Teachers and Artificial Intelligence

uses and training needs in Latin American higher education

Autores/as

DOI:

https://doi.org/10.1590/1983-3652.2026.61543

Palabras clave:

Higher education, Artificial Intelligence, University teaching, Teacher training, Latin America

Resumen

This study explores Latin American university teachers’ perspectives on the pedagogical integration of artificial intelligence (AI), particularly ChatGPT, within higher education contexts. Drawing on a mixed-methods approach, data were collected from 130 participants through a validated survey instrument and follow-up semi-structured interviews. The findings reveal a generally positive attitude toward AI as a pedagogical support tool, particularly for automating routine tasks and generating educational content. However, the study also identifies critical tensions—including epistemic insecurity, ethical concerns, and limited digital pedagogical training—which hinder deeper, reflective use. Participants emphasize the urgent need for professional development opportunities that promote critical algorithmic literacy, and not merely tool proficiency. This research highlights the importance of situating AI integration within ethical, contextualized, and socially responsive frameworks in teacher education. It calls for systemic efforts to rethink teacher training programs so that they empower educators to navigate and critically engage with AI in ways that support equitable and human-centered learning environments.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Andresa Sartor-Harada, Universidad Internacional de La Rioja, La Rioja, Spain

    Profesora Doctora acreditada con evaluación positiva en los 3 perfiles de ANECA: Profesor Contratado Doctor, Profesor de Universidad Privada y Profesor Ayudante Doctor. Doctora Cum Laude y Posdoctoranda en Educación, Máster en Psicología de la Educación, Licenciada en Pedagogía. Más de 20 años de docencia, experiencia en educación infantil, primaria, secundaria y docencia universitaria. Publicaciones e investigaciones relacionadas con las estrategias de aprendizaje, las competencias docentes y el aprendizaje reflexivo. Autora y coautora en libros y comunicaciones científicas en Brasil, Estados Unidos y España. Participación como conferenciante en actividades internacionales realizadas en Argentina, Uruguay, Colombia, Panamá, Brasil y Angola.

Referencias

AKGUN, S.; GREENHOW, C. Artificial intelligence in education: addressing ethical challenges in K-12 settings. AI and Ethics, v. 2, n. 3, p. 431–440, 2022.

BARBU, C.; SBUGHEA, C. Artificial intelligence in education: global trends, clusters, and perspectives. Annals of the University Dunarea de Jos of Galati: Fascicle I, Economics & Applied Informatics, v. 30, n. 3, 2024.

BRAUN, Virginia; CLARKE, Victoria. Using thematic analysis in psychology. Qualitative Research in Psychology, v. 3, n. 2, p. 77–101, 2006.

BULATHWELA, S.; PÉREZ-ORTIZ, M.; HOLLOWAY, C.; CUKUROVA, M.; SHAWE-TAYLOR, J. Artificial intelligence alone will not democratise education: on educational inequality, techno-solutionism and inclusive tools. Sustainability, v. 16, n. 2, p. 781, 2024.

CABERO-ALMENARA, Julio; GUTIÉRREZ-CASTILLO, Juan José; BARROSO-OSUNA, Julio; RODRÍGUEZ-PALACIOS, Antonio. Digital teaching competence according to the DigCompEdu framework: comparative study in different Latin American universities. Journal of New Approaches in Educational Research, v. 12, n. 2, p. 276–291, 2023.

CHAIPIDECH, P.; SRISAWASDI, N.; KAJORNMÁNEE, T.; CHAIPAH, K. A personalized learning system-supported professional training model for teachers’ TPACK development. Computers and Education: Artificial Intelligence, v. 3, p. 100064, 2022.

CHIU, Thomas K. F.; SANUSI, Ibrahim T. Define, foster, and assess student and teacher AI literacy and competency for all: current status and future research direction. Computers and Education Open, v. 5, p. 100182, 2024. DOI: 10.1016/j.caeo.2024.100182.

COBO, Cristóbal. La innovación pendiente: reflexiones (y provocaciones) sobre educación, tecnología y conocimiento. Barcelona: Penguin Random House, 2016.

CRESWELL, John W.; PLANO CLARK, Vicki L. Designing and Conducting Mixed Methods Research. 3. ed. Thousand Oaks: Sage Publications, 2017.

DAVIS, Fred D. Technology acceptance model: TAM. In: AL-SUQRI, Mohamed N.; AL-AUFI, Ali S. (eds.). Information seeking behavior and technology adoption. Hershey: IGI Global, 1989. p. 205–219.

DILEK, M.; BARAN, E.; ALEMAN, E. AI literacy in teacher education: empowering educators through critical co-discovery. Journal of Teacher Education, v. 76, n. 3, p. 294–311, 2025.

EVANGELIDIS, V.; THEODOROPOULOU, H. G.; KATSOUROS, V.; KIOURT, C. AI-enabled art education: unleashing creative potential and exploring co-creation frontiers. In: PROCEEDINGS of the 16th International Conference on Computer Supported Education (CSEDU). Setúbal: SCITEPRESS, 2024. p. 294–301.

GALÁN-RODRÍGUEZ, N. M.; BOBADILLA-PÉREZ, M.; BARROS-GRELA, E. Actitudes y percepciones: el papel de la inteligencia artificial en la formación de los futuros profesores de lenguas extranjeras de secundaria. Texto Livre, v. 18, e51692, 2025.

HARADA, A. S. Innovación educativa: la revolución de la IA en la experiencia universitaria. In: INTELIGENCIA artificial y educación: innovación pedagógica para un aprendizaje transformador. Madrid: Dykinson, 2025. p. 285–300.

HOLMES, Wayne; BIALIK, Maya; FADEL, Charles. Artificial intelligence in education: promises and implications for teaching and learning. Boston: Center for Curriculum Redesign, 2019.

KANDLHOFER, Michaela; STEINBAUER, Gerald; HIRSCHMUGL-GAISCH, Sabine; HUBER, Petra. Artificial intelligence and computer science in education: from kindergarten to university. In: PROCEEDINGS of the IEEE Frontiers in Education Conference (FIE). Piscataway: IEEE, 2016. p. 1–9.

KARATAŞ, F.; ERIÇOK, B.; TANRIKULU, L. Reshaping curriculum adaptation in the age of artificial intelligence: mapping teachers’ AI-driven curriculum adaptation patterns. British Educational Research Journal, v. 51, n. 1, p. 154–180, 2025.

KNOX, Jeremy. Artificial intelligence and education in China. Learning, Media and Technology, v. 45, n. 3, p. 298–311, 2020.

KOEHLER, Matthew J.; MISHRA, Punya. What is technological pedagogical content knowledge (TPACK)? Contemporary Issues in Technology and Teacher Education, v. 9, n. 1, p. 60–70, 2009.

LONG, D.; MAGERKO, Brian. What is AI literacy? Competencies and design considerations. In: PROCEEDINGS of the CHI Conference on Human Factors in Computing Systems. New York: ACM, 2020. p. 1–16.

LUCKIN, Rose; HOLMES, Wayne. Intelligence unleashed: an argument for AI in education. London: Pearson Education, 2016.

MAI, Gengchen; CUNDY, Chris; CHOI, Kyung; HU, Yao-Yi; LAO, Ni; ERMON, Stefano. Towards a foundation model for geospatial artificial intelligence (vision paper). In: PROCEEDINGS of the 30th International Conference on Advances in Geographic Information Systems. New York: ACM, 2022. p. 1–4.

MIAO, Fengchun; HOLMES, Wayne. Beyond disruption: technology enabled learning futures: 2020 edition of Mobile Learning Week, 12–14 October 2020. Paris, 2021.

NING, Y.; ZHANG, C.; XU, B.; ZHOU, Y.; WIJAYA, T. T. Teachers’ AI-TPACK: Exploring the relationship between knowledge elements. Sustainability, v. 16, n. 3, p. 978, 2024.

OECD. Harnessing the power of AI and emerging technologies. Paris, 2022. (OECD Digital Economy Papers, 3402).

ORELLANA, J. S.; CORDERO, C. A.; ESPINOZA, J. C. Validación del cuestionario para docentes: percepción sobre el uso de ChatGPT en la educación superior. Revista Andina de Educación, v. 8, n. 1, p. 000816, 2025.

PATTON, Michael Quinn; MCKEGG, Kate; WEHIPEIHANA, Nan (eds.). Developmental evaluation exemplars: principles in practice. New York: Guilford Publications, 2015.

PERROTTA, Carlo. Plug-and-play education: knowledge and learning in the age of platforms and artificial intelligence. London: Taylor & Francis, 2024.

REYES, C. E. G.; AVELLO-MARTÍNEZ, R. Alfabetización digital en la educación: revisión sistemática de la producción científica en Scopus. Revista de Educación a Distancia (RED), v. 21, n. 66, 2021.

RUSSELL, Stuart; NORVIG, Peter. Artificial intelligence: a modern approach. 3. ed. Upper Saddle River: Prentice Hall, 2010.

SCHIAVO, G.; BUSINARO, S.; ZANCANARO, M. Comprehension, apprehension, and acceptance: understanding the influence of literacy and anxiety on acceptance of artificial intelligence. Technology in Society, v. 77, p. 102537, 2024.

SELWYN, Neil. Should robots replace teachers? AI and the future of education. London: John Wiley & Sons, 2019.

SHAH, P. AI and the future of education: teaching in the age of artificial intelligence. London: John Wiley & Sons, 2023.

SHARMA, S.; SINGH, G. Adoption of artificial intelligence in higher education: an empirical study of the UTAUT model in Indian universities. International Journal of System Assurance Engineering and Management, p. 1–27, 2024.

SHULMAN, Lee S. Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, Washington, DC, v. 15, n. 2, p. 4–14, 1986.

TEO, T.; NOYES, J. Explaining the intention to use technology among pre-service teachers: A multi-groupanalysis of the UTAUT model. Computers & Education, v. 72, p. 150–164, 2014.

UNESCO. Guidance for generative AI in education and research. Paris: UNESCO Publishing, 2023.

VENKATESH, Venkatesh; MORRIS, Michael G.; DAVIS, Gordon B.; DAVIS, Fred D. User acceptance of information technology: toward a unified view. MIS Quarterly, v. 27, n. 3, p. 425–478, 2003.

VENKATESH, Venkatesh; THONG, James Y.; CHAN, Frank K.; HU, Paul J. H.; BROWN, Susan A. Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journal, v. 21, n. 6, p. 527–555, 2011.

VENKATESH, Venkatesh; THONG, James Y. L.; XU, Xin. Consumer acceptance and use of information technology: extending the UTAUT model. MIS Quarterly, v. 36, n. 1, p. 157–178, 2012.

WILLIAMSON, Ben. The hidden architecture of higher education: building a big data infrastructure for the “smarter university”. International Journal of Educational Technology in Higher Education, v. 17, p. 44, 2020.

WILLIAMSON, Ben; BAYNE, Sian; SHAY, Suellen. The datafication of teaching in higher education: critical issues and perspectives. Teaching in Higher Education, v. 25, n. 4, p. 351–365, 2020.

WILLIAMSON, Ben; EYNON, Rebecca. Historical threads, missing links, and future directions in the study of education and technology. Learning, Media and Technology, v. 45, n. 3, p. 207–221, 2020.

XU, Wei; OUYANG, Fan. The application of AI technologies in STEM education: a systematic review from 2011 to 2021. International Journal of STEM Education, v. 9, n. 1, p. 59, 2022.

YIM, Irene H. Y.; WEGERIF, Rupert. Teachers’ perceptions, attitudes, and acceptance of artificial intelligence (AI) educational learning tools: an exploratory study on AI literacy for young students. Future in Educational Research, v. 2, n. 4, p. 318–345, 2024.

YUE, Mengdi; JONG, Morris S. Y.; NG, Daniel T. K. Understanding K–12 teachers’ technological pedagogical content knowledge readiness and attitudes toward artificial intelligence education. Education and Information Technologies, p. 1–32, 2024.

ZAWACKI-RICHTER, Olaf; MARÍN, Victoria I.; BOND, Melissa; GOUVERNEUR, Franziska. Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, v. 16, n. 1, p. 1–27, 2019.

Descargas

Publicado

29-01-2026

Declaración de disponibilidad de datos

Research data is only available upon request.

Cómo citar

SARTOR-HARADA, Andresa; ULLOA-GUERRA, Oscar. Teachers and Artificial Intelligence: uses and training needs in Latin American higher education. Texto Livre, Belo Horizonte-MG, v. 19, p. e61543, 2026. DOI: 10.1590/1983-3652.2026.61543. Disponível em: https://periodicos.ufmg.br/index.php/textolivre/article/view/61543. Acesso em: 4 feb. 2026.