Estudio de caso sobre el uso de un chatbot como herramienta pedagógica para la enseñanza de Diels-Alder en el pregrado
DOI:
https://doi.org/10.35699/2237-5864.2025.58046Palabras clave:
inteligencia artificial, chatbot, enseñanza de química, química orgánica, Diels-AlderResumen
El presente estudio investigó el uso del chatbot IQ.QO Asistente, desarrollado por uno de los autores para especializarse en la enseñanza de química orgánica, con una base de conocimiento restringida a fuentes fiables. La investigación es un estudio de caso realizado con diez estudiantes del tercer período de la carrera de Química durante el primer semestre de 2024. Se analizó la susceptibilidad del chatbot a errores conceptuales en comparación con modelos de lenguaje de acceso amplio. Adicionalmente, mediante el análisis de contenido de treinta prompts recopilados voluntariamente, se buscaron identificar patrones en la elaboración de preguntas por parte de los estudiantes de pregrado. Los resultados mostraron que el chatbot desarrollado presentó una tasa de error de solo el 11%, significativamente menor que la de los modelos generales. El análisis de los prompts reveló una tendencia a la simplicidad, con énfasis en los datos de entrada (63,5%) y ausencia de contexto, lo que sugiere que los estudiantes utilizan inteligencias artificiales generativas de forma similar a los motores de búsqueda. Dichos datos refuerzan la necesidad de la alfabetización digital para el uso eficaz de herramientas de inteligencia artificial en el contexto educativo, promoviendo el desarrollo de competencias digitales y la transición hacia modelos de aprendizaje activo.
Descargas
Referencias
ALPAYDIN, Ethem. Introduction to machine learning. 2 ed. Cambridge, Mass: MIT Press, 2010.
ARAÚJO, José Luís; SAÚDE, Isabel. Can ChatGPT enhance chemistry laboratory teaching? Using prompt engineering to enable AI in generating laboratory activities. Journal of Chemical Education, Washington, D.C., v. 101, n. 5, p. 1858-1864, mai. 2024. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jchemed.3c00745. Acesso em: 16 nov. 2025.
BARDIN, Laurence. Análise de conteúdo. Lisboa: Edições 70, 2015.
BAUM, Zachary J.; YU, Xiang; AYALA, Philippe Y.; ZHAO, Yanan; WATKINS, Stephen P.; ZHOU Qiongqiong. Artificial intelligence in chemistry: current trends and future directions. Journal of Chemical Information and Modeling, v. 61, n. 7, p. 3197-3212, 26 jul. 2021. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jcim.1c00619. Acesso em: 02 dez. 2025.
CARLEO, Giuseppe; TROYER, Matthias. Solving the quantum many-body problem with artificial neural networks. Science, Washington, D. C., v. 355, n. 6325, p. 602-606, fev. 2017. Disponível em: https://www.science.org/doi/10.1126/science.aag2302. Acesso em: 16 nov. 2025.
CORREA, Raquel Folmer; GEREMIAS, Bethania Medeiros. Determinismo tecnológico: elementos para debates em perspectiva educacional. Revista Tecnologia e Sociedade, Curitiba, v. 9, n. 18, dez. 2013. DOI: http://dx.doi.org/10.3895/rts.v9n18.2633. Disponível em: https://periodicos.utfpr.edu.br/rts/article/view/2633. Acesso em: 16 nov. 2025.
FUNEL, Jacques-Alexis; ABELE, Stefan. Industrial applications of the Diels-Alder reaction. Angewandte Chemie International Edition, Weinheim, v. 52, n. 14, p. 3822-3863, 2013. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201201636. Acesso em: 16 nov. 2025.
GIRAY, Louie. Prompt engineering with ChatGPT: a guide for academic writers. Annals of Biomedical Engineering, v. 51, n. 12, p. 2629-2633, dez, 2023. DOI: https://doi.org/10.1007/s10439-023-03272-4. Disponível em: https://link.springer.com/article/10.1007/s10439-023-03272-4. Acesso em: 16 nov. 2025.
GRANDO, John Wesley; CLEOPHAS, Maria das Graças. Análise de aplicativos móveis de realidades digitais para o ensino de química a partir de um modelo heurístico. Revista de Investigação Tecnológica em Educação em Ciências e Matemática, Cuiabá, v. 1, p. 152-165, 2021. Disponível em: https://revistas.unila.edu.br/ritecima/article/view/3195. Acesso em: 16 nov. 2025.
HERMANSON, Greg T. The reactions of bioconjugation. In: Bioconjugate Techniques. [S.I.]: Elsevier, 2013. p. 229-258.
ISTE. The International Society for Technology in Education (ISTE) Standards for students. [S.I.], 2018. Disponível em: https://unevoc.unesco.org/home/Digital+Competence+Frameworks/lang=en/id=17#tbar. Acesso em: 9 out. 2025.
KNIGHT, Charles; PRYKE, Sam. Wikipedia and the University, a case study. Teaching in Higher Education, v. 17, n. 6, p. 649-659, dez. 2012. DOI: https://doi.org/10.1080/13562517.2012.666734. Disponível em: https://www.tandfonline.com/doi/full/10.1080/13562517.2012.666734. Acesso em: 16 nov. 2025.
KULTHAU, Carol C. Inside the search process: information seeking from the user’s perspective. Journal of the American Society for Information Science, v. 42, n. 5, p. 361-371, 1991. DOI: https://doi.org/10.1002/(SICI)1097-4571(199106)42:5%3C361::AID-ASI6%3E3.0.CO;2-%23. Disponível em: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-4571%28199106%2942%3A5%3C361%3A%3AAID-ASI6%3E3.0.CO%3B2-%23. Acesso em: 02 dez. 2025.
KUNTZ, David; WILSON, Angela K. Machine learning, artificial intelligence, and chemistry: how smart algorithms are reshaping simulation and the laboratory. Pure and Applied Chemistry, v. 94, n. 8, p. 1019-1054, ago. 2022. Disponível em: https://www.degruyterbrill.com/document/doi/10.1515/pac-2022-0202/html?srsltid=AfmBOooo8kgcBbDB7jaBehW6IiytbvFwGGI98VFjc29V_W-w0ByaPIyb. Acesso em: 16 nov. 2025.
LEITE, Bruno Silva. Tecnologias no ensino de química: teoria e prática na formação docente. Curitiba: Appris, 2015.
LEITE, Bruno Silva. Aprendizagem tecnológica ativa. Revista Internacional de Educação Superior, Campinas, v. 4, n. 3, p. 580-609, mai. 2018. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/riesup/article/view/8652160. Acesso em: 16 nov. 2025.
LEITE, Bruno Silva. Tecnologias digitais e metodologias ativas no ensino de química: análise das publicações por meio do corpus latente na internet. Revista Internacional de Pesquisa em Didática das Ciências e Matemática, Itapetininga, e020003, jul. 2020. Disponível em: https://periodicoscientificos.itp.ifsp.edu.br/index.php/revin/article/view/18. Acesso em: 16 nov. 2025.
LEITE, Bruno Silva. Análise da inteligência artificial ChatGPT na proposição de planos de aulas para o ensino de química, Vigo, v. 23, p. 473-497, 2024. Disponível em: https://dialnet.unirioja.es/servlet/articulo?codigo=9903754. Acesso em: 16 nov. 2025.
LOPES, Auxiliadora Cristina Correa Barata; CHAVES, Edson Valente. Animação como recurso didático no ensino da química: capacitando futuros professores. Revista de Estudos e Pesquisas sobre Ensino Tecnológico (EDUCITEC), Manaus, v. 4, n. 07, jun. 2018. DOI: https://doi.org/10.31417/educitec.v4i07.256. Disponível em: https://sistemascmc.ifam.edu.br/educitec/index.php/educitec/article/view/256. Acesso em: 16 nov. 2025.
LUCKIN, Rosemary; CUKUROVA, Mutlu; KENT, Carmel; DU BOULAY, Benedict. Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, v. 3, p. 100076, 2022. DOI: https://doi.org/10.1016/j.caeai.2022.100076. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666920X22000315?via%3Dihub. Acesso em: 02 dez. 2025.
NASCIMENTO JÚNIOR, Wilton José Diolindo; MORAIS, Carla; GIROTTO JÚNIOR, Gildo. Enhancing AI responses in chemistry: integrating text generation, image creation, and image interpretation through different levels of prompts. Journal of Chemical Education, Washington, D. C., v. 101, n. 9, p. 3767-3779, set. 2024. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00230. Acesso em: 16 nov. 2025.
PROFUTURO. The Global Framework for Educational Competence in the Digital Age, 2020. Disponível em: https://unevoc.unesco.org/home/Digital+Competence+Frameworks/lang=en/id=6#tbar. Aceso em: 9 nov. 2025.
RUSSEL, Stuart. Inteligência artificial a nosso favor: como manter o controle sobre a tecnologia. São Paulo: Companhia das Letras, 2021.
SANTOS, Marcos Eduardo Miranda; BATISTA, Wanda dos Santos; OLIVEIRA, João Victor França; JANSEN, Isabel Conceição Carvalho; SANTOS, Kelly Fernanda de Sousa; SANTO, Eliane Coelho Rodrigues dos. Ações educativas para o combate ao mosquito Aedes aegypti em uma escola da região metropolitana de São Luís. Caderno Pedagógico, Curitiba, v. 14, n. 1, jun. 2017. DOI: https://doi.org/10.22410/issn.1983-0882.v14i1a2017.1317. Disponível em: https://ojs.studiespublicacoes.com.br/ojs/index.php/cadped/article/view/1372. Acesso em: 16 nov. 2025.
SAUER, Doz J. Diels-Alder reactions II: the reaction mechanism. Angewandte Chemie International Edition in English, v. 6, n. 1, p. 16-33, 1967. DOI: https://doi.org/10.1002/anie.196700161. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.196700161. Acesso em: 16 nov. 2025.
SCOTT, JoAnna M.; BOHATY, Brenda S.; GADBURY-AMYOT, Cynthia C. Using learning management software data to compare students’ actual and self-reported viewing of video lectures. Journal of Dental Education, v. 85, n. 10, p. 1674-1682, 2021. DOI: https://doi.org/10.1002/jdd.12633. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/jdd.12633. Acesso em: 16 nov. 2025.
SEGLER, Marwin H. S.; PREUSS, Mike; WALLER, Mark P. Planning chemical synthesis with deep neural networks and symbolic AI. Nature, Londres, v. 555, n. 7698, p. 604-610, mar. 2018. Disponível em: https://www.nature.com/articles/nature25978. Acesso em: 16 nov. 2025.
SELLWOOD, Matthew A.; AHMED, Mohamed; SEGLER, Marwin H. S.; BROWN, Nathan. Artificial intelligence in drug discovery. Future Medicinal Chemistry, v. 10, n. 17, p. 2025-2028, set. 2018. DOI: https://doi.org/10.4155/fmc-2018-0212. Disponível em: https://www.tandfonline.com/doi/full/10.4155/fmc-2018-0212. Acesso em: 16 nov. 2025.
SENIOR, Andrew W.; EVANS, Richard; JUMPER, John; KIRKPATRICK, James; SIFRE, Laurent; GREEN, Tim; QIN, Chongli; ŽÍDEK, Augustin, NELSON, Alexander W. R.; BRIDGLAND, Alex; PENEDONES, Hugo; PETERSEN, Stig; SIMONYAN, Karen; CROSSAN, Steve; KOHLI, Pushmeet; JONES, David T.; SILVER, David; KAVUKCUOGLU, Koray; HASSABIS, Demis. Improved protein structure prediction using potentials from deep learning. Nature, Londres, v. 577, n. 7792, p. 706-710, jan. 2020. Disponível em: https://www.nature.com/articles/s41586-019-1923-7. Acesso em: 16 nov. 2025.
SILVA, Ketia Kellen Araújo da; BEHAR, Patrícia Alejandra. Competências digitais na educação: uma discussão acerca do conceito. Educação em Revista, Belo Horizonte, v. 35, n. e209940, 2019. DOI: https://doi.org/10.1590/0102-4698209940. Disponível em: http://educa.fcc.org.br/scielo.php?script=sci_abstract&pid=S0102-46982019000100419&lng=pt&nrm=iso. Acesso em: 16 nov. 2025.
STAKE, Robert E. The art of case study research. California: Sage Publications, 1995.
TASSOTI, Sebastian. Assessment of students use of generative artificial intelligence: prompting strategies and prompt engineering in chemistry education. Journal of Chemical Education, Washington, D. C., v. 101, n. 6, p. 2475-2482, mai. 2024. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00212. Acesso em: 16 nov. 2025.
TAUBER, Amanda L.; LEVONIS, Stephan M.; SCHWEIKER, Stephanie S. Gamified virtual laboratory experience for in-person and distance students. Journal of Chemical Education, Washington, D. C., v. 99, n. 3, p. 1183-1189, jan. 2022. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00642. Acesso em: 16 nov. 2025.
UNESCO. AI competency framework for teachers. [S.I.]: UNESCO, 2024.
WHITE, Jules; FU, Quchen; HAYS, Sam; SANDBORN, Michael; OLEA, Carlos; GILBERT, Henry; ELNASHAR, Ashraf; SPENCER-SMITH, Jesse;
SCHMIDT, Douglas C. A prompt pattern catalog to enhance prompt engineering with ChatGPT. 2023. DOI: https://doi.org/10.48550/arXiv.2302.11382. Disponível em: https://arxiv.org/abs/2302.11382. Acesso em: 16 nov. 2025.
YEINGST, Tyus J.; HELTON Angelica M.; HAYES, Daniel J. Applications of Diels-Alder qhemistry in biomaterials and drug delivery. Macromolecular Bioscience, Weinheim, v. 24, n. 12, p. 2400274, dez. 2024. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/mabi.202400274. Acesso em: 16 nov. 2025.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Wilton José Diolindo do Nascimento Júnior, Mayara de Carvalho Santos, Paulo César Muniz de Lacerda Miranda, Gildo Girotto Júnior

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista conservan los derechos de autor y otorgan a la revista el derecho de primera publicación, siendo la obra licenciada simultáneamente bajo la Creative Commons Attribution License, que permite compartir la obra con reconocimiento de autoría y publicación inicial en esta revista.
Los autores están autorizados a asumir contratos adicionales por separado, para la distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, publicación en un repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
Política de acceso abierto:
La Revista Docência do Ensino Superior es una revista de Acceso Abierto, lo que significa que todo el contenido está disponible de forma gratuita, sin costo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular a los textos completos de los artículos, o utilizarlos para cualquier otro propósito legal, sin necesidad de obtener el permiso previo del editor o autor, siempre que respeten la licencia de uso. los Creative Commons utilizados por la revista. Esta definición de acceso abierto está en línea con la Iniciativa de Acceso Abierto de Budapest (BOAI).

























