Snake plant underground organs are promising sources of fructans

Authors

  • Amanda Batista da Silveira Universidade Federal de Goiás, Instituto de Ciências Biológicas. Goiânia, GO. Brasil. http://orcid.org/0000-0002-8672-7280
  • Khályta Willy da Silva Soares Universidade Federal de Goiás, Instituto de Ciências Biológicas. Goiânia, GO. Brasil. http://orcid.org/0000-0001-5363-5673
  • Jhenyfer Rodrigues Aguiar Universidade Federal de Goiás, Instituto de Ciências Biológicas. Goiânia, GO. Brasil. http://orcid.org/0000-0002-5525-1910
  • Cinara Ferreira Abraão Universidade Federal de Goiás, Instituto de Ciências Biológicas. Goiânia, GO. Brasil. http://orcid.org/0000-0002-5158-2296
  • Moemy Gomes de Moraes Universidade Federal de Goiás, Instituto de Ciências Biológicas. Goiânia, GO. Brasil. http://orcid.org/0000-0002-2217-1199

DOI:

https://doi.org/10.35699/2447-6218.2019.15929

Keywords:

Storage of reserve, Asparagaceae, Nonstructural carbohydrate, Rhizome, Sansevieria trifasciata

Abstract

Snake plant is a widely cultivated ornamental plant belonging to the Asparagaceae family. The species in this Family often have rhizomes as storage organs, and fructans as the main stored nonstructural carbohydrates. These compounds are sucrose-derived fructose polymers. Due to their various benefits, they are of great interest to the food and pharmaceutical industries. The objective of this work was to quantify the nonstructural carbohydrate contents and to verify the presence of fructans in snake plant rhizomes and roots. For this, the belowground organs of plants cultivated in a flower bed, but not irrigated, were collected. Water content and soluble carbohydrate content in both organs were evaluated. The rhizomes of the species had higher water content and soluble carbohydrate content than the roots. Qualitative analyzes of soluble carbohydrates by high performance anion exchange chromatography showed the presence of fructans in both organs, with a profile similar to that observed in onion bulb extracts. We conclude that the belowground organs of snake plant store fructans with diversified structures that correspond to the inulin neoseries and that especially the rhizomes of this species are promising source for obtaining fructans.

Downloads

Download data is not yet available.

References

Almeida, L. V.; Ferri, P. H.; Seraphin, J. C.; Moraes, M. G. 2017. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado. Science of the Total Environment, 598: 404-412. Doi: http://dx.doi.org/10.1016/j.scitotenv.2017.04.100.

Amaral, L. I. V.; Gaspar, M.; Costa, P. M. F.; Aidar, M. P. M.; Buckeridge, M. S. 2007. Novo método enzimático rápido e sensível de extração e dosagem de amido em materiais vegetais. Hoehnea, 34: 425–431. Doi: http://dx.doi.org/10.1590/S2236-89062007000400001.

Andhare, R. N.; Raut, M. K.; Naik, S. R. 2012. Evaluation of antiallergic and anti-anaphylactic activity of ethanolic extract of Sanseveiria trifasciata leaves (EEST) in rodents. Journal of Ethnopharmacology, 142: 627-633. Doi: http://dx.doi.org/10.1016/j.jep.2012.05.007.

Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. 2010. Inulin - a versatile polysaccharide with multiple pharmaceutical and food chemical uses. Journal of Excipients and Food Chemistry, 1: 27-50. Disponível em: https://jefc.scholasticahq.com/article/1132-inulin-a-versatilepolysaccharide-with-multiple-pharmaceutical-and-food-chemical-uses

Carvalho, M. A. M.; Dietrich, S. M. C. 1993. Variation in fructan content in the underground organs of Vernonia herbacea (Vell.) Rusby at different phenological phases. New Phytologist, 123: 735–740. Doi: https://doi.org/10.1111/j.1469-8137.1993.tb03784.x.

Cedeño, M. 1995. Tequila production. Critical Reviews in Biotechnology, 15: 1-11. Doi: https://doi.org/10.3109/07388559509150529.

Chase M. W.; Reveal, J. L.; Fay, M. F. 2009. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161: 132–136. Doi: https://doi.org/10.1111/j.1095-8339.2009.00999.x.

Dong, S.; Beckles, D. M. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234-235: 80-93. Doi: https://doi.org/10.1016/j.jplph.2019.01.007.

Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350–356. Doi: https://doi.org/10.1021/ac60111a017.

Garcia, P. A. A.; Hayashi, A. H.; Silva, E. A.; Figueiredo-Ribeiro, R. C. L.; Carvalho, M. A. M. 2015. Structural and metabolic changes in rhizophores of the Cerrado species Chrysolaena obovata (Less.) Dematt. as influenced by drought and re-watering. Frontiers in Plant Science. 6: 721. Doi: https://doi.org/10.3389/fpls.2015.00721.

Hendry, G. A. F. 1993. Evolutionary origins and natural fractions of fructans: a climatological, biogeographic and mechanistic appraisal. New Phytologist, 123: 3-14. Doi: https://doi.org/10.1111/j.1469-8137.1993.tb04525.x.

Hendry, G. A. F.; Wallace, R. K. 1993. The origin, distribution, and evolutionary significance of fructans. In: Suzuki, M.; Chatterton, N. J. (Eds.), Science and Technology of Fructans, 119–139. Boca Raton: CRC Press.

Joaquim, E. O.; Silva, T.M.; Ribeiro, R. C. L. F.; Moraes M. G.; Carvalho, M. A. M. 2018. Diversity of reserve carbohydrates in herbaceous species from Brazilian campo rupestre reveals similar functional traits to endure environmental stresses. Flora, 238: 201-209. Doi: https://doi.org/10.1016/j.flora.2017.01.001.

Lorenzi, H.; Mello Filho, L. E. 2001. As plantas tropicais de Burle Marx. São Paulo: Plantarum.

Monti, A.; Amaducci, M. T.; Pritoni, G.; Venturi, G. 2005. Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime. Journal of Experimental Botany, 56: 1389-1395. Doi: https://doi.org/10.1093/jxb/eri140.

Nascimento, T. M.; Graziano, T. T.; Lopes C. S. 2003. Espécies e cultivares de Sanseviéria como plantas ornamentais. Revista Brasileira de Horticultura Ornamental, 9: 111-119. Doi: https://doi.org/10.14295/rbho.v9i2.174.

Pausas, J. G.; Lamont, B. B.; Paula, S.; Apezzato-da-Glória, B.; Fidélis, A. 2018. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist, 217: 1435-1448. Doi: https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.14982.

Pimentel, T. C.; Garcia, S.; Prudencio, S. H. 2012. Iogurte probiótico com frutanos tipo inulina de diferentes graus de polimerização: características físico-químicas e microbiológicas e estabilidade ao armazenamento. Semina: Ciências Agrárias, 33: 1059-1070. Doi: http://doi.org/10.5433/1679-0359.2012v33n3p1059.

Rhizopoulou, S.; Pantis, J. D.; Triantafylli, E.; Vokou, D. 1997. Ecophysiological adaptations of Asphodelus aestivus to mediterranean climate periodicity: water relations and energetic status. Ecography, 20: 626-633. Doi: https://doi.org/10.1111/j.1600-0587.1997.tb00431.x.

Salinas, C.; Handford, M.; Pauly, M.; Dupree, M.; Cardemil, L. 2016. Structural modifications of fructans in Aloe barbadensis Miller (Aloe vera) grown under water stress. PLoS One 11: e0159819. Doi: https://doi.org/10.1371/journal.pone.0159819.

Santos, C. S.; Abraão, C. F.; Moraes, M. G. 2018. Fructan dynamics in the underground organs of Chresta exsucca (Asteraceae), a dry season flowering species. Acta Botanica Brasilica, 32: 70–79. Doi: https://doi.org/10.1590/0102-33062017abb0214.

Sims, I. M. 2003. Structural diversity of fructans from members of the order Asparagales in New Zealand. Phytochemistry, 63: 351-359. Doi: https://doi.org/10.1016/S0031-9422(03)00132-8.

Souza, A.; Moraes, M. G.; Figueiredo-Ribeiro, R. C. L. 2005. Gramíneas do cerrado: carboidratos não-estruturais e aspectos ecofisiológicos. Acta Botanica Brasilica, 19: 81-90. Doi: http://dx.doi.org/10.1590/S0102-33062005000100009.

Van den Ende, W. 2013. Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4: 247. Doi: https://doi.org/10.3389/fpls.2013.00247.

Yamamori, A.; Okada, H.; Kawazoe, N.; Ueno, K.; Onodera, S.; Shiomi, N. 2015. Structure of fructan prepared from onion bulbs (Allium cepa L.) Journal of Applied Glycoscience, 62: 95-99. Doi: https://doi.org/10.5458/jag.jag.JAG-2015_001.

Published

2019-12-16

How to Cite

Silveira, A. B. da, Soares, K. W. da S., Aguiar, J. R., Abraão, C. F., & Moraes, M. G. de. (2019). Snake plant underground organs are promising sources of fructans. Agrarian Sciences Journal, 11, 1–6. https://doi.org/10.35699/2447-6218.2019.15929

Issue

Section

Research Papers
Share |