Timbre de um instrumento musical
caracterização e representação
DOI:
https://doi.org/10.35699/2317-6377.2006.55252Palavras-chave:
timbre de instrumentos musicais, espaço timbrístico, classificação de timbres, acústica musicalResumo
A representação do timbre de um instrumento musical envolve problemas de grande complexidade. Apesar da conhecida correlação entre o timbre e o conteúdo espectral do som, o mapeamento das características espectrais dos mais variados tipos de sons produzidos por um instrumento e sua utilização de forma semanticamente relevante exige uma metodologia de análise de dados específica. Este trabalho apresenta uma abordagem para este problema através do mapeamento das curvas de variação temporal das amplitudes dos componentes harmônicos, extraídos através da Transformada Discreta de Fourier, utilizando técnicas de Análise por Componentes Principais (PCA). As bases ortogonais definidas pela PCA possibilitaram grande redução de dados e a criação de subespaços timbrísticos capazes de representar os sons do instrumento em várias alturas e níveis de intensidade.
Técnicas de classificação de dados permitiram uma análise semântica destes espaços timbrísticos, possibilitando a classificação de grupos de timbres semelhantes neste espaço e ratificando a PCA como uma forma eficiente da representação da dinâmica de timbres de instrumentos musicais.
Referências
ARCOS, J. L., DE MÁNTARAS, R. L. e SERRA, Xavier. SaxEx: A Case-Based Reasoning System for enerating Expressive Musical Performances. Journal of New Music Research, v.27, n.3, 1998.
BALIELLO, S., DE POLI, Giovanni e NOBILI, R. The Color of Music: Spectral Characterization of Musical ounds Filtered by a Cochlear Model. Journal of New Music Research, v.27, n.4, 1998.
BRAGA, A. P., LUDERMIR, T. B. e CARVALHO, A. C. P. L. F. Redes Neurais Artificiais: Teoria e Aplicações. Rio de Janeiro, RJ: Editora LTC, 2000.
CHARBONNEAU, G., HOURDIN, C. e MOUSSA, T. A Multidimensional Scaling Analysis of Musical Instrument’s Time-Varying Spectra. Computer Music Journal, v.21, n.2, 1997a. p.40-55.
______. A Sound Synthesis Technique Based on Multidimensional Scaling of Spectra. Computer Music Journal, v.21, n.2, 1997b. p.56-68.
COSI, Piero, DE POLI, Giovanni e LAUZZANA, Gianpaolo. Auditory Modeling and Self-Organizing Neural works for Timbre Classification. Journal of New Music Research, v.23, 1994. p.71-98.
DANNENBERG, Roger B. e DERENYI, I. Combining Instrument and Performance Models for High-Quality Music Synthesis. Journal of New Music Research, v.27, n.3, 1998.
DE PAULA, Hugo Bastos. Análise e Re-síntese de Som Natural de Clarineta Utilizando Análise por omponentes Principais. Belo Horizonte: Departamento de Engenharia Elétrica, Universidade Federal de Minas Gerais, 2000 (Dissertação, Mestrado em Engenharia Elétrica).
DE POLI, Giovanni e PRANDONI, P. Sonological Models for Timbre Characterization. Journal of New Music Research, v.26, 1997. p.170-197.
DE POLI, Giovanni, PRANDONI, P. e TONELLA, P. Timbre Clustering by Seff-Organizing Neural Networks. Anais do X Colloquium on Musical Informatics. Milan: University of Milan, 1993.
DE POLI, Giovanni, RODÀ, Antonio e VIDOLIN, Alvise. Note-by-Note Analysis of the Influence of Expressive Intentions and Musical Structure in Violin Performance. Journal of New Music Research, v.27, n.3, 1998. p.293-321.
DE POLI, Giovanni e TONELLA, P. Self-Organizing Neural Networks and Grey’s Timbre Space. Anais do International Computer Music Conference. Tokyo: International Computer Music Association, 1993. p. 441-444.
DUBNOV, Shlomo. Emotion - Is it measurable? Anais do KANSEI - The Technology of Emotion, AIMI International Workshop. Genova, 1997.
DUBNOV, Shlomo e RODET, Xavier. Statistical Modeling of Sound Aperiodicities. Anais do International Computer Music Conference. Tessaloniki, Grece: International Computer Music Association, 1997.
DUBNOV, Shlomo, TISHBY, N. e COHEN, D. Hearing Beyond The Spectrum. Journal of New Music Research, v.25, 1996.
EGOZY, E. B. Deriving Musical Control Features from a Real-Time Analysics of the Clarinet. Cambridge, Massachusetts, Massachussets Institute Technology, 1995 (Dissertação, Mestrado em Engenharia Elétrica).
FAITEN, B. e GUNZEL, S. Automatic Indexing of a Sound Database Using Self-Organizing Neural Nets. Computer Music Journal, v.18, n.3, 1994. p.53-65.
FREEDMAN, M.D. A technique for Analysis of Musical Instrument Tone. Urbana, Illinois, University of Illinois, 1965 (Tese, Doutorado em Engenharia Elétrica).
______. A Method for Analysing Musical Tones. Journal of The Audio Engineering Society, v.16, 1968. p.419-425.
FRIBERG, Anders, BRESIN, Roberto, FRYDÉN, Lars e SUNDBERG, Johan. Musical Punctuation on the Microlevel: Automatic Identification and Performance of Small Melodic Units. Journal of New Music Research, v.27, n.3, 1998.
GORDON, J. W. e GREY, J. M. Perceptual Effects of Spectral Modifications on Music Timbres. Journal of the Acoustics Society of America, v.63, 1978. p.1493-1500.
GREY, John M. An exploration of musical timbre. CCRMA, Dept. of Music Stanford University. Stanford, Calif., (STAN-M-2), 1975.
______. Multidimensional Perceptual Scaling of Musical Timbres. Journal of the Acoustics Society of America, v.5, 1977. p.1270-1277.
______. Timbre Discrimination in Musical Patterns. Journal of the Acoustics Society of America, v.64, 1978. p.467-472.
HAJDA, J. M., KENDALL, Roger A., CARTERETTE, Edward C. e HARSHBERGER, M. L. Methodological Issues in Timbre Research. In: I. Deliège e J. A. Sloboda (Ed.). Perception and Cognition of Music. Hove: Psychology Press, 1997, p.253-306.
HORNER, A. Wavetable Interpolation Synthesis Based on Time-Variant Spectral Analysis of Musical Sounds. Journal of The Audio Engineering Society, 1995.
HORNER, A., BEAUCHAMP, J. W. e HAKEN, L. Methods for Multiple Wavetable Synthesis of Musical Instrument Tones. Journal of The Audio Engineering Society, v.41, n.5, 1993. p.336-356.
HORNER, A. e NGAI-MAN. Group Synthesis with Genetic Algorithms. Journal of The Audio Engineering Society, v.44, n.3, 1996. p.130-147.
JOHNSON, R. e WICHERN, D. W. Applied Multivariate Statistical Analysis. Upper Sadlle, New Jersey, 1998.
KAUFMAN, L. e ROUSSEEUW, P. J. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1989.
KOHONEN, Teuvo. Self-Organizing Maps - Springer Series in Information Sciences. Berlim: Springer Verlag. v.30, 1995.
LEMAN, Marc. Emergent Properties of Tonality Functions by Self-Organization. Interface - Journal of New Music Research, v.19, n.2-3, 1991. p.85-106.
______. Tone Context by Pattern Integration over Time. In: D. Baggi (Ed.). Computer Generated Music. Los Alamitos, California: IEEE Computer Science Press, 1992.
______. Schema-Based Tone Center Recognition of Musical Signals. Journal of New Music Research, v.23, n.2, 1994. p.169-204.
LOUREIRO, Mauricio Alves, DE PAULA, Hugo Bastos e YEHIA, Hani Camille. Study of the Timbre Dynamics of an Expressive Performance Using Principal Component Analysis of Spectral Parameters. Anais do VII Simpósio de Computação e Música, Ed. C. V. D. L. Palombini. Curitiba, PR: PUC - PR, 2000.
______. Sonological Representation of a Musical Instrument by Sub-spaces of Spectral Component. Mikropolyphonie - The Online Contemporary Music Journal, v.7, 2001.
______. Representing Timbre Dynamics of a Musical Instrument: Comparison Between GA and PCA. Anais do IEEE International Workshop on Machine Learning for Signal Processing. São Luiz, Maranhão: Universidade Federal do Maranhão, 2004a. p. 381-390.
______. Timbre Classification of a Single Music Instrument. Anais do 5th International Conference on Music Information Retrieval - ISMIR. Barcelona: University Pompeu Fabra, 2004b. p. 546-549.
______. Timbre Representation of a Single Music Instrument. Anais do International Computer Music Conference. University of Miami, USA: International Computer Music Association, 2004c. p. 394-397.
LUCE, D. A. Physical Correlates of Nonpercurssive Musical Instrument Tones. Cambridge, Massachusetts: Department of Physics, MIT, 1963 (Tese, Doutorado em Física).
LUCE, D. A. e CLARK, M. Duration of Attack Transients of Nonpercurssive Orchestral Instruments. Journal of The Audio Engineering Society, v.13, 1965. p.194-199.
______. Physical Correlates of Brass-Instrument Tones. Journal of the Acoustics Society of America, v.42, 1967. p.1232-1243.
MASRI, Paul e BATEMAN, A. Improved Modelling of Attack Transients in Music Analysis-Resynthesis. Anais do International Computer Music Conference. Hong-Kong: The International Computer Music Association (ICMA), 1996. p. 100-103.
MCADAMS, Stephen e BREGMAN, Albert S. Hearing Musical Streams. In: C. Roads e J. Strawn (Ed.). Foundations of Computer Music. Cambridge, Massachusetts: MIT Press, 1979, p.658-698.
MCADAMS, Stephen, WINSBERG, S., DONNADIEU, S., DE SOETE, G. e KRIMPHOFF, J. Perceptual Scaling of Synthesized Musical Timbres: Common Dimensions, Specificities and Latent Subject Classes. Psychological Research, v.58, 1995. p.177-192.
MCAULAY, R. J. e QUATIERI, T. F. Speech Analysis/Synthesis Based on a Sinusoidal Representation. IEEE Transactions on Acoustics, Speech, and Signal Processing, v.34, n.4, 1986. p.744-754.
MILLER, J. R. e CARTERETTE, Edward C. Perceptual Spaces for Musical structures. Journal of the Acoustics Society of America, v.58, 1975. p.711-720.
MISDARIIS, N. R., SMITH, B. K., PRESSNITZER, D., SUSINI, P. e MCADAMS, Stephen. Validation of a Multidimensional Distance Model for Perceptual Dissimilarities Among Musical Timbres. Anais do 16th International Congress on Acoustics. Woodbury, New York: ASA - The Acoustical Society of America, 1998.
PISZCZALSKI, M. Spectral Surfaces from Performed Music, Part 1. Computer Music Journal, v.3, n.1, 1979a. p.18-24.
______. Spectral Surfaces from Performed Music, Part 2. Computer Music Journal, v.3, n.3, 1979b. p.25-27.
PISZCZALSKI, M., GALLER, B., BOSSEMEYER, R., HATAMIAN, M. e LOOFT, F. Performed Music: Analysis Synthesis and Display by Computer. Journal of The Audio Engineering Society, v.29, 1981. p.38-46.
PLOMP, Reinier. Timbre as a Multidimensional Attribute of Complex Tones. In: R. Plomp e G. F. Smoorenburg (Ed.). Frequency Analysis and Periodicity Detection in Hearing. Leiden: A. W. Sijthoff, 1970.
PLOMP, Reinier e RASCH, Rudolf A. The Perception of Musical Tones. In: D. Deutsch (Ed.). Psychology of Music. San Diego, California: Academic Press, 1982, p.1-24.
RENCHER, A. C. Methods of Multivariate Analysis. New York: John Wiley & Sons, 1995.
RISSET, Jean-Claude. Computer Study of Trumpet Tones. Journal of the Acoustical Society of America, v.38, 1965. p.912.
______. Timbre Analysis by Synthesis: Representations, Imitations and Variants for Musical Composition. In: G. De Poli, A. Piccialli, et al (Ed.). Representation of Musical Signals. Cambridge, Massachusetts: MIT Press, 1991, p.7-43.
RISSET, Jean-Claude e Mathews, Max V. Analysis of Musical Instrument Tones. Physics Today, v.22, n.2, 1969. p.23-40.
RISSET, Jean-Claude e WESSEL, David L. Exploration of Timbre by Analysis and Synthesis. In: D. Deutsch (Ed.). Psychology of Music. San Diego, California: Academic Press, 1999, p.25-58.
ROCHEBOIS, T. e CHARBONNEAU, G. Cross-Synthesis Using Interverted Principal Harmonic Sub-Spaces. In: M. Leman (Ed.). Music, Gestalt and Computing: Studies in Cognitive and Systematic Musicology. Berlin-Heidelberg: Springer Verlag, 1997, p.375-385.
ROVAN, J. B., WANDERLEY, Marcelo, DUBNOV, Shlomo e DEPALLE, P. Instrumental Gestural Mapping Strategies as Expressivity Determinants in Computer Music Performance. Anais do KANSEI - The Technology of Emotion, AIMI International Workshop. Genova, 1997.
SANDELL, G. J. e MARTENS, W. Perceptual Evaluation of Principal-Component-Based Synthesis of Musical Timbres. Journal of The Audio Engineering Society, v.43, n.12, 1995. p.1013-1028.
SERRA, Xavier. Musical Sound Modeling with Sinusoids plus Noise. In: A. Piccialli, C. Roads, et al (Ed.). Musical Signal Processing: Swets & Zeitlinger Publishers, 1997.
SHEPARD, R. N. Psychological Representations of Speech Sounds in Human Communication. New York: McGrow-Hill, 1972. STRAWN, John. Modelling Musical Transitions. Palo Alto, California: CCRMA, Department of Music, Stanford University, 1985 (Tese, Doutorado em Música).
______. Orchestral Instruments: Analysis of Performed Transitions. Journal of The Audio Engineering Society, v.34, 1986. p.867-880.
______. Analysis and Synthesis of Musical Transitions Using the Discrete Short-Time Fourrier Transform. Journal of The Audio Engineering Society, v.35, 1987. p.3-14.
STRONG, W. e CLARK, M. Pertubations of Synthetic Orchestral Wind-Instrument Tones. Journal of the Acoustics Society of America, v.41, n.2, 1967a. p.277-285.
______. Synthesis of Wind-Instrument Tones. Journal of the Acoustics Society of America, v.41, n.1, 1967b. p.39-52.
TOIVIAINEN, Petri, KAIPAINEN, Mauri e LOUHIVUORI, Jukka. Musical Timbre: Similarity Ratings Correlate with Computational Feature Space Distances. Journal of New Music Research, v.24, 1995. p.282-298.
WESSEL, David L. Timbre Space as a Musical Control Structure. In: C. Roads e J. Strawn (Ed.). Foundations of Computer Music. Cambridge, Massachusetts: MIT Press, 1979, p.640-657.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Per Musi

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Exceto onde está indicado, o conteúdo neste site está sob uma Licença Creative Commons - Atribuição 4.0 Internacional.