Nirs models for chemical characteristics of Eucalyptus benthamii Maiden & Cambage wood

Authors

DOI:

https://doi.org/10.35699/2447-6218.2020.19296

Keywords:

Near Infrared Spectroscopy, Lignin, Holocellulose, Non-destructive technique

Abstract

Near Infrared Spectroscopy (NIRS) is a non-destructible, fast, and reliable technique that can be applied in many different samples. NIR has been shown to be an efficient tool in determining the chemical, anatomical, physical, and mechanical properties of wood. The aimed of this study was to development calibration models for the wood of Eucalyptus benthamii as to its chemical constitution. For the development of the calibration models 87 trees were used (75 of E. benthamii, 4 of E. dunnii, 4 of E. grandis, and 4 of E. saligna). A portion of the sample was used for analysis of ash, extractives, lignin and holocellulose content. Another portion was milled and used to acquire the spectra, which were later correlated to laboratory values. Calibration of the model was determined by partial least squares regression analysis (PLS). Selection of the best models was based on the following statistical criteria: coefficient of determination (R²), mean cross-validation error (RMSECV), residual forecast deviation (RPD), and number of latent variables (VLs). The chemical composition of E. benthamii wood agrees with the results evidenced in the literature for Eucalyptus. NIRS calibration models presented satisfactory adjustments for holocellulose content (R2 = 0.82), total lignin content (R2 = 0.74) and Klason lignin content (R2 = 0.82). The NIRS models developed in this study present a viable commercial tool for characterization of samples of Eucalyptus benthamii wood for the cellulose industry.  

Downloads

Download data is not yet available.

References

Alves, A.; Simões, R.; Stackpole, D. J.; Vaillancourt, R. E.; Potts, B. M.; Schwanninger, M.; Rodrigues, J. C. 2011a. Determination of the syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by near infrared-based partial least squares regression models using analytical pyrolysis as the reference method. J. Near Infrared Spectrosc. 19: 343-348. Doi: https://doi.org/10.1255/jnirs.946 .

Alves, I. C.; Gomide, J. L.; Colodette, J. L.; Silva, E. D. 2011b. Caracterização tecnológica da madeira de Eucalyptus benthamii para produção de celulose kraft. Ciência Florestal, 21: 167-174. Doi: https://doi.org/10.5902/198050982759 .

Alves, A.; Simões, R.; Santos, C.; Potts, B. M.; Rodrigues, J. C.; Schwanninger, M. 2012. Determination of Eucalyptus globulus wood extractives content by NIR-based PLS-R models: Comparison between extraction procedures. J. Near Infrared Spectrosc, 20: 275-285. Doi: https://doi.org/10.1255/jnirs.987 .

Andrade, C. R.; Trugilho, P. F.; Napoli, A.; Quinhones, R.; Lima, J. T. 2010. Calibrações NIRS para três propriedades químicas da madeira de Eucalyptus urophylla. Cerne, 16: 9-14. <http://www.cerne.ufla.br/site/index.php/CERNE/article/view/98>.

Araújo, A. C. C. DE; Trugilho, P. F.; Napoli, A.; Braga, P. P. DE C.; Lima, R. V. DE; Protásio, T. DE P. 2016. Efeito da relação siringil/guaiacil e de fenóis derivados da lignina nas características da madeira e do carvão vegetal de Eucalyptus spp. Scientia Forestalis, 44: 405–414. Doi: https://doi.org/10.18671/scifor.v44n110.13 .

Chen, J. Y.; Matsunaga, R.; Ishikawa, K.; Zhang, H. 2003. Main inorganic component measurement of seawater using near-infrared spectroscopy. Applied Spectroscopy, 57: 1399–1406. Doi: https://doi.org/10.1366/000370203322554572 .

Diniz, C. P.; Grattapaglia, D.; Mansfeld, S. D.; Figueiredo, L. F. A. 2019. Near infrared based models for lignin syringyl/guaiacyl ratio of Eucalyptus benthamii and E. pellita using a streamlined thioacidolysis procedure as the reference method. Wood Science and Technology, 53:521–533. Doi: https://doi.org/10.1007/s00226-019-01090-3 .

Estopa, R. A.; Milagres, F. R.; Gomes, F. J. B.; Amaral, C. A. S. 2017.Caracterização química da madeira de Eucalyptus benthamii por meio de espectroscopia nir. O Papel, 78: 75-81. http://www.revistaopapel.org.br/noticia-anexos/1487601059_da031e80f6703b43067ad6d9592a1422_718793106.pdf

Gomide, J. L.; Fantuzzi Neto, H.; Regazzi, A. J. 2010. Análise de critérios de qualidade da madeira de eucalipto para produção de celulose kraft. R. Árvore, 34: 339-344. Doi: http://dx.doi.org/10.1590/S0100-67622010000200017

Hein, P. R. G.; Chaix, G. 2014. NIR spectral heritability: a promising tool for wood breeders? J. Near Infrared Spectrosc. 22: 141–147. Doi: https://doi.org/10.1255/jnirs.1108

.

Hein, P. R. G. 2012. Estimating shrinkage, microfibril angle and density of Eucalyptus wood using near infrared spectroscopy. J. Near Infrared Spectrosc. 20: 427-436. Doi: https://doi.org/10.1255/jnirs.1005

Jardim, J. M.; Gomes, F. J. B.; Colodette, J. C.; Brahim, B. P. 2017. Avaliação da qualidade e desempenho de clones de eucalipto na produção de celulose. O Papel, 78: 122-129. http://www.revistaopapel.org.br/noticia-anexos/1511752138_ff11fd342f854c676b1e4c75f58698a1_1284175620.pdf

Lazzarotto, M.; Magalhães, W. L. E. 2014. Uso da espectroscopia no infravermelho próximo (NIR) para predição não-destrutiva de densidade básica da madeira de Eucalyptus benthamii e Eucalyptus pellita. Comunicado técnico 334. Colombo, Paraná, 6 p. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/113491/1/CT-0334.pdf

Magalhães, W. L. E.; Pereira, J. C. D.; Muniz, G. I. B.; Silva, J. R. M. da. 2005. Determinação de propriedades químicas e anatômicas de madeira com o uso da reflexão difusa de infravermelho próximo. Bol. Pesq. Fl. 50: 25-36. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/304099/1/pag2536.pdf

Medeiros, B. L. M. A; Guimarães Junior, J. B.; Ribeiro, M. X.; Lisboa, F. J. N.; Guimarães, I.; Protásio, T. P. 2016. Avaliação das propriedades físicas e químicas da madeira de Corymbia citriodora e Eucalyptus urophylla x Eucalyptus grandis cultivadas no Piauí. Nativa, 4: 403-407. Doi: https://doi.org/10.14583/2318-7670.v04n06a10 .

Mendoza, M. S.; Gómez, M. C.; Navarrte, L. R. O.; Herrera, R. E. 2015. Chemistry characterization of Eucalyptus nitens from 8 years old coming from a commercial plantation. Mexican Journal of Materials Science and Engeneering, 2: 38–44. https://intranet.matematicas.uady.mx/mjmatse/volumenes/volumen2/3/MJMATSE_2_3_38.pdf

Morais, P. H. D.; Longue Júnior, D.; Colodette, J. L.; Morais, E. H. C.; Jardim, C. M. 2017. Influence of clone harvesting age of Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla in the wood chemical composition and in Kraft pulpability. Ciência Florestal, 27: 237-248. Doi: https://doi.org/10.5902/1980509826462 .

Muniz, G. I. B.; Magalhaes, W. L. E.; Carneiro, M. E.; Viana, L. C. 2012. Fundamentos e estado da arte da Espectroscopia no Infravermelho Próximo no setor de base florestal. Ciência Florestal, v. 22, p. 865-875. Doi: http://dx.doi.org/10.5902/198050987567

Neiva, D.; Fernandes, L.; Araújo, S.; Lourenço, A.; Gominho, J.; Simões, R.; Pereira, H. 2015. Chemical composition and Kraft pulping potential of 12 eucalypt species. Industrial Crops and Products, 66: 89-95. Doi: https://doi.org/10.1016/j.indcrop.2014.12.016.

Prieto, N.; Dugan, M.E.R.; López-Campos, O.; Aalhus, J.L.; Uttaro, B. 2013. At line prediction of PUFA and biohydrogenation intermediates in 21 perirenal and subcutaneous fat from cattle fed sunflower or flaxseed by near infrared spectroscopy. Meat Science, 94: 27–33. Doi: https://doi.org/ 10.1016/j.meatsci.2012.12.014

Poke, F. S.; Raymond, C. A. 2006. Predicting Extractives, Lignin, and Cellulose Contents Using Near Infrared Spectroscopy on Solid Wood in Eucalyptus globulus. Journal of Wood Chemistry and Technology, 26: 187-199. Doi: https://doi.org/10.1080/02773810600732708.

Ramadevi, P.; Hegde, D. V.; Varghese, M.; Kamalakannan, R.; Ganapathy, S. P.; Gurumurthy, D. S. 2016. Evaluation of lignin syringyl/guaiacyl ratio in Eucalyptus camaldulensis across three diverse sites based on near infrared spectroscopic calibration modelling with five Eucalyptus species and its impact on Kraft pulp yield. J. Near Infrared Spectrosc. 24: 529-536. Doi: https://doi.org/10.1255/jnirs.1251.

Samistraro, G.; Muniz, G. I. B.; Zamora, P. P.; Cordeiro, G. A. 2009. Previsão das propriedades físicas do papel kraft por espectroscopia no infravermelho próximo (NIR) e regressão por mínimos quadrados parciais (PLS). Quím. Nova, 32: 1422-1425. Doi: https://doi.org/10.1590/S0100-40422009000600011.

Schimleck, L. R.; Doran, J. C.; Rimbawanto, A. 2003. Near infrared spectroscopy for cost-effective screening of foliar oil characteristics in a Melaleuca cajuputi breeding population. Journal of Agricultural and Food Chemistry, 51: 2433-2437. Doi: https://doi.org/10.1021/jf020981u.

Souza, L. C. 2008. Espectroscopia na região do infravermelho próximo para predição de características da madeira para produção de celulose. Viçosa: Universidade Federal de Viçosa, 109 f. Tese Doutorado. http://locus.ufv.br/handle/123456789/563

Souza, F. M. L. de; Pupo, C. H.; Sereghetti, G. C.; Sansígolo, C. A.; Ferreira, J. P.; Silva, R. B.; Garcia, D. P. 2017. Características de crescimento, densidade básica e composição química da madeira de Eucalyptus spp na região de Ribas do Rio Pardo-MS. Brazilian Journal of Biosystems Engineering, 11: 350-359. Doi: https://doi.org/10.18011/bioeng2017v11n4p350-359

TAPPI. (1991). Acid-soluble lignin in wood and pulp. T – UM 250. Tappi Test methods. Atlanta: TAPPI Press.

TAPPI. (1999). Alpha-, beta- and gamma-cellulose in pulp. T – T203 cm-99. Tappi Test methods. Atlanta: TAPPI Press.

TAPPI. (2002). Acid-insoluble lignin in wood and pulp. T - 222 om-02. Tappi Test methods. Atlanta: TAPPI Press.

TAPPI. (2002). Ash in wood, pulp, paper and paperboard: combustion at 525°C. T – 21 1 om-02. Tappi Test methods. Atlanta: TAPPI Press.

TAPPI. (2007). Solvent extractives of wood and pulp. T - 280 pm-99. Tappi Test methods. Atlanta: TAPPI Press.

Todorovic, N.; Popovic, Z.; Milic, G. 2015. Estimation of quality of thermally modified beech wood with red heartwood by FT-NIR spectroscopy. Wood Science and Technology, 49: 527-549. Doi: https://doi.org/10.1007/s00226-015-0710-3 .

Tsuchikawa, S.; Kobori, H. 2015. A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Science, 61: 213-220. Doi: https://doi.org/10.1007/s10086-015-1467-x.

Tyson, J. A.; Schimleck, L. R.; Aguiar, A. M.; Abad Muro, J. I.; Rezende, G. D. S. P. 2009. Adjusting near infrared wood property calibrations for central Brazil to predict the wood properties of samples from Southern Brazil. Journal Appita, 62: 46-51.

Viana, L. C.; Trugilho, P. F.; Hein, P. R. G.; Silva, J. R. M. da.; Lima, J. T. 2010. Modelos de calibração e a espectroscopia no infravermelho próximo para a predição das propriedades químicas e da densidade da madeira de Eucalyptus. Ciência Florestal, 20: 367-376. Doi: https://doi.org/10.5902/198050981859

Published

2020-08-28

How to Cite

Baldin, T., Talgatti, M., Silveira, A. G. ., Santos, G. A., Santos, O. P., & Valente, B. M. dos R. T. (2020). Nirs models for chemical characteristics of Eucalyptus benthamii Maiden & Cambage wood. Agrarian Sciences Journal, 12, 1–9. https://doi.org/10.35699/2447-6218.2020.19296

Issue

Section

Research Papers
Share |