Access and Transitions Between Representational Levels in the Construction of Explanatory Models Concerning Intermolecular Interactions
DOI:
https://doi.org/10.28976/1984-2686rbpec2021u225253Keywords:
Chemistry teaching, Representational levels, Visualizations, Metavisualization, Intermolecular interactionsAbstract
Chemistry can be understood through three representational levels: macro, submicro and symbolic, and the relationship between them needs to be properly established. In order to investigate these aspects, this research aimed to understand the representational levels accessed by students, their difficulties and the role of a metavisual strategy during the development of explanatory models on intermolecular interactions. For this, three undergraduate students from a Brazilian public university participated during the course of Chemistry Teaching Practices II. The entire process was documented based on audiovisual recordings, contemplating a “think-aloud” technique, in which students draw up explanatory models for mixtures, considering the intermolecular interactions present. Later, transcriptions were made followed by some categorizations. The results indicated that the students were able to make transitions between the levels, the most important being those related to sub-micro transitions, even though this is the one with the greatest abstraction. They used the macro level reflexively, allowing transitions with the submicro one for model validation, while the symbolic level was linked to difficulties associated to representations. Regarding the metavisual activity, it was inferred that it contributes adequately to the understanding of the representational levels, since it enabled an intense metacognitive exercise of construction and reconstruction of scientific concepts. Finally, a new categorization model was proposed for the representational levels, considering both access and transition between representational levels.
Downloads
References
Al-Balushi, S. M. (2013). The effect of different textual narrations on students’ explanations at the submicroscopic level in chemistry. Eurasia Journal of Mathematics, Science & Technology Education, 9(1), 3–10. https://doi.org/10.12973/eurasia.2013.911a
Bardin, L. (2011). Análise de conteúdo. Edições, 70.
Block, C. C., & Israel, S. E. (2004). The ABCs of performing highly effective think‐alouds. The Reading Teacher, 58(2), 154–167. https://doi.org/10.1598/RT.58.2.4
Bogdan, R., & Biklen, S. (1994). Características da investigação qualitativa. In Investigação qualitativa em educação: Uma introdução à teoria e aos métodos. Porto editora.
Brasil (2001). Diretrizes Curriculares Nacionais para os Cursos de Química. http://portal.mec.gov.br/cne/arquivos/pdf/CES1303.pdf
Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In Glaser, R. (ed) Advances in Instructional Psychology (Vol.1). Lawrence Erlbaum Associates.
Cedran, D. P., Cedran, J. C., & Kiouranis, N. M. M. (2018). A importância da simbologia no ensino de química e suas correlações com os aspectos macroscópicos e moleculares. Revista de Ensino de Ciências e Matemática, 9(4), 38–57. https://doi.org/10.26843/.v9i4.13cedr42
Chin, C., & Brown, D. (2000) Learning in Science: A Comparison of Deep and Surface Approaches. Journal of Research in Science Teaching. 37(2), 109–138. https://doi.org/10.1002/(SICI)1098-2736(200002)37:2<109::AID-TEA3>3.0.CO;2-7
Chittleborough, G., & Treagust, D. (2008). Correct interpretation of chemical diagrams requires transforming from one level of representation to another. Research in science education, 38(4), 463–482. https://doi.org/10.1007/s11165-007-9059-4
Ferk S. V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227–1245. https://doi.org/10.1080/0950069022000038231
Flavell, J. H. (1976). Metacognitive Aspects of Problem Solving. In L. B. Resnick (Ed.), The Nature of Intelligence, 231–235.
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American psychologist, 34(10), 906–911. https://doi.org/10.1037/0003-066X.34.10.906
Flôr, C. C., & Cassiani, S. (2016). Qual Química ensinar? Reflexões a respeito da educação Química e formação de leitores em aulas de Química no Ensino Médio. Reflexão e Ação, 24(1), 366–381. http://dx.doi.org/10.17058/rea.v24i1.3873
Francisco Junior, W. E. (2008). Uma abordagem problematizadora para o ensino de interações intermoleculares e conceitos afins. Química Nova na Escola, (29), 20–23.
Gibin, G. B., & Ferreira, L. H. (2010). A formação inicial em química baseada em conceitos representados por meio de modelos mentais. Química Nova, 33(8), 1809–1814. https://doi.org/10.1590/S0100-40422010000800033
Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In Visualization: Theory and practice in science education, 3–24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5267-5_1
Gilbert, J. K., Justi, R., & Queiroz, A. S.(2009). The use of modelling to develop visualization during the learning of ionic bonding. VIII Confererence of the European Science Education Research Association Conference.
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In Multiple representations in chemical education, 1–8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8872-8_1
Gobert J. D. (2005) Leveraging Technology and Cognitive Theory on Visualization to Promote Students’ Science. In J. K. Gilbert (eds) Visualization in Science Education. Models and Modeling in Science Education, vol. 1, 73–90. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3613-2_6
Gomez, M. A., Pozo, J. I., & Sanz A. (1995) Students’ideas on conservation of matter. Effects of expertise and context variables. Science Education, 79(1), 77–93. https://doi.org/10.1002/sce.3730790106
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of chemical education, 70(9), 701–705. https://doi.org/10.1021/ed070p701
Keiner, L. & Graulich, N. (2019). Transitions between representational levels: characterization of organic chemistry students’ mechanistic features when reasoning about laboratory work-up procedures. Chemistry Educational Research and Practice, 1–14. https://doi.org/10.1039/C9RP00241C
Kozma, R., & Russel, J. (2005). Pupils Becoming Chemists. Developing Representational Competence. In J. K. Gilbert (eds). Visualization in Science Education. Springer. 121–146.
Locatelli, S.W., & Arroio, A. (2011). Desenhando moléculas e pensando sobre elas: habilidade metavisual no ensino de isomeria geométrica. Revista Brasileira de Ensino de Química, 6, 99–112.
Locatelli, S. W., & Arroio, A. (2014). Metavisual strategy assisting the learning of initial concepts of electrochemistry. Natural Science Education, 1(39), 14–24.
Locatelli, S. W., & Arroio, A. (2017). Dificuldades na transição entre os níveis simbólico e submicro-repensar o macro pode auxiliar a compreender reações químicas? Enseñanza de las ciencias, (Extra), 4239–4244.
Moraes, R. (2003). Uma tempestade de luz: a compreensão possibilitada pela análise textual discursiva. Ciência & Educação (Bauru), 9(2), 191–211. https://doi.org/10.1590/S1516-73132003000200004
Mortimer, E. F. (2000). Linguagem e formação de conceitos no ensino de ciências. UFMG.
Pauletti, F., Rosa, M. P. A., & Catelli, F. (2014). A importância da utilização de estratégias de ensino envolvendo os três níveis de representação da Química. Revista Brasileira de Ensino de Ciência e Tecnologia, 7(3), 121–134. https://dx.doi.org/10.3895/S1982-873X2014000300008
Rapp, D. N., & Kurby, C. A. (2008). The ‘ins’ and ‘outs’ of learning: Internal representations and external visualizations. In Visualization: Theory and practice in science education (pp. 29–52). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5267-5_2
Ribeiro, C. (2003). Metacognição: um apoio ao processo de aprendizagem. Psicologia: reflexão e crítica, 16(1), 109–116. https://doi.org/10.1590/S0102-79722003000100011
Rickey, D., & Stacy, A. M. (2000). The role of metacognition in learning chemistry. Journal of Chemical Education, 77(7), 915–920. https://doi.org/10.1021/ed077p915
Rodrigues, S. B. D. V., Da-Silva, D. C., & Quadros, A. L. D. (2011). O ensino superior de química: Reflexões a partir de conceitos básicos para a química orgânica. Química Nova, 34(10), 1840–1845. http://dx.doi.org/10.1590/S0100-40422011001000019
Roque, N. F., & Silva, J. L. P. (2008). A linguagem química e o ensino da química orgânica. Química nova, 31(4), 921–923. http://dx.doi.org/10.1590/S0100-40422008000400034
Santos, V. C., & Arroio, A. (2016). The representational levels: Influences and contributions to research in chemical education. Journal of Turkish Science Education, 13(1), 3–18. http://dx.doi.org/10.12973/tused.10153a
Santos, L. R. L., Lima, J. P. M., & Sarmento, V. H. V (2017). Concepções de alunos ingressantes no curso de licenciatura em química sobre alguns conceitos de soluções. REnCiMa, 8(3), 41–60. http://dx.doi.org/10.26843/rencima.v8i3.1239
Schnetzler, R. P. (2002). A pesquisa em ensino de química no Brasil: Conquistas e perspectivas. Química nova, 25, 14–24. http://dx.doi.org/10.1590/S0100-40422002000800004
Taber, K. S. (2009). Learning at the symbolic level. In Multiple representations in chemical education (pp. 75–105). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8872-8_5
Teruya, L. C., Marson, G. A., Ferreira, C. R., & Arroio, A. (2013). Visualização no ensino de química: pontamentos para a pesquisa e desenvolvimento de recursos educacionais. Química Nova, 36(4), 561–569. http://dx.doi.org/10.1590/s0100-40422013000400014
Wartha, E. J., Guzzi Filho, N. J., & Jesus, R. M. (2012). O experimento da gota salina e os níveis de representação em química. Educación Química, 23(1), 55–61.
Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science education, 88(3), 465–492. https://doi.org/10.1002/sce.10126.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Bruno Gumieri Fernandes, Solange Wagner Locatelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors are responsible for the veracity of the information provided and for the content of the papers.
The authors who publish in this journal fully agree with the following terms:
- The authors attest that the work is unpublished, that is, it has not been published in another journal, event notices or equivalent.
- The authors attest that they did not submit the paper to another journal simultaneously.
- The authors retain the copyright and grant to RPBEC the right of first publication, with the work licensed simultaneously under a Creative Commons Attribution License, which allows the sharing of the work with acknowledgment of authorship and initial publication in this journal.
- The authors attest that they own the copyright or the written permission from copyright owners of figures, tables, large texts, etc. that are included in the paper.
- Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (for example, to publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after the publication in order to increase the impact and citation of published work.
In case of identification of plagiarism, inappropriate republishing and simultaneous submissions, the authors authorize the Editorial Board to make public what happened, informing the editors of the journals involved, any plagiarized authors and their institutions of origin.