Mathematical Proof

Discourse Genre and Logical Connexions from a Linguistic Perspective

Authors

DOI:

https://doi.org/10.17851/2237-2083.32.3.%25p

Keywords:

Mathematics, genre, logical relations, connexion, Systemic functional linguistics

Abstract

One of the main tasks faced by those studying Calculus, Algebra or Geometry at tertiary level is writing the text known as ‘mathematical proof’. The purpose of a proof is to prove that an initial statement is true by deductive reasoning, through the alternation of mathematical symbolism and natural language. Beyond the solving of the problem itself, writing this kind of multisemiotic discourse involves particular difficulties; one of them is to establish logical relationships, through natural language, that make sense of relations along the proof. The aim of this study is to offer an initial description of the proof as a genre as well as of the patterns of connexion that are relevant to it. Based on an interdisciplinary work between linguists and mathematicians, a set of proofs constructed by Mathematics professors at a Chilean university are described. This characterization is grounded on Systemic Functional Linguistics, with focus on ideational discourse semantics, connexion in Spanish and mathematical discourse. The paper proposes three stages for the proof: Point of the proof ^ Mathematical reasoning ^ Confirmation. The paper also shows that mathematical proof, like genres from other disciplines, displays predominantly external causal connexions realised congruently and incongruently, and internal connexions realised congruently. The analysis shows that connexions are crucial for the ideational formulation of propositions and for threading together the different stages of the mathematical proof genre.

References

ACCURSO, K.; GEBHARD, M.; PURINGTON, S.B. Analyzing Diverse Learners’ Writing in Mathematics: Systemic Functional Linguistics in Secondary Pre-Service Teacher Education. International Journal for Mathematics Teaching and Learning, v. 18, n. 1, p. 84-108, 2017. DOI: https://doi.org/10.4256/ijmtl.v18i1.48

ADAMS, T. L. Reading mathematics: More than words can say. The Reading Teacher, v. 56, n.8, p. 786–795, 2003. DOI: http://www.jstor.org/stable/20205297.

ALFARO-CARVAJAL, C., FLORES-MARTINEZ, P.;VALVERDE-SOTO, G. La demostración matemática: significado, tipos, funciones atribuidas y relevancia en el conocimiento profesional de los profesores de matemáticas. Uniciencia, [online], v. 33, n. 2, p. 55-75, 2019. DOI: http://dx.doi.org/10.15359/ru.33-2.5.

ALLAHBAKHSHI, M., BEHN, A., HENAO, D. LEIVA, N.; MENARES, R. Orientaciones para la construcción y la escritura de una demostración. Proyecto Ciencia 2030. Pontificia Universidad Católica de Chile, 2022

ALVARADO, A. & GONZÁLEZ, M.T. La implicación lógica en el proceso de demostración matemática: un estudio de caso. Enseñanza de las ciencias, v. 28, n. 1, p. 73-84, 2009.

BUSTOS, A; ZUBIETA, G. Desarrollo y cambios en las maneras de justificar matemáticamente de estudiantes cuando trabajan en un ambiente sociocultural. Enseñanza de las ciencias, v. 37, n. 3, p. 129-148, 2019. DOI: https://doi.org/10.5565/rev/ensciencias.2506

CAMACHO, V., SÁNCHEZ, J.J. & ZUBIETA, G. Los estudiantes de ciencias, ¿pueden reconocer los argumentos lógicos involucrados en una demostración? Enseñanza de las ciencias, v. 32, n. 1, p. 117-138, 2014. DOI: https://doi.org/10.5565/rev/ensciencias.983

CHRISTIE, F. & DEREWIANKA, B. School discourse: Learning to Write Across the Years of Schooling. New York: Continuum Discourse, 2008.

COCKING, R. R. & MESTRE, J. P. Linguistic and cultural influences on learning mathematics. Taylor & Francis Group, 1988

COFFIN, C. Learning to write history. The role of causality. Written Communication, v. 21, n. 3, p. 261-289, 2004. DOI: https://doi.org/10.1177/0741088304265476

DORAN, Y. J. The Discourse of Physics: Building Knowledge through Language, Mathematics and Image, London: Routledge, 2018a.

DORAN, Y. J. Intrinsic Functionality of Mathematics, Metafunctions in Systemic Functional Semiotics, Semiotica, v. 225, p. 457–87, 2018b. DOI: https://doi.org/10.1515/sem-2017-0004

DORAN, Y. J. Academic Formalisms: Toward a Semiotic Typology. In: MARTIN, J.R.; DORAN, Y.; FIGUEREDO, G. (eds). Systemic Functional Language Description: Making Meaning Matter. London: Routledge, 2020. p. 331–358.

DORAN, Y. J. Semiotic Description: Grappling with Mathematics. In: CALDWELL, J., KNOX, J., & MARTIN, J. R. (eds.). Appliable linguistics and social semiotics. Bloomsbury Academic, 2022. p. 341-354.

DORAN, Y. J. & MARTIN, J.R. Field relations: Understanding scientific explanations. In: K. MATON, K.; MARTIN, J.R.; DORAN, Y. J. (eds). Studying Science: Knowledge, Language, Pedagogy. London: Routledge, 2021.

EGGINS, S. An Introduction to Systemic Functional Linguistics. Londres: Bloomsbury, 2004.

FIALLO, J., CAMARGO, L. & GUTIERREZ, A. Acerca de la enseñanza y el aprendizaje de la demostración en matemáticas. Revista Integración. Escuela de Matemáticas, v. 31, n. 2, p. 181-205, 2013.

HALLIDAY, M.A.K. An Introduction to Functional Grammar, 2 ed. Londres: Edward Arnold, 1994

HALLIDAY, M.A.K. & MARTIN, J. R. Writing science: Literacy and discursive power. Londres: The Falmer Press, 1993.

HALLIDAY, M.A.K. & C.M.I.M. MATTHIESSEN. Halliday’s Introduction to Functional Grammar. 4. ed. Nueva York: Routledge, 2014.

HALLIDAY, M. A. K. & HASAN, R. Cohesion in English. London: Longman, 1976.

HAO, J. Analysing Scientific Discourse: A framework for exploring knowledge building in biology from a systemic functional linguistic perspective. New York: Routledge, 2020.

HEYVAERT, L. Nominalization as Grammatical Metaphor: On the Need for a Radically Systemic and Metafunctional Approach. In: SIMON-VANDENBERGEN, A. M.; TAVERNIERS, M.; RAVELLI, L. (eds). Grammatical Metaphor: Views from Systemic Functional Linguistics, Ámsterdam, Filadelfia: John Benjamins, 2003. p. 65-99.

KATZ, B.P., THOREN, E. & HERNÁNDEZ, V. Why Should that Convince Me?: Teaching Toulmin Analysis Across the Curriculum. PRIMUS, v. 33, n. 2, p. 285-313, 2023. DOI: https://doi.org/10.1080/10511970.2022.2068093

LEIVA, N. Conexiones causales en español: un recurso semántico-discursivo para explicar el pasado reciente en la Historia escolar. Estudios Filológicos, n.69, p.135-161, 2022. DOI: http://dx.doi.org/10.4067/S0071-17132022000100135

LEIVA, N. & OTEÍZA, T. Causalidad y posicionamientos en el discurso de la historia escolar en español. Íkala, Revista de Lenguaje y Cultura, v. 28, n.3, p.1-19, 2023. DOI: https://doi.org/10.17533/udea.ikala.352539.

LEW, K. & MEJÍA-RAMOS, J. P. Linguistic conventions of mathematical proof writing across pedagogical contexts. Educational Studies in Mathematics, v. 103, n. 1, p. 43-62, 2020. DOI: https://doi.org/10.1007/s10649-019-09915-5

MARTIN, J.R. English text: system and structure. Amsterdam: Benjamins, 1992

MARTIN, J.R. Life as a noun: Arresting the universe in science and humanities. In: HALLIDAY, M. A. K.; MARTIN, J. R. (eds). Writing science: Literacy and discursive power. London: The Falmer Press, 1993. p. 242–293.

MARTIN, J.R. Making History: Grammar for interpretation. In: MARTIN, J. R.; WODAK, R. (eds.). Re/reading the past: Critical and functional perspectives on time and value. Amsterdam: Benjamins, 2004, p. 20–56.

MARTIN, J.R. Genre and Field: Social Processes And Knowledge Structures in Systemic Functional Semiotics. The 33rd International Systemic Functional Congress, 2006, Proceedings…

MARTIN, J.R. Ideational semiosis: a tri-stratal perspective on grammatical metaphor. D.E.L.T.A., São Paulo, v. 26, n.2, p. 1-27, 2020. DOI: https://doi.org/10.1590/1678-460X2020360304.

MARTIN, J.R. & WHITE, P.R.R. The Language of Evaluation. Londres: Palgrave, 2005.

MARTIN, J.R. & ROSE, D. Working With Discourse. Meaning Beyond the Clause. London: Continuum, 2007.

MARTIN, J.R. & ROSE, D. Genre Relations. Mapping Culture. London: Equinox Publishing, 2008.

MARTIN, J. R., QUIROZ, B. & WANG, P. Theme. In: Systemic Functional Grammar: A text-based description of English, Spanish and Chinese. Cambridge: Cambridge University Press, 2023. p. 304-369.

MARTÍNEZ, A. La demostración en matemática. Una aproximación epistemológica y didáctica. Quinto Simposio de la Sociedad Española de Investigación en Educación Matemática, 2001.

MARTÍNEZ L. Algunas apreciaciones acerca del concepto crítico de demostración. Logos. Anales del Seminario de Metafísica, vol. 55, n. 1, p. 109-124, 2022. DOI: https://doi.org/10.5209/asem.76153

MOYANO, E.I. El sistema de Tema en español: una mirada discursiva sobre una cuestión controversial. In: GHIO, E; FERNÁNDEZ, M.D. (eds.).El discurso en español y portugués: Estudios desde una perspectiva sistémico-funcional, Santa fe, Universidad Nacional del Litoral, 2010, p. 39-87

MOYANO, E.I. La función de Tema en español: sus medios de realización desde la perspectiva trinocular de la Lingüística Sistémico Funcional. Revista Signos, v. 54, n. 106, p. 487-517, 2021.DOI: 10.4067/S0718-09342021000200487.

O’HALLORAN, K. Towards a systemic functional analysis of multisemiotic mathematics texts’. Semiotica, v. 124, n.1/2, p. 1-29, 1999. DOI: https://doi.org/10.1515/semi.1999.124.1-2.1

O’HALLORAN, K. Mathematical discourse. Language, symbolism and visual images. London: Continuum, 2005.

O’HALLORAN, K. The language of learning mathematics: A multimodal perpective. Journal of Mathematical Behavior, v.40, p. 63–74, 2015. DOI: https://doi.org/10.1016/j.jmathb.2014.09.002

PIMM, D. Speaking mathematically: Communication in mathematics classrooms. London: Routledge, 1987.

QUIROZ, B. & MARTIN, J. R. Perfil sistémico-funcional del grupo nominal en español: estructura, funciones discursivas básicas y organización sistémica. Estudios Filológicos, v. 68, p. 123–151, 2021. DOI: https://doi.org/10.4067/s0071-17132021000200123

SCHLEPPEGRELL, M. J. The linguistic challenges of mathematics teaching and learning: A research review. Reading and Writing Quarterly, v. 23, n. 2, p. 139–159, 2007. DOI: https://doi.org/10.1080/10573560601158461

SEGERBY, C. Supporting mathematical reasoning through reading and writing in mathematics: making the implicit explicit. Holmbergs, Malmö University, 2017.

SPANOS, G., RHODES, N., DALE, T. & CRANDALL, J. Linguistics Features of mathematical Problem Solving. In: COCKING, R. R.; MESTRE, J. P. (eds.). Linguistic and cultural influences on learning mathematics. Taylor & Francis Group, 1988. p. 221–240.

SUA FLORES, C. Saber suficiente no es suficiente: comportamientos metacognitivos al resolver problemas de demostración con el apoyo de la geometría dinámica. Tecne, episteme y didaxis: revista de la Facultad de Ciencia y Tecnología, Universidad Pedagógica Nacional, n. 45, p. 121-142, 2019. DOI: https://doi.org/10.17227/ted.num45-9838

SUNDSTROM, T. Mathematical Reasoning: Writing and Proof. Pearson Education, 2021.

URHAN, S. & ZENGIN, Y. Investigating University Students’ Argumentations and Proofs Using Dynamic Mathematics Software in Collaborative Learning, Debate, and Self-reflection Stages. International Journal of Research in Undergraduate Mathematics Education, v.10, n.2, p. 380–407, 2024. DOI: https://doi.org/10.1007/s40753-022-00207-7

WILSON, J. A Primer on Mathematical Proof. https://dept.math.lsa.umich.edu/~jchw/2015Math110Material/PrimerOnProof-Math110.pdf s/a

Downloads

Published

2024-12-30

How to Cite

Mathematical Proof: Discourse Genre and Logical Connexions from a Linguistic Perspective. Revista de Estudos da Linguagem, [S. l.], v. 32, n. 3, p. 896–932, 2024. DOI: 10.17851/2237-2083.32.3.%p. Disponível em: https://periodicos.ufmg.br/index.php/relin/article/view/56577. Acesso em: 14 jan. 2025.

Similar Articles

1-10 of 49

You may also start an advanced similarity search for this article.