-event-processing-over-iot-data-streams. Acesso em: 08. out. 2024. DOI: https://doi.org/10.1016/B978-0-12-823818-9.00014-6
SEIDER, Warren D.; LEWIN, Daniel R.; SEADER, J. D.; WIDADGDO, Soemantri; GANI, Rafiqul; NG, Ka Ming. Product and process design principles: synthesis, analysis and evaluation. 4. ed. New York, United States: Wiley, 2016.
TEPPAITOON, Wittaya. Solving L-L extraction problems with Excel spreadsheet. ChE classroom, v. 50, n. 3, ago. 2016. Disponível em: file:///C:/Users/zulmiram/Downloads/perrycollins,+Teppaitoon_Summ16_GALLEY-1.pdf. Acesso em: 18 fev. 2025.
UDUGAMA, Isuru A.; ATKINS, Martin; BAYER, Christoph; CARSON, James; DIKICIOGLU, Duygu; GERNAEY, Krist. V.; GLASSEY, Jarka; TAYLOR, Mathew; YOUNG, Brent R. Digital tools in Chemical Engineering education: the needs and the desires. Education for Chemical Engineers, v. 44, p. 63-70, jul. 2023. DOI: https://doi.org/10.1016/j.ece.2023.05.002. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1749772823000192. Acesso em: 12 fev. 2024. DOI: https://doi.org/10.1016/j.ece.2023.05.002
WHITFIELD, Clifford A.; WEST, Dustin W.; TOMS, Lowell; MERRIL, John A. A first-year design project software tool to emphasize problem solving with computer programming in the design process. In: ASEE Annual Conference and Exposition, San Antonio, Texas, jun. 2012. DOI: https://doi.org/10.18260/1-2--20807. Disponível em: https://peer.asee.org/20807. Acesso em: 21 dez. 2023.
WONG, Kelvin W. W.; BARFORD, John Patrick. Teaching Excel VBA as a problem solving tool for chemical engineering core courses. Education for Chemical Engineers, v. 5, n. 4, p. 72-77, dez. 2010. DOI: https://doi.org/10.1016/j.ece.2010.07.002. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1749772810000084. Acesso em: 08 jan. 2024. DOI: https://doi.org/10.1016/j.ece.2010.07.002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Francinelson Pontes do Carmo, Vanja Maria de França Bezerra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License which allows the sharing of work with acknowledgment of authorship and initial publication in this journal.
Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (e.g. publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
Open access policy:
Revista Docência do Ensino Superior is an Open Access journal, which means that all content is available free of charge, at no cost to the user or their institution. Users may read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other legal purpose, without seeking prior permission from the publisher or author, provided they respect the license to use the Creative Commons used by the journal. This definition of open access is in line with the Budapest Open Access Initiative (BOAI).

























