Técnica de seleção de variáveis em problemas de classificação de falhas aplicada em processo industrial usando o algoritmo genético MOEADD
DOI:
https://doi.org/10.35699/2447-6218.2019.15357Palavras-chave:
Indústria, KNN, Operadores Genéticos, Inteligência ComputacionalResumo
Neste trabalho é proposto um método de seleção de variáveis denominado MOEADD-KNN-M, que é baseado no algoritmo genético MOEADD (Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition), no algoritmo de classificação KNN (K-nearest neighbors), e em operadores genéticos adaptados. A abordagem adotada no algoritmo proposto é bi-objetivo, onde um objetivo é minimizar a quantidade de variáveis da solução e outro objetivo é minimizar a taxa de erro de classificação de falhas. Foram realizados experimentos com o método proposto empregando dados de um processo industrial petroquímico real, denominado Tennessee Eastman para classificação de falhas, e os resultados obtidos foram comparados com outros algoritmos. Os resultados demonstraram que o método proposto leva a soluções com baixo erro de classificação e pouca quantidade de sensores, que são as quantidades procuradas para serem minimizadas. Sendo assim, essa abordagem se mostrou promissora para a aplicação na seleção de variáveis em problemas de classificação de falhas em processos industriais.
Referências
Ahmad, I. (2015). Feature selection using particle swarm optimization in intrusion detection. International Journal of Distributed Sensor Networks, 11(10):806954.
Al-Ani, A., Alsukker, A., e Khushaba, R. N. (2013). Feature subset selection using differential evolution and a wheel based search strategy. Swarm and Evolutionary Computation, 9:15–26.
Allegrini, F. e Olivieri, A. C. (2011). A new and efficient variable selection algorithm based on ant colony optimization. applications to near infrared spectroscopy/partial leastsquares analysis. Analytica chimica acta, 699(1):18–25.
Brusco, M. J. (2014). A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis. Computational Statistics & Data Analysis, 77:38–53. Chandrashekar, G. e Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1):16–28.
Foster, D., Karloff, H., e Thaler, J. (2015). Variable selection is hard. In Conference on Learning Theory, p. 696–709.
Guyon, I. e Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar):1157–1182.
Kohavi, R. e John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1-2):273–324.
Li, K., Deb, K., Zhang, Q., e Kwong, S. (2014). An evolutionary manyobjective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 19(5):694–716.
Marill, T. e Green, D. (1963). On the effectiveness of receptors in recognition systems. IEEE transactions on Information Theory, 9(1):11–17.
Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., e Coello, C. A. C. (2013). A survey of multiobjective evolutionary algorithms for data mining: Part i. IEEE Transactions on Evolutionary Computation, 18(1):4–19.
Silva, F. M. S., Ferreira, J. F., Palhares, R. M., e D’Angelo, M. F. S. V. (2017). Uma abordagem evolutiva multiobjetivo baseada em ponto de atração para seleção de variáveis em problemas de classificação de falhas. XLIX Simpósio Brasileiro de Pesquisa Operacional.
Venkatasubramanian, V., Rengaswamy, R., e Kavuri, S. N. (2003a). A review of process fault detection and diagnosis: Part ii: Qualitative models and search strategies. Computers & chemical engineering, 27(3):313–326.
Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., e Yin, K. (2003b). A review of process fault detection and diagnosis: Part iii: Process history based methods. Computers & chemical engineering, 27(3):327–346.
Venkatasubramanian, V., Rengaswamy, R., Yin, K., e Kavuri, S. N. (2003c). A review of process fault detection and diagnosis: Part i: Quantitative model-based methods. Computers & chemical engineering, 27(3):293–311.
Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEETransactions on Computers, 100(9):1100–1103.
Yu, L. e Liu, H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of machine learning research, 5(Oct):1205–1224.
Publicado
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos:
Os Direitos Autorais para artigos publicados nesta revista são de direito do autor. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores.
Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.