Techniques and technologies for mitigation of gases in animal production

Authors

DOI:

https://doi.org/10.35699/2447-6218.2022.40748

Keywords:

Supplements, Livestock, Sustainability

Abstract

The use of practices and resources to reduce greenhouse gas emissions in agriculture is a matter of great importance nowadays, because, at the level of public and international opinion, they are seen more negatively, being represented as a threat to the environment. environment and one of those responsible for the emission of greenhouse gases in Brazil. The objective of this work is to review the literature addressing the knowledge of these factors and the impor- tance of carrying out the most appropriate management and using technologies in the field that can contribute to the mitigation of gases. This review addresses management practices, such as the use of multiple supplements in order to increase productivity and reduce gas emissions by increasing the production of propionate and ruminal fermentation modulating additives that, in addition to increasing productivity, reduce carbon loss by carbohydrate fermentation route, also contributing to a sustainable, productive and profitable activity that are the pillars of sustainability.

References

ABIEC – Associação Brasileira das Indústrias Exportadoras de Carnes. 2022. Beef Report. Brasília: ACOMPANHE AS EXPORTAÇÕES DE 2022. Disponível em: http://abiec.com.br/

Arcuri, P.B., Lopes, F.C.F., Carneiro, J.C. 2006. Microbiologia do rúmen. In Berchielli, T.T., Pires, A.V., Oliveira, S.G. Nutrição de ruminantes. Jaboticabal, p.111.150, Brasil.

Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R. L. 2001. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Veterinary Parasitology, v.99, n.3, p.205–19. Disponivel em: https:// doi.org/10.1016/S0304-4017(01)00467-8.

Bagg, R. 1997. Mode of action of ionophores in lactating dairy cattle. Usefulness of ionophores in lactating dairy cattle. Guelph: Ontario Veterinary College, p.13–21.

Ballarini, R.; Shah, S. P.; Keer, L. M. 1986. Failure characteristics of short anchor bolts embedded in brittle material. Proceedings of the Royal Society of London, London, v. a 404, p. 35–54.

Barragry, T.B. 1994. Growth promoting agents in veterinary drug therapy. Lea and Febiger, Philadelphia, p.607–615.

Bastos, D. F. 2018. Emissão de óxido nitroso da urina e fezes de bovinos e ovinos em sistemas pecuários extensivos. Tese de doutorado. Universidade Federal do Rio Grande do Sul. Disponível em: http://hdl. handle.net/10183/197734.

Beauchemin, K. A., Kreuzer, M., O’mara, F., & Mcallister, T. A. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, v. 48, n. 2, p. 21–27. Disponível em: https://doi.org/10.1071/EA07199.

Brasil, M. C. T. I. 2016. Terceira comunicação nacional do brasil à convenção-quadro das nações unidas sobre mudança do clima. Setor Uso da Terra, Mudança do Uso da Terra e Florestas. MCT, Brasília, DF, Brasil, p. 79.

Braz, S. P., Nascimento Junior, D. D., Cantarutti, R. B., Regazzi, A. J., Martins, C. E., & Fonseca, D. M. D. 2002. Disponibilização dos nutrientes das fezes de bovinos em pastejo para a forragem. Revista Brasileira de Zootecnia, 31, 1614–1623. Disponível em: https://www.scielo.br/j/ rbz/a/hhGvVt6Rxydf5KwPPV8nhjt/?lang=pt.

Cardoso, A. S., Brito, L. F., Janusckiewicz, E. R., Da Silva, Morgado, E., Barbero, R. P., Koscheck, J. F. W., Reis, R. A... Ruggieri, A. C. 2017. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems, v. 20, n. 4, p. 845–859. Disponível em: https://doi.org/10.1007/s10021-016-0065-0.

Cardoso, A. S.; Alves, B.J.R.; Urquiaga,S.; Boddey, R.M. 2018. Effect of volume of urine and mas of feces on N2O and CH4 emissions of dairy cow excreta in a tropical pasture. Animal Production Science 58, 1079–1086. Disponível em: https://doi.org/10.1071/AN15392.

Cardoso, A. S.; Janusckewiz, E. R.; Oliveira, S. C.; Brito, L. F.; Morgado, E. S.; Ruggieri, A. C. 2013. Emissão de metano por excretas de bovinas em pastagens de capim-marandú durante o verão. XXXIV Congresso Brasileiro de Ciência do Solo, 2013, Florianopolis-SC, v.1.

Carulla, J. E., M. Kreuzer, A. Machmüller, and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian journal of agricultural research. 56:961–970. Disponível em: https://doi. org/10.1071/AR05022.

Carvalho, Z. G.; Sales, E. C. J. D.; Monção, F. P.; Vianna, M. C. M.; Silva, E. A.; Queiroz, D. S. 2019. Morphogenic, structural, productive and bromatological characteristics of Braquiária in silvopastoral system under nitrogen doses. Acta Scientiarum. Animal Sciences, 41. Disponível em: https://doi.org/10.4025/actascianimsci.v41i1.39190.

Champney, W.S. Tober, C.L. 2000. Specific inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells by 16–membered macrolide, lincosamide, and streptogramin B antibiotics. Current Microbiology, v. 41; n. 2; p. 126–135. Disponível em: https://doi. org/10.1007/s002840010106.

Cocito, C. 1979. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiological Reviews, Washington, v. 43, n. 2, p. 145–198.

Da Silva Carrega, Correia, M. F.; Dantas, A. 2017. Metano ruminal e o uso de taninos condensados como estratégia de mitigação. Nucleus Animalium, v. 9, n. 1, p. 51–64. Disponível em: https://dialnet.unirioja. es/servlet/articulo?codigo=6229736.

DeSomer, P.; Van Dijck, P. A. 1955. Preliminary report on antibiotic number 899, a streptogramin-like substance. Antibiotics and Chemotherapy, Washington, v.5, p. 11.

FNR - Fachagentur Nachwachsende Rohstoffe. 2010. Guia Prático do Biogás: Geração e Utilização. Ministério da Nutrição Agricultura e Defesa do Consumidor da Alemanha. Gülzow, Alemanha.

Francisco, A., Dentinho, M.T., Alves, S.P., Fernandes, F., Sengo, S., Jerónimo, E., Oliveira, M.A., Costa P., Sequeira A., Bessa R.J.B., Santos- silva J. 2015. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Science, 100, 275–282. Disponível em: https://doi.org/10.1016/j.meatsci.2014.10.014.

Galford, G. L., Melillo, J. M., Kicklighter, D. W., Cronin, T. W., Cerri, C. E., Mustard, J. F., & Cerri, C. C. 2010. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proceedings of the National Academy of Sciences, v. 107, n. 46, p. 19649–19654. Disponivel em: https://doi.org/10.1073/ pnas.1000780107.

Gilbert, C.D., Lunt, D.K., Miller, R.K., Smith, S.B. 2003. Carcass, sensory, and adipose tissue traits of Brangus steers fed casein-formaldehyde- protected starch and/or canola lipid. Journal of Animal Science, v.81, n.10, p.2457–2468.

Goodrich, R.D., Garrett, J.E., Gast, D.R., Kirick, M.A., Larson, D.A., Meiske, J.C. 1984. Influence of monensin on the performance of cattle. Journal of Animal Science, v.58, n.6, p.1484–1498.

Grossi, G., Goglio, P., Vitali, A., Williams, A. G. 2019. Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal Frontiers, v. 9, n. 1, p. 69–76. Disponível em: https://doi. org/10.1093/af/vfy034.

Haney, ME., Knox, N.G., Hoehn, M.M. 1967. Monensin, um novo composto biologicamente ativo. Antimicrob. Agentes Chemother. v.7, p.353–358.

Hristov, A. N., Firkins, J. Oh, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B., Tricarico, J. M.. 2013. SPECIAL TOPICS - Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options, Journal of Animal Science, Volume 91, p 5045–5069. Disponível em: https://doi.org/10.2527/ jas.2013-6583.

Jayanegara, A., Goel, G., Makkar, H. P., & Becker, K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209, 60–68. Disponível em: https://doi. org/10.1016/j.anifeedsci.2015.08.002.

Jayanegara, A.; Leiber, F.; Kreuzer, M. 2012. Meta‐analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Journal of animal physiology and animal nutrition, v. 96, n. 3, p. 365–375. Disponível em: https://doi.org/10.1111/j.1439-0396.2011.01172.x.

Kahiya, C.; Mukaratirwa, S.; Thamsborg, S.M. 2003. Effects of Acacia nicolitica and Acacia karoo diets on Haemonchus contortus infection in goats. Veterinary Parasitology, v.115, n.3, p.265–74. Disponível em: https://doi.org/10.1016/S0304-4017(03)00213-9.

Koenig, K. M.; Beauchemin, K. A. 2018. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutriente digestibility, and route of nitrogen excretion in beef cattle. Journal of Animal Science, v. 96, n. 10, p. 4398–4413. Disponível em: https://doi.org/10.1093/jas/sky273.

Koscheck, J. F. W., Romanzini, E. P., Barbero, R. P., Delevatti, L. M., Ferrari, A. C., Mulliniks, J. T., Mousquer C. J., Berchielli, T. T., REIS, R. A. 2020. How do animal performance and methane emissions vary with forage management intensification and supplementation? Animal Production Science, p.1–29. Disponível em: https://doi.org/10.1071/AN18712.

Lee, C., Hristov, A. N., Heyler, K. S., Cassidy, T. W., Lapierre, H., Varga, G. A., Parys, C. 2012. Effects of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emissions from manure in dairy cows. Journal of Dairy Science, v. 95, n. 9, p. 5253–5268. Disponível em: https://doi.org/10.3168/ jds.2012-5366.

Lessa, A. C. R. 2011. Emissão de óxido nitroso e volatilização de amônia de urina e fezes bovina em pastagens. Seropédica RJ, Universidade Federal Rural do Rio de Janeiro. Dissertação Mestrado em Agronomia, Ciência do Solo. Disponível em: https://tede.ufrrj.br/handle/jspui/3922.

Lessa, A. C. R., Madari, B. E., Paredes, D. S., Boddey, R. M., Urquiaga, S., Jantalia, C. P., Alves, B. J. 2014. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems & amp; nvironment, v. 190, p. 104–111. Disponível em: https://www.cabdirect. org/cabdirect/abstract/20143253388

Lutz, W. K., Winkler, F.K., Dunitz, J.D. 1971. Crystal structure of the antibiotic monensin similarities and differences betweeen free acid and metal complex. Helvetica Chimica Acta, v.54, n.4, p.1103–1108.

Makkar, H.P.S. 2003. Effect and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, v.49, p.241–256. Disponível em: https://doi.org/10.1016/S0921-4488(03)00142-1.

Mazzetto, A. M., Barneze, A. S., Feigl, B. J., Van Groenigen, J. W., Oenema, O., Cerri, C. C. 2014. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biology and Biochemistry, v. 76, p. 242–248. Disponível em: https://doi.org/10.1016/j.soilbio.2014.05.026.

Mcguffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. 2001. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science, v.84, p.194–203. Disponivel em: https://doi.org/10.3168/ jds.S0022-0302(01)70218-4.

Millen, D.D., Pacheco, R.D.L., Arrigoni, M.D.B., Galyean, M.L., Vasconcelos, J.T. 2009. A snapshot of management practices and nutritional recommendations used by feedlot nutritionists in Brazil. Journal of Animal Science. v.87, n.10, p.3427–3439. Disponível em: https://doi.org/10.2527/jas.2009-1880.

Min, B.R.; Barry, T.N.; Attwood, G.T.; Mcnabb, W. C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology, v.106, p.3–19. Disponível em: https://doi.org/10.1016/S0377-8401(03)00041- 5.

Morales, R., Ungerfeld, E.M. 2015. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: a review. Chilean Journal of Agricultural Research, 75, 239–248. Disponível em: http:// dx.doi.org/10.4067/S0718-58392015000200014.

Moreira, F.M.S.; Siqueira, J.O. 2006. Microbiologia e Bioquímica do solo. 2. ed. Lavras: UFLA, 729p, Brasil.

Moss, Angela R.; Jouany, JP; Newbold, J. 2000. Methane production by ruminants: its contribution to global warming. In: Annales de zootechnie. EDP Sciences, p. 231–253. Disponível em: https://doi.org/10.1051/ animres:2000119.

Mueller-harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture, v. 86, n. 13, p. 2010–2037. Disponível em: https://doi.org/10.1002/ jsfa.2577.

Ovchinnikov, J.A. 1979. Physico chemical basis of ion transport through biological membranes: ionophores and ion channels. European Journal of Biochemistry, v.94, n.2, p.321–336.

Raposo, S. 2018. Antibióticos na Produção animal: Restrições à vista?. Volume 13, número 15, Scot Consultoria.

Reed, Jess D. 1995. Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of animal science, v. 73, n. 5, p. 1516–1528. Disponível em: https://doi.org/10.2527/1995.7351516x.

Reis, R. A., Ruggieri, A. C., Casagrande, D. R., & Páscoa, A. G. 2009. Suplementação da dieta de bovinos de corte como estratégia do manejo das pastagens. Revista Brasileira de Zootecnia, 147–159. Disponível em: https://doi.org/10.1590/S1516-35982009001300016.

Ribeiro, V. J., Andrade, F. V., de Souza, C. H. E., & Sa Mendonca, E. 2016. Volatilization of ammonia in stabilized slow-release nitrogen fertilizer under controlled conditions. Australian Journal of Crop Science, 10(6), 793–798. https://search.informit.org/doi/10.3316/ informit.323001000986494.

Russell, J.B., Strobel, H.J. 1989. Mini-Review: the effect of ionophores on ruminal fermentations. Applied and Environmental Microbiology, Washington, v.55, p.1–6.

S.M. Pedreira, O. Primavesi 2006. Impacto da Produção Animal Sobre o Ambiente. T.T. Berchielli, A.V. Pires, S.G. Oliveira (Eds.), Nutrição de ruminantes, Funep, Jaboticabal (2006), pp. 497–511. Disponível em: file:///C:/Users/User/Downloads/digitalizar0020.pdf.

Salman, A.K., Paziani, S.F., Soares, J.P.G. 2006. Utilização de ionóforos para bovinos de corte. Porto Velho: Embrapa Rondônia. Documento 101, 24p. Disponível em: https://www.infoteca.cnptia.embrapa.br/ bitstream/doc/708265/1/doc101ionoforos.pdf.

Scalbert, A. Antimicrobial properties of tannins. Phytochemistry, v.30, p.3875–3883, 1991.

Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. Singh, Brajesh K. 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, v. 8, n. 11, p. 779–790. Disponível em: https://doi.org/10.1038/nrmicro2439.

Sistema De Estimativas De Emissões E Remoções De Gases De Efeito Estufa (SEEG) 2021. Tabela geral de dados Brasil e Estados. Disponível em: http://seeg.eco.br/download.

Sliwinski, B.J.; Soliva, C.R.; Machmüller, K.M. 2002. Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Animal Feed Science and Technology, v.101, p.101–114. Disponível em: https://doi.org/10.1016/S0377-8401(02)00139-6.

Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., Rey, A. 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, v. 54, n. 4, p. 779–791. Disponível em: https:// doi.org/10.1111/ejss.12539.

Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M. M. B.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. (eds.). 2014. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Disponivel em: 10.1017/CBO9781107415324.

Waghorn, G. C. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production – progress and challenges. Anim. Feed Sci. Technol. 147:116–139. Disponível em: https://doi.org/10.1016/j.anifeedsci.2007.09.013.

WMO. Greenhouse Gas Bulletin: Another Year Another Record. 2021. Disponível em: https://public.wmo.int/en/media/press-release/ greenhouse-gas-bulletin-another-year-another-record. Acesso em: 29 ago. 2021.

Woodward, S.L.; Waghorn, G.C.; Ulyatt, M.J.; Lassey, K.R. 2011. Early indications that feeding Lotus will reduce methane emissions from ruminants. New Zealand Society of Animal Production, p.23–26.

Yang, K., Wei, C., Zhao, G. Y., Xu, Z. W., & Lin, S. X. 2016. Dietary supplementation of tannic acid modulates nitrogen excretion pattern and urinary nitrogenous constituents of beef cattle. Livestock Science, 191, 148–152. Disponível em: https://doi.org/10.1016/j.livsci.2016.07.020.

Zhao, G. Y. 2017. Modulation of protein metabolism to mitigate nitrous oxide (N2O) emission from excreta of livestock. Current Protein and Peptide Science, 18, 525–531. Disponivel em: https://www. ingentaconnect.com/content/ben/cpps/2017/00000018/00000006; jsessionid=46ghhwlv2uvej.x-ic-live-01.

Zotti, C. A.; Paulino, V. T. 2009. Metano na produção animal: Emissão e minimização de seu impacto. Ecologia de Pastagens, Curso de Pós- graduação em Produção Animal Sustentável. v. 10, n. 07, p. 2016. Disponível em: http://www.iz.agricultura.sp.gov.br/pdfs/1259324182. pdf.

Published

2022-10-31

Issue

Section

Reviews

How to Cite

Techniques and technologies for mitigation of gases in animal production. (2022). Agrarian Sciences Journal, 14, 1-8. https://doi.org/10.35699/2447-6218.2022.40748
Share |

Similar Articles

You may also start an advanced similarity search for this article.