Phytotoxicity of mercury and mechanical scarification in Sapindus saponaria L. propagation

Authors

  • Bruno Oliveira Lafetá Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais. São João Evangelista, MG. Brasil. http://orcid.org/0000-0003-2913-6617
  • Lucimeiri Alves Nascimento Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais. São João Evangelista, MG. Brasil. https://orcid.org/0000-0002-5154-9023
  • Carlos Henrique Souto Azevedo Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais. São João Evangelista, MG. Brasil. https://orcid.org/0000-0002-2031-4280
  • Tamires Mousslech Andrade Penido Universidade Federal dos Vales do Jequitinhonha e Mucuri. Diamantina, MG. Brasil. https://orcid.org/0000-0001-7764-8532
  • Luiz Felipe Ramalho de Oliveira Universidade Federal dos Vales do Jequitinhonha e Mucuri. Diamantina, MG. Brasil. http://orcid.org/0000-0003-2579-9341

DOI:

https://doi.org/10.35699/2447-6218.2019.15972

Keywords:

Seedling development, Germination, Mercury II oxide

Abstract

Soil contamination by mercury is a serious environmental problem, with potential for food chain biomagnification and damage to human health. This study aimed to evaluate the effect of different concentrations of HgO on germination and seedling development of Sapindus saponaria submitted to mechanical scarification. The experiment was established in completely randomized design with four repetitions of 25 seeds, in 4 x 2 factorial arrangement, being studied the effect of four concentrations of HgO in vermiculite (C1 – 0.000 g/cm3;.C2 – 0.025 g/cm3; C3 – 0.050 g/cm3 e C4 – 0.075 g/cm3) and two pre-treatments (P1 – Control: seeds with intact integument and P2 – mechanical scarification with electric emery). Attributes related to germination and seedling development were evaluated. F-test, regression analysis and paired t-test were performed, all of the 5.0 % statistical significance. Mechanical scarification with electric emery favored seed imbibition (100.0%), germination (85.25%) and emissions of lateral roots (70.0%) and shoot (76.25%). The presence of mercury in vermiculite impaired seedling development. It was concluded that mechanical scarification with electric emery can be indicated to overcome seed dormancy of S. saponaria. This species tolerate low concentrations of HgO (0.0045 g/cm3) without causing further damage to its growth and accumulation of green mass.

Downloads

Download data is not yet available.

References

Albiero, A. L. M.; Bacchi, E. M.; Mourão, K. S. M. 2001. Caracterização anatômica das folhas, frutos e sementes de Sapindus saponaria L. (Sapindaceae). Acta Scientiarum, 23: 549-560. Doi: https://doi.org/10.4025/actascibiolsci.v23i0.2733.

Appezzato-da-Glória, B.; Carmello-Guerreiro, S. N. 2006. Anatomia Vegetal, Viçosa, UFV.

Boening, D. W. 2000. Ecological effects, transport, and fate of Mercury: a general review. Chemosphere, 40: 1335-1351. Doi: https://doi.org/10.1016/S0045-6535(99)00283-0.

Brasil. 2009. Regras para análise de sementes. Ministério de Agricultura, Pecuária e Abastecimento. Secretaria Nacional de Defesa Agropecuária, Brasília: Mapa/ACS.

Cicatelli, A.; Todeschini, V.; Biondi, S.; Torrigiani, P.; Castiglione, S. 2010. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106: 791-802. Doi: https://doi.org/10.1093/aob/mcq170.

Climate-data.org. 2019. Clima: São João Evangelista. Disponível em: https://pt.climate-data.org/location/175926/.

Conn, S.; Gilliham, M. 2010. Comparative physiology of elemental distributions in plants. Annals of Botany, 105: 1081-1102. Doi: https://doi.org/10.1093/aob/mcq027.

Cook, A.; Turner, S. R.; Baskin, J. M.; Baskin, C. C.; Steadman, K. J.; Dixon, K. W. 2008. Occurrence of physical dormancy in seeds of Australian Sapindaceae: a survey of 14 species in nine genera. Annals of Botany, 101: 1349-1362. Doi: https://doi.org/10.1093/aob/mcn043.

Copete, E.; Herranz, J. M.; Ferrandis, P.; Baskin, C. C.; Baskin, J. M. 2011. Physiology, morphology and phenology of seed dormancy break and germination in the endemic Iberion species Narcissus hispanicus (Amaryllidaceae). Annals of Botany, 107: 1003-1016. Doi: https://doi.org/10.1093/aob/mcr030.

Damas, G. B.; Bertoldo, B.; Costa, L. T. 2014. Mercúrio: da antiguidade aos dias atuais. Revista Virtual Quimica, 6: 1010-1020. Doi: https://doi.org/10.5935/1984-6835.20140063.

Freitas, A. R.; Lopes, J. C.; Matheus, M. T.; Mengarda, L. H. G.; Venancio, L. P.; Caldeira, M. V. W. 2013. Superação da dormência de sementes de jatobá. Pesquisa Florestal Brasileira, 33: 85-90. Doi: https://doi.org/10.4336/2013.pfb.33.73.350.

Goren, R.; Siegel, S. M. 1976. Mercury-induced ethylene formation and abscission in Citrus and Coleus explants. Plant Physiology, 57: 628-631. Doi: https://doi.org/10.1104/pp.57.4.628.

Grisi, P. U.; Gualtieri, C. J.; Ranal, M. A.; Santana, D. G. 2013. Phytotoxic activity of crude aqueous extracts and fractions of young leaves of Sapindus saponaria L. (Sapindaceae). Acta Botanica Brasilica, 27: 62-70. Doi: http://dx.doi.org/10.1590/S0102-33062013000100009.

Kehrig, H. A.; Malm, O.; Palermo, E. F. A.; Seixas, T. G.; Baêta, A. P.; Moreira, I. 2011. Bioconcentração e biomagnificação de metilmercúrio na baía de Guanabara, Rio de Janeiro. Química Nova, 34: 377-384. Doi: http://dx.doi.org/10.1590/S0100-40422011000300003.

Kenderesová, L.; Stanová, A.; Pavlovkin, J., Durisová, E.; Nadubinská, M.; Ciamporová, M.; Ovecka, M. 2012. Early Zn2+-induced effects on membrane potential account for primary heavy metal susceptibility in tolerant and sensitive Arabidopsis species. Annals of Botany, 110: 445-459. Doi: https://doi.org/10.1093/aob/mcs111.

van Klinken, R. D.; Lukitsch, B.; Cook, C. 2008. Interaction between seed dormancy-release mechanism, environment and seed bank strategy for a widely distributed perennial legume, Parkinsonia aculeata (Caesalpinaceae). Annals of Botany, 102: 255-264. Doi: https://doi.org/10.1093/aob/mcn087.

van Klinken, R. D; Flack, L. 2005. Wet heat as a mechanism for dormancy release and germination of seeds with physical dormancy. Weed Science, 53: 663-669. Doi: https://doi.org/10.1614/WS-05-008R.1.

Lv, J.; Luo, L.; Zhang, J.; Christie, P.; Zhang, S. 2012. Adsorption of mercury on lignin: combined surface complexation modeling and X-ray absorption spectroscopy studies. Environmental Pollution, 162: 255-261. Doi: https://doi.org/10.1016/j.envpol.2011.11.012.

Maguire, J. D. 1962. Speed of germination aid in selection and evaluation for seedling and vigor. Crop Science, 2: 176-177. Doi: http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x.

Marmiroli, M.; Pietrini, F.; Maestri, E.; Zacchini, M.; Marmiroli, N.; Massaci, A. 2011. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31: 1319-1334. Doi: https://doi.org/10.1093/treephys/tpr090.

Martins, G. F.; Pereira, A. A.; Stracçalano, B. A.; Antunes, P. A.; Pasquini, D.; Curvelo, A. A. S.; Ferreira, M.; Riul J. R. A.; Constatino, C. J. L. 2008. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions. Sensors and Actuators B, 129: 525-530. Doi: https://doi.org/10.1016/j.snb.2007.08.051.

Merck Millipore. 2019. 104466 Óxido de Mercúrio (II). Disponível em: http://www.merckmillipore.com/brazil/chemicals/oxido-de-mercurioii/MDA_CHEM-104466/p_ygib.s1LBqcAAAEWD.EfVhTl.

Milner, M. J.; Kochian, L. V. 2008. Investigating heavy-metal hiperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany, 102: 3-13. Doi: https://doi.org/10.1093/aob/mcn063.

Micaroni, R. C. C. M.; Bueno, M. I. M. S.; Jardim, W. F. 2000. Compostos de mercúrio. Revisão de métodos de determinação, tratamento e descarte. Química Nova, 23: 487-495. https://dx.doi.org/10.1590/S0100-40422000000400011

Neumann, P. M. 2008. Coping mechanisms for crop plants in drought-prone environments. Annals of Botany, 101: 901-907. Doi: https://doi.org/10.1093/aob/mcn018.

Noriega-Luna, B.; Morales-Rodríguez, A. A.; Luna-Quintanilla, R.; Ulloa-Vásquez, T.; Cruz-Jiménez, G. C.; Serafín-Muñoz, A. H.; Gutiérrez-Ortega, N. L. 2016. Identificación de especies vegetales asociadas a jales del distrito minero de Guanajuato. Acta Universitaria, 26: 71-77. Doi: https://doi.org/10.15174/au.2016.1465.

Oliveira, J. A.; Cambraia, J.; Cano, M. A. O.; Jordão, C. P. 2001. Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de aguapé e de salvínia. Revista Brasileira de Fisiologia Vegetal, 13: 329-341. Doi: http://dx.doi.org/10.1590/S0103-31312001000300008.

Oliveira, L. M.; Bruno, R. L. A.; Silva, K. R. G.; Silva, V. D. M.; Ferrari, C. S.; Silva, G. Z. 2012. Germinação e vigor de sementes de Sapindus saponaria l. submetidas a tratamentos pré-germinativos, temperaturas e substratos. Ciência Rural, 42: 638-644. Doi: http://dx.doi.org/10.1590/S0103-84782012000400010.

R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Rashed, K. N.; Ciric, A.; Glamoclija, J.; Calhelha, R. C.; Ferreira, I. C. F. R.; Sokovic, M. 2013. Antimicrobial and activity, growth inhibition of human tumour cell lines, and phytochemical characterization of the hydromethanolic extract obtained from Sapindus saponaria L. aerial parts. BioMed Research International, 2013: 1-9. Doi: http://dx.doi.org/10.1155/2013/659183.

Rengifo, V. E. G.; Jiménez, J. A. V.; Marín, G. C. Q. 2013. Lignina como adsorbente de metales pesados. Revista Investigaciones Aplicadas, 7: 74-85. Disponível em: https://revistas.upb.edu.co/index.php/investigacionesaplicadas/article/view/1756/1967.

Sanchez, E. M. S.; Cavani, C. S.; Leal, C. V.; Sanchez, C. G. 2010. Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades. Polímeros, 20: 194-200. Doi: http://dx.doi.org/10.1590/S0104-14282010005000034.

Silva, K. A.; Martins, S. V.; Neto, A. M.; Demolinari, R. A.; Lopes, A. T. 2016. Restauração Florestal de uma Mina de Bauxita: Avaliação do Desenvolvimento das Espécies Arbóreas Plantadas. Revista Floresta e Ambiente, 23: 309-319. Doi: http://dx.doi.org/10.1590/2179-8087.142515.

Silva, R. R.; Machado, P. F. L. 2008. Experimentação no ensino médio de química: a necessária busca da consciência ético-ambiental no uso e descarte de produtos químicos – um estudo de caso. Ciência & Educação, 14: 233-249. Doi: http://dx.doi.org/10.1590/S1516-73132008000200004.

Taiz, L.; Zeiger, E. 2013. Fisiologia vegetal. 5. ed. Porto Alegre, Artmed.

Toorop, P. E.; Cuerva, R. C.; Begg, G. S.; Locardi, B.; Squire, G. R.; Iannetta, P.P. M. 2012. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella Bursa-pastoris (shepherd’s purse). Annals of Botany, 109: 481-489. Doi: https://doi.org/10.1093/aob/mcr301.

Turner, S. R.; Cook, A.; Baskin, J. M.; Baskin, C. C.; Tuckett, R. E.; Steadman, K. J.; Dixon, K. W. 2009. Identification and characterization of the water gap in the physically dormant seed of Dodonaea petiolaris: a first report for Sapindaceae. Annals of Botany, 104: 833-844. Doi: https://doi.org/10.1093/aob/mcp171.

Voicu, M. C.; Zwiazek, J. J. 2010. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves. Tree Physiology, 30: 193-204. Doi: https://doi.org/10.1093/treephys/tpp112.

Voicu, M. C.; Zwiazek, J. J.; Tyree, M. 2008. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves. Tree Physiology, 28: 1007-1015. Doi: https://doi.org/10.1093/treephys/28.7.1007.

Wagmann, K.; Hautekèete, N. C.; Piquot, Y.; Meunier, C.; Schmitt, S. E.; Dijk, H. V. 2012. Seed dormancy distribution: explanatory ecological factors. Annals of Botany, 110: 1205-2019. Doi: https://doi.org/10.1093/aob/mcs194.

White, P. J.; Brown, P. H. 2010. Plant nutrition for sustainable development and global health. Annals of Botany, 105: 1073-1080. Doi: https://doi.org/10.1093/aob/mcq085.

Published

2019-12-26

How to Cite

Lafetá, B. O., Nascimento, L. A., Azevedo, C. H. S., Penido, T. M. A., & Oliveira, L. F. R. de. (2019). Phytotoxicity of mercury and mechanical scarification in Sapindus saponaria L. propagation. Agrarian Sciences Journal, 11, 1–8. https://doi.org/10.35699/2447-6218.2019.15972

Issue

Section

Research Papers
Share |

Most read articles by the same author(s)