Interação vírus/vetor para pulgões (Hemiptera: Aphididae) e mosca-branca (Hemiptera: Aleyrodidae)

Autores

DOI:

https://doi.org/10.35699/2447-6218.2019.15153

Palavras-chave:

Controle de insetos, Interação molecular vírus-vetor, Manejo integrado de pragas, RNAi

Resumo

 

O impacto provocado por afídeos e mosca-branca, tem crescido consideravelmente nas últimas décadas, devido ao aumento nos casos de surtos populacionais destas pragas que são transmissoras de vírus em diversas culturas de importância econômica. A aquisição e a transmissão da maioria dos vírus fitopatogênicos por um inseto vetor é o ponto central para o ciclo de uma infecção. Os vírus de plantas podem interagir com seus hospedeiros de insetos em uma variedade de formas, em alguns casos inclusive a replicação do vírus pode ocorrer em células do inseto. A interação do vírus com seus inseto hospedeiro/vetor requer interações moleculares específicas entre vírus e hospedeiro, comumente via proteínas, no entanto, quais componentes do vetor estão envolvidos e como eles funcionam para facilitar a transmissão ainda não está bem entendido. O objetivo do presente trabalho foi realizar uma revisão sistemática sobre as relações básicas de vírus/vetor em afídeos e mosca-branca; mostrar as práticas utilizadas atualmente no manejo integrado de pragas para afídeos e mosca-branca, além disso, relatar como as interações vetoriais de inseto estão abrindo novas portas para o controle de insetos vetores de vírus de plantas com o uso de novas tecnologias genéticas e computacionais. O presente estudo seguiu a metodologia de revisão sistemática, o trabalho foi conduzido em etapas que envolveram o desenvolvimento do protocolo de revisão com as questões da pesquisa, a estratégia de busca, a identificação dos critérios de inclusão e exclusão, a busca nas bases de dados previamente definidas, avaliação crítica, extração dos dados relevantes e síntese. A identificação dos artigos foi realizada na base de dados PUBMED www.ncbi.nlm.nih.gov/pubmed/. Foi concluído que é necessário aliar o uso de novas tecnologias como o RNAi com as ferramentas já utilizadas no manejo integrado de pragas para uma maior efetividade do controle de pulgão e mosca-branca, contudo, o contínuo estudo e aplicação de novas tecnologias moleculares na investigação de interações vírus-vetor fornecerá maior ajuda no controle das doenças virais de plantas disseminadas por pulgão e mosca-branca no futuro.

Referências

Abdellatef, E.; Wil, T.; Koch, A.; Imani, J.; Vilcinskas, A.; Kogel, K-H.2015. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae. Plant Biotechnology Journal, 13(6): 849–857.doi: 10.1111/pbi.12322

Abd-Rabou, S.; Simmons, A. M. 2012.Survey of Reproductive Host Plants of Bemisia tabaci (Hemiptera: Aleyrodidae) in Egypt, Including New Host Records . Entomological News, 121(5): 456–465. doi: 10.315/021.121.0507

Anderson, P. K. Cunningham, A. A.; Patel, N. G.; Morales, F. J.; Epstein, P. R.; Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19(10): 535–544. doi:10.1016/j.tree.2004.07.021

Blua, M. J.; Perring, T. M.; 1994. Madore, M. A. Plant virus-induced changes in aphid population development and temporal fluctuations in plant nutrients. Journal of Chemical Ecology, 20(3): 691–707. doi: 10.1007/BF02059607

Boquel, S.; Giordanengo, P.; Ameline, A. 2011. Divergent effects of PVY-infected potato plant on aphids. European Journal of Plant Pathology, 129(4): 507–510. doi: 10.1007/s10658-010-9732-8

Bourtzis, K.; Dobson, S. L.; Xi, Z., Rasgon, J. L.; Calvitti, M.; Moreira, L. A.; Bossin, H. C.; Moretti, R.; Baton, L. A.; Hughes, G. L. 2014. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta tropica, 132: S150-S163.doi: 10.1016/j.actatropica.2013.11.004

Bragard, C.; Caciagli, P.; Lemaire, O.; Lopez-Moya, J.; MacFarlane, S.; Peters, D.; Susi, P.; Torrance, L.2013. Status and Prospects of Plant Virus Control Through Interference with Vector Transmission. Annual Review of Phytopathology, 51(1): 177–201. doi: 10.1146/annurev-phyto-082712-102346

Buckner, J. S. freeman, T. P.; Ruud, R. L.; Chu, C-c.; Henneberry, T. J.2002. Characterization and functions of the whitefly egg pedicel. Archives of Insect Biochemistry and Physiology, 49(1): 22–33. doi: 10.1002/arch.10006

Cabanillas, H. E.; Jones, W. A. 2009. Pathogenicity of Isaria sp. (Hypocreales: Clavicipitaceae) against the sweet potato whitefly B biotype, Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Protection, 28(4): 333–337. doi: 10.1016/j.cropro.2008.11.015

Casteel, C. L. Yang, C.; Nanduri, A. C.; De Jong, H. N.; Whitham, S. A.; Jander, G. 2014. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant Journal, 77(4): 653–663. doi: 10.1111/tpj.12417

Casteel, C. L. De Alwis, M,; Bak, A.; Dong, H.; Whitham, S. A.; Jander, G. 2015. Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector. Plant Physiology, 169: 209-215. doi: 10.1104/pp.15.00332

Castle, S. J.; Berger, P. H. 1993. Rates of growth and increase of Myzus persicae on virus‐infected potatoes according to type of virus‐vector relationship. Entomologia Experimentalis et Applicata, 69(1): 51–60.

Chen, A. Y. S. Walker, G. P.; Carter, D.; Ng, J. C. K. 2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proceedings of the National Academy of Sciences,108(40): 16777–16782. doi: 10.1073/pnas.1109384108

Chen, Q. Wang, H.; Ren, T.; Xie, L.; Wei, T. 2015. Interaction between non-structural protein Pns10 of rice dwarf virus and cytoplasmic actin of leafhoppers is correlated with insect vector specificity. Journal of General Virology, 96(4): 933–938. doi:10.1099/jgv.0.000022

Cicero, J. M.; Brown, J. K. 2011. Functional Anatomy of Whitefly Organs Associated With Squash Leaf Curl Virus (Geminiviridae: Begomovirus) Transmission by the B Biotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 104(2): 261–279. doi: 10.1603/AN10075

Dângelo, R. A. C. Michereff-Filho, M.; Campos, M. R.; da Silva, P. S.; Guedes, R. N. C. 2018. Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario. Annals of Applied Biology, 172(1): 88–99. doi: 10.1111/aab.12404

Daniell, H. Lin, C-S.; Yu, M.; Chang, W-J. 2016. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology, 17:1–29. doi: 10.1186/s13059-016-1004-2

De Barro, P. J.; liu, S-S.; Boykin, L. M.; Dinsdale, A. B.2011. Bemisia tabaci : A Statement of Species Status . Annual Review of Entomology, 56(1):1–19. doi: 10.1146/annurev-ento-112408-085504

De Paula, N. T.; De Faria, J. C.; Aragão, F. J. L. 2015. Reduction of viral load in whitefly (Bemisia tabaci Gen.) feeding on RNAi-mediated bean golden mosaic virus resistant transgenic bean plants. Virus Research, 210: 245–247. doi: 10.1016/j.virusres.2015.08.012

Dietzgen, R. G.; Mann, K. S.; Johnson, K. N. 2016. Plant virus-insect vector interactions: Current and potential future research directions. Viruses, 8(11): 1–21. doi: 10.3390/v8110303

Döring, T. F.; Chittka, L. 2007. Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 1(1): 3–16. doi: 10.1007/s11829-006-9000-1

Eigenbrode, S. D.; Ding, H.; Shiel, P.; Berger, P. H. 2002. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings of the Royal Society B: Biological Sciences, 269(1490):455–460. doi: 10.1098/rspb.2001.1909

Eigenbrode, S. D.; Bosque-Pérez, N. A.; Davis, T. S. 2017.Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annual Review of Entomology, 63(1): 169–191. doi: 10.1146/annurev-ento-020117- 043119

Ellsworth, P. C.; Martinez-Carrillo, J. L. 2001. IPM for Bemisia tabaci: A case study from North America. Crop Protection, 20(9): 853–869. doi: 10.1016/S0261-2194(01)00116-8

Erdogan, C. Moores, D. G.; Gurkan, M. O.; Gorman, K. J.; Denholm, I. 2008. Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Protection, 27; 600–605. doi: 10.1016/j.cropro.2007.09.002

Faria, J. C.; Bezera, I. C.; Zerbini, F. M.; Ribeiro, S. G.; Lima, M. F. 2000. Situação Atual Das Geminiviroses no Brasil. Fitopatologia Brasileira, 25:125-137.

Faria, M.; Wraight, S. P. 2001. Biological control of Bemisia tabaci with fungi. Crop Protection, 20(9): 767–778. doi: 10.1016/S0261-2194(01)00110-7

Martin, B.; Collar, J. L.; Tjallingii, W. F.; Fereres, A. 1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology, 78(10): 2701–2705. doi: 10.1099/0022-1317-78-10-2701

Gadhave, K. R. Dutta, B.; Coolong, T.; Srinivasan, R. 2019. A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Scientific Reports, 9(1): 1–12.doi: 10.1038/s41598-019-39256-5

Gerling, D.; Horowitz, A. R. 1986. Baumgaertner, J. Autecology of Bemisia tabaci. Agriculture, Ecosystems and Environment, 17: 5–19.

Pakkianathan, B. C.; Kontsedalov, S.; Lebedev, G.; Mahadav, A.; Zeidan, M.; Czosnek, H.; Ghanim, M. 2015. Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci. Journal of Virology, 89(19): 9871-9803. doi: 10.1128/JVI.00779-15

Ghanim, M.; Morin, S.; Czosnek, H. 2001. Rate of Tomato yellow leaf curl virus translocation in the Circulative Transmission Pathway of its Vector, the Whitefly Bemisia tabaci . Phytopathology, 91(2): 188–196. doi:10.1094/PHYTO.2001.91.2.188

Gibbs, A. J. Ohshima, K.; Phillips, M. J.; Gibbs, M; J. 2008. The Prehistory of Potyviruses : Their Initial Radiation Was during the Dawn of Agriculture. Plos One, 3(6): e2523. doi: 10.1371/journal.pone.0002523

Gilbertson, R. L. Batuman, O.; Webster, C. G.; adkins, S.2015. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses . Annual Review of Virology, 2: 67–93. doi: 10.1146/annurev-virology-031413-085410

Glasa, M. Kúdela, O.; Marie-Jeanne, V.; Quiot, J. B. 2007. Evidence of a Naturally Occurring Recombinant Isolate of Plum pox virus from Slovakia . Plant Disease, 85(8): 920–920. doi: 10.1094/PDIS.2001.85.8.920C

Gray, S.; Cilia, M.; Ghanim, M. 2014. Circulative, “Nonpropagative” virus transmission: An orchestra of virus-, insect-, and plant-derived instruments. Advances in Virus Research, 89:141-189. doi: 10.1016/B978-0-12-800172-1.00004-5

Gray, S.; Gildow, F. E. L. 2003. Luteovirus-Aphid Interactions. Annual Review of Phytopathology, 41: 539–566. doi: 10.1146/annurev.phyto.41.012203.105815

Grover, S. Jindal, V.; Banta, G.; Taning, C. N. T.; Smagghe, G.; Christiaens, O.2019. Potential of RNA interference in the study and management of the whitefly, Bemisia tabaci. Archives of Insect Biochemistry and Physiology, 100(2): 1–17. doi: 10.1002/arch.21522

Gupta, V. 2012. Aphids on the world’s crops. An identification and information guide. Oriental Insects, 35:104–104. doi: 10.1080/00305316.2001.10417292

Gusmão, M. R.; Picanço, M. C.; Zanuncio, J. c.; Silva, D. J. H.; Barrigossi, J. A. F. 2005. Standardised sampling plan for Bemisia tabaci (Homoptera: Aleyrodidae) in outdoor tomatoes. Scientia Horticulturae, 103(4): 403–412. doi: 10.1016/j.scienta.2004.04.005

Hill, J. H.; Whitham, S. A. 2014. Control of Virus Diseases in Soybeans. Advances in Virus Research, 90: 355-390. doi: 10.1016/B978-0-12-801246-8.00007-X

Hogenhout, S. A.; Ammar, E-D.; Whitfield, A. E.; Redinbaugh, M. G. 2008. Insect Vector Interactions with Persistently Transmitted Viruses. Annual Review of Phytopathology, 46: 327–359. doi: 10.1146/annurev.phyto.022508.092135

Hoh, F.; Uzest, M.; Drucker, M.; Plisson-Chastang, C.; Bron, P.; Blanc, S.; Dumas, C.2010. Structural Insights into the Molecular Mechanisms of Cauliflower Mosaic Virus Transmission by Its Insect Vector. Journal of Virology, 84(9): 4706–4713. doi: 10.1128/JVI.02662-09

Inoue-Nagata, A. K.; Navas-Castillo, J.; Melo, P. C. T.; Avila, A. C. de. 2006. Busca por Tomato yellow leaf curl virus e Tomato yellow leaf curl Sardinia virus em tomateiros. Horticultura Brasileira, 22(4): 799–800. doi: 10.1590/S0102-05362004000400027.

Ivanov, K. I.; Eskelin, K.; Löhmus, A.; Mäkinen, K. 2014. Molecular and cellular mechanisms underlying potyvirus infection. Journal of General Virology, 95: 1415–1429. doi: 10.1099/vir.0.064220-0

Jacobson, A. L.; Duffy, S.; Sseruwagi, P. 2018. Whitefly-transmitted viruses threatening cassava production in Africa. Current Opinion in Virology, 33: 167–176. doi: 10.1016/j.coviro.2018.08.016

Kalleshwaraswamy, C. M.; Kumar, N. K. K. 2008. Transmission Efficiency of Papaya ringspot virus by Three Aphid Species . Phytopathology, 98(5): 541–546. doi: 10.1094/PHYTO-98-5-0541

Kasprowicz, L.; Gaynor, M.; Jon, P.; Brian, F. 2008. Spatial and temporal dynamics of Myzus persicae clones in fields and suction traps. Agricultural and Forest Entomology, 10(2): 91–100. doi: 10.1111/j.1461-9563.2008.00365.x

Khajuria, C.; Ivashuta, S.; Wiggins, E.; Flagel, L.; Moar, W.; Pleau, M.; Miller, K.; Zhang, Y.; et al. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE, 13(5): 1–19. doi: 10.1371/journal.pone.0197059

Krause-Sakate, R.; Fakhfakh, H.; Peypelut, M.; pavan, M. A.; Zerbini, F. M.; Marrakchi, M.; Candresse, T.; Le Gall, O. 2004. A naturally occurring recombinant isolate of Lettuce mosaic virus. Archives of Virology, 149: 191–197. doi: 10.1007/s00705-003-0201-y

Costa, E. M. R.; Marchese, A.; maluf, W.R.; Silva, A. A. 2014. Resistência de genótipos de couve-manteiga ao pulgão-verde e sua relação com a cerosidade foliar. Revista Ciência Agronômica, 45: 146–154.

Mauck, K. E.; Chesnais, Q.; Shapiro, L. R. 2018. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Advances in Virus Research. 101: 189-250. doi: 10.1016/bs.aivir.2018.02.007

Mauck, K. E.; De Moraes, C. M.; Mescher, M. C. 2014. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant, Cell and Environment, 37(6):1427–1439. doi: 10.1111/pce.12249

Mauck, K.; Bosque-Pérez, N. A.; Eigenbrode, S. D.; De Moraes, C. M.; Mescher, M. C. 2012. Transmission mechanisms shape pathogen effects on host-vector interactions: Evidence from plant viruses. Functional Ecology, 26(5): 1162–1175. doi: 10.1111/j.1365-2435.2012.02026.x

Mauck, K. E.; De Moraes, C. M.; Mescher, M. C. 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proceedings of the National Academy of Sciences, 107(8): 3600–3605. doi: 10. 10.1073/pnas.0907191107

Meekes, E. T. M.; Fransen, J. J.; Van Lenteren, J. C. 2002. Pathogenicity of Aschersonia spp. against whiteflies Bemisia argentifolii and Trialeurodes vaporariorum. Journal of Invertebrate Pathology, 81: 1–11, doi: 10.1016/S0022-2011(02)00150-7

Miller, G. L.; Foottit, R. G. 2017. The Taxonomy of Crop Pests : The Aphids. Insect Biodiversity: Science and Society, 1: 627–639. doi: 10.1002/9781118945568.ch20

Moran, N. A. 1992. The Evolution Of Aphid Life Cycles. Annual Review of Entomology, 37: 321–348. doi: 10.1146/annurev.en.37.010192.001541

Moreno, A.; Tjallingii, W. F.; Fernandez-Mata, G.; Fereres, A. 2019. Communication Differences in the mechanism of inoculation between a semi-persistent and a non-persistent aphid-transmitted plant virus. Journal of General Virology, 2012: 662–667. doi: 10.1099/vir.0.037887-0

Moriones, E.; Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71: 123–134. doi: 10.1016/S0168-1702(00)00193-3

Naranjo, S. E.; Chu, C.-C.; Henneberry, T. J. 2003. Economic injury levels for Bemisia tabaci (Homoptera: Aleyrodidae) in cotton: impact of crop price, control costs, and efficacy of control. Crop Protection, 15(8): 779–788. doi: 10.1016/S0261-2194(96)00061-0

Nauen, R.; Denholm, I. 2005. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology, 58(4): 200–215, 2005. doi: 10.1002/arch.20043

Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. 2011. Emerging Virus Diseases Transmitted by Whiteflies.Annual Reveiew of Phytopathology, 49: 219-248. doi: 10.1146/annurev-phyto-072910-095235

Ng, J. C. K.; Falk, B. W. 2006. Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annual Review of Phytopathology, 44: 183–212. doi: 10.225./annurev.phyto.44.070505.143325

Ng, J. C. K.; Perry, K. L. 2004. Transmission of plant viruses by aphid vectors. Molecular Plant Pathology, 5(6): 505–511. doi: 10.1111/j.1364-3703.2004.00240.x

Oliveira, M. R. V. de; Amancio, E.; Laumann, R. A.; Gomes, L de O.2003. Natural enemies of Bemisia tabaci (Gennadius) B biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) in Brasília, Brazil. Neotropical Entomology, 32(1): 151–154. doi: 10.1590/S1519-566X2003000100023.

Palumbo, J. C.; Horowitz, A. R.; Prabhaker, N. 2001. Insecticidal control and resistance management for Bemisia tabaci. Crop Protection, 20(9): 739–765. doi: 10.1016/S0261-2194(01)00117-X

Pirone, T., P.; Perry, K., L. 2002. Aphids : Non-persistent Transmission. Advances in Botanical Research, 36: 1-19.doi: 10.1016/S0065-2296(02)36056-7

Quintela, E. D.; Abreu, A. G.; lima, J. F. dos S.; Mascarin, G. M.; Santos, J. B. dos. 2016. Reproduction of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) B biotype in maize fields (Zea mays L.) in Brazil. Pest management science, 72(1): 2181–2187. doi: 10.1002/ps.4259

Revers, F.; García, J. A. 2015. Molecular biology of potyviruses. Academic Press, 92: 101-199. doi: 10.1016/bs.aivir.2014.11.006

Rojas, M. R.; Macedo, M. A.; Maliano, M. R.; Soto-Aguilar, M.; Souza, J. O.; Briddon, R. W.; Kenyon, L.; Bustamante, R. F. R. et al. 2018. World Management of Geminiviruses. Annual Review of Phytopathology, 56: 637–677. doi: 10.1146/annurev-phyto-080615-100327

Sheveleva, A.; Ivanoc, P.; Gasanova, T.; Osipov, G.; Chirkov, S. 2018. Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events. Viruses, 10(9): 450. doi: 10.3390/v10090450

Sicard, A.; Zeddam, J-L.; Yvon, M.; Michalakis, Y.; Gutiérrez, S.; Blanc, S. 2015. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View. Journal of Virology, 89(19): 9719–9726. doi: 10.1128/JVI.00780-15

Silva, A. K. F.; Santos, C. D. G.; Nascimento, A. K. Q. 2010. Transmissão de begomovírus de plantas daninhas para tomateiros pela mosca-branca. Planta Daninha, 28(3): 507–514. doi: 10.1590/S0100-83582010000300007

Singh, G.; Singh, R. 2016. Review Article Distribution of Aphis Spiraecola Patch 1914. International Journal of Recent Advances in Multidisciplinary Research, 3(12): 2100-2111.

Siomi, H.; Siomi, M. C. 2009. On the road to reading the RNA-interference code. Nature, 457: 396–404. doi: 10.1038/nature07754

Srinivasan, R.; Alvarez, J. M.; Eigenbrode, S. D.; Bosque-pérez, N. A. 2009. Influence of Hairy Nightshade Solanum sarrachoides (Sendtner) and Potato leafroll virus (Luteoviridae: Polerovirus ) on the Host Preference of Myzus persicae (Sulzer) (Homoptera: Aphididae) . Environmental Entomology, 35(2): 546–553. doi: 10.1603/0046-225X-35.2.546

Stansly, P. A.; Naranjo, S. E. 2010. Bemisia: Bionomics and Management of a Global Pest. New York, Springer. doi: 10.1007/978-90-481-2460-2

Stewart, L. R.; Medina, V.; Tian, T.; Turina, M.; Falk, B. W.; Ng, J. C. 2010.A Mutation in the Lettuce Infectious Yellows Virus Minor Coat Protein Disrupts Whitefly Transmission but Not In Planta Systemic Movement. Journal of Virology, 84(23): 12165-12173. doi: 10.1128/JVI.01192-10

Syller, J. 2006. The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiological and Molecular Plant Pathology, 67(3): 119–130, 2006. doi: 10.1016/j.pmpp.2005.12.005

Wang, L. L.; Wei, X. M.; Ye, X. D.; Xu, H. X.; Zhou, X. P.; Liu, S. S.; Wang, X. W. 2014.Expression and functional characterisation of a soluble form of Tomato yellow leaf curl virus coat protein. Pest Management Science, 70(10): 1624-1631. doi: 10.1002/ps.3750

Whitfield, A. E.; Falk, B. W.; Rotenberg, D. 2015. Insect vector-mediated transmission of plant viruses. Virology, 479–480: 278–289. doi: 10.1016/j.virol.2015.03.026

Yu, X. D.; Liu, Z. C.; Huang, S. L.; Chen, Z. Q.; Sun, Y. W.; Duan, P. F.; Ma, Y. Z.; Xia, L. Q. 2016. RNAi-mediated plant protection against aphids. Pest Management Science, 72(6): 1090-1098. doi: 10.1002/ps.4258

Zabala, M. de T.; Littlejohn, G.; Jayaraman, S.; Studholme, D.; Bailey, T.; Lawson, T.; Tillich, M.; Licht, D.; Bölter, B.; Delfino, L. 2015. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nature Plants, 1(6): 15074. doi: 10.1038/NPLANTS.2015.74

Zhang, T.; Luan, J. B.; Qi, J. F.; Huang, C. J.; Li, M.; Zhou, X. P.; Liu, S. S. 2012.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Molecular Ecology, 21(5): 1294-1304. doi: 10.1111/j.1365-294X.2012.05457.x

Zhao, J.; Zhang, X.; Hong, Y.; Liu, Y. 2016.Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7: 1565. doi: 10.3389/fmicb.2016.01565

Zuñiga, E.; Guttierez, P. A.2002 Inverno com pulgões. Revista Cultivar, 2002.

Downloads

Publicado

2019-09-27

Edição

Seção

REVISÕES DE LITERATURA

Como Citar

Interação vírus/vetor para pulgões (Hemiptera: Aphididae) e mosca-branca (Hemiptera: Aleyrodidae). (2019). Caderno De Ciências Agrárias, 11, 1-12. https://doi.org/10.35699/2447-6218.2019.15153
Share |

Artigos Semelhantes

1-10 de 326

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)