Temperature and residence time in the production of biochar from laying hens manure

Authors

  • Fernando Colen Universidade Federal de Minas Gerais. Instituto de Ciências Agrárias. Montes Claros, MG. Brasil. https://orcid.org/0000-0001-6039-1240
  • Filipe Ferreira Figueiredo https://orcid.org/0000-0001-5142-0468
  • Luiz Arnaldo Fernandes Universidade Federal de Minas Gerais. Instituto de Ciências Agrárias. Montes Claros, MG. Brasil.
  • Regynaldo Arruda Sampaio Universidade Federal de Minas Gerais. Instituto de Ciências Agrárias. Montes Claros, MG. Brasil.
  • Mauro Franco Castro Mota Universidade Federal de Minas Gerais. Instituto de Ciências Agrárias. Montes Claros, MG. Brasil.
  • Luiz Henrique de Souza Universidade Federal de Minas Gerais. Instituto de Ciências Agrárias. Montes Claros, MG. Brasil. https://orcid.org/0000-0003-3939-4871

DOI:

https://doi.org/10.35699/2447-6218.2020.15247

Keywords:

Waste treatment, Biochar yield, Iodine number

Abstract

Poultry wastes have a large amount of nutrients from the feed and can be reused in agriculture. However for the reuse of this residue it is necessary to stabilize it, avoiding environmental contamination. Among the treatments of this residue  the most important are: biodigestion, stabilization ponds, stored slurry and production of biochar. Biochar is a byproduct from the pyrolysis of organic waste, rich in carbon, which has specific characteristics that make it feasible to use it as a soil conditioner, to improve its chemical, physical and biological properties. The production of biochar has been studied as a method for waste treatment in the agricultural and urban environment. Thus, was aimed with this work to study the effects of temperature and residence time interactions on biochar production from poultry manure. Four pyrolysis temperatures (300, 375, 450 and 525oC) and three residence times (30, 45 and 60 minutes) were tested. The raw material was collected at the ICA-UFMG experimental farm and dried at 105°C ± 2oC for 24 h. The pyrolysis tests were carried out in a muffle furnace where the pyrolysis time was counted when the desired temperature was reached. The yield, pH, electrical conductivity and iodine number were analyzed in the biochars produced. The results showed interactions among the treatments, but the effects were different for each trait analyzed. With increasing temperature and residence time, the biochar yield decreased significantly, reaching lower values in the temperature of 525oC and residence time of 60.

References

Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. 2013. Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101: 72-78. Doi: https://doi.org/10.1016/j.jaap.2013.02.010.

Al-Wabel, M. I.; Al-Omran, A.; El-Naggar, A. H.; Nadeem, M.; Usman, A. R. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131: 374-379. Doi: https://doi.org/10.1016/j.biortech.2012.12.165.

Associação Brasileira de Normas Técnicas. 1991. ABNT - NBR 12073:1991: Carvão ativado pulverizado - determinação do número de iodo – método de ensaio.

Associação Brasileira de Proteína Animal. 2017. Relatório Anual. Disponível em: http://abpa-br.com.br/storage/files/3678c_final_abpa_relatorio_anual_2016_portugues_web_reduzido.pdf.

Augusto, K. V. Z. 2007. Caracterização Quantitativa e qualitativa dos resíduos em sistemas de produção de ovos: compostagem e biodigestão anaeróbia. Botucatu: Universidade Estadual Paulista “Júlio de Mesquita”, 132f. Dissertação Mestrado. Disponível em: https://bit.ly/3267vty.

Bolan, N. S.; Szogi, A. A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M. J.; Panneerselvam, P. 2010. Uses and management of poultry litter. World’s Poultry Science Journal, 66: 673-698. Doi: https://doi.org/10.1017/S0043933910000656.

Campos, A. T. de. 2001. Tratamento e manejo de dejetos bovinos. Instrução Técnica para o Produtor de Leite, Juiz de Fora, 52.

Cantrell, K. B.; Hunt, P. G.; Uchimiya, M.; Novak, J. M.; Ro, K. S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107: 419-428. Doi:https://doi.org/10.1016/j.biortech.2011.11.084.

Cao, X.; Harris, W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology, 101: 5222-5228. Doi: https://doi.org/10.1016/j.biortech.2010.02.052.

Chan, K. Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45: 629-634. Doi: https://doi.org/10.1071/SR07109.

Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M. B.; & Hay, A. G. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102: 8877-8884. Doi: https://doi.org/10.1016/j.biortech.2011.06.078.

Choi, G. G.; Oh, S. J.; Lee, S. J.; Kim, J. S. 2015. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresource Technology, 178: 99-107. Doi: https://doi.org/10.1016/j.biortech.2014.08.053.

Conz, R. F. 2015. Caracterização de matérias-primas e biochars para aplicação na agricultura. Piracicaba: Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, 133 f. Dissertação Mestrado. Disponível em: https://bit.ly/30IDmR0.

Cunha, T. J. F.; Madari, B. E.; Benites, V. D. M.; Canellas, L. P.; Novotny, E. H.; Moutta, R. D. O.; Trompowsky , P. M.; Santos, G. D. A. 2007. Fracionamento químico da matéria orgânica e características de ácidos húmicos de solos com horizonte a antrópico da amazônia (Terra Preta). Acta Amazonica, Manaus, 37: 91-98. Disponível em: http://www.scielo.br/pdf/aa/v37n1/v37n1a10.

Delgado, M. F.; Piacante, F. J.; Salla, A. 2017. Diagnóstico ambiental da produção avícola de postura: estudo sobre os dois principais sistemas de produção sob a óptica dos seus resíduos sólidos. Revista de Micro e Pequenas Empresas e Empreendedorismo da Fatec Osasco, Osasco, 3: 18-40. Disponível em: https://dialnet.unirioja.es/servlet/articulo?codigo=6052573.

Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72: 243-248. Doi: https://doi.org/10.1016/j.jaap.2004.07.003.

Dias, B. O.; Silva, C. A.; Higashikawa, F. S.; Roig, A.; Sánchez-Monedero, M. A. 2010. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technology, 101: 1239-1246. Doi: https://doi.org/10.1016/j.biortech.2009.09.024.

Dong, X.; Ma, L. Q.; Li, Y. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190: 909–915.Doi:https://doi.org10.1016j.jhazmat.2011.04.008.

Gonzaga, M. I. S.; Mackowiak, C.; de Almeida, A. Q.; Carvalho Júnior, J. I. T. 2018. Biocarvão de lodo de esgoto e seu efeito no crescimento e nas características morfológicas de mudas de Eucalyptus grandis W. Hill ex Maiden Seedlings. Ciência Florestal, 28: 687-695. Doi: http://dx.doi.org/10.5902/1980509832067.

Guerra, A. M. N. M.; Ferreira, J. B. A.; Vieira, T. S.; Franco, J. R.; Costa, A. C. M.; Tavares, P. R. F. 2017. Avaliação da produtividade de grãos e de biomassa em dois híbridos de milho submetidos à duas condições de adubação no município de Santarém - PA. Revista Brasileira de Agropecuária Sustentável, 7: 20-27. Doi: https://doi.org10.21206/bjsa.v7i4.431.

Hale, S. E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G. D.; Cornelissen, G. 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91: 1612-1619. Doi: https://doi.org/10.1016/j.chemosphere.2012.12.057.

Hata, T.; Imamura, Y.; Ishihara, S. 2001. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. Journal of wood science, 47: 48-57 Doi: https://doi.org/10.1007/BF00776645.

Hossain, M. K.; Strezov, V.; Chan, K. Y.; Ziolkowski, A.; Nelson, P. F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92: 223-228. Doi: https://doi.org/10.1016/j.jenvman.2010.09.008.

Hu, Z.; Srinivasan, M. P. 2011. Mesoporous high-surface-area activated carbon. Microporous and Mesoporous Materials, 43: 267-275. https://doi.org/10.1016/S1387-1811(00)00355-3.

Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M. A.; Sonoki, T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11: 6613-6621. Doi: https://doi.org/10.5194/bg-11-6613-2014.

Kookana, R. S.; Sarmah, A. K.; Van Zwieten, L.; Krull, E.; Singh, B. 2011. Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112: 103-143. Doi: https://doi.org/10.1016/b978-0-12-385538-1.00003-2.

Lehmann, J.; Gaunt, J.; Rondon, M. 2006. Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Flobal Change, 11: 403-427. Doi: https://doi.org/10.1007/s11027-005-9006-5.

Lehmann, J.; Stephen, J. 2015. Biochar for environmental management: science, technology and implementation. 2. ed. Routledge, Nova York. Disponível em: https://bit.ly/2PSog7i.

Lima, I. M.; Mcaloon, A.; Boateng, A. A. 2008. Activated carbon from broiler litter: Process description and cost of production. Biomass and Bioenergy, 32: 568-572. Doi: https://doi.org/10.1016/j.biombioe. 2007.11.008.

Lorenz, K.; Lal, R. 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177: 651-670. Doi: https://doi.org/10.1002/jpln.201400058.

Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. 2013. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102: 137-143. Doi: https://doi.org/10.1016/j.jaap.2013.03.004.

Mackay, D. M.; Roberts, P. V. 1982. The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars. Carbon, 20: 95-104. Doi: https://doi.org/10.1016/0008-6223(82)90413-4.

Matos, A. T. 2014. Tratamento e aproveitamento agrícola de resíduos sólidos. Editora UFV, Viçosa.

Mohan, D.; Pittman Jr, C. U.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Steele, P. H.; Franco, M. F. A.; Serrano, V. S.; Gong, H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310: 57-73. Doi: https://doi.org/10.1016/j.jcis.2007.01.020.

Mohan, D.; Sarswat, A.; Ok, Y. S.; Pittman Jr, C. U. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160: 191-202. Doi: https://doi.org/10.1016/j.biortech. 2014.01.120.

Mukherjee, A.; Zimmerman, A. R.; Harris, W. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163: 247–255. Doi: https://doi.org/10.1016/j.geoderma.2011.04.021.

Novak, J. M.; Lima, I.; Xing, B.; Gaskin, J. W.; Steiner, C.; Das, K. C.; Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3: 195-206. Disponivel em: https://openjournals.neu.edu/aes/journal/article/view/v3art5/v3p195-206.

Orrico Júnior, M. A. P.; Orrico, A. C. A.; Lucas Júnior, J. 2011. Produção animal e o meio ambiente: uma comparação entre potencial de emissão de metano dos dejetos e a quantidade de alimento produzido. Engenharia Agrícola, 31: 399-410. Doi: https://dx.doi.org/10.1590/S0100-69162011000200020.

Pires, I. C. D. S. A. 2017. Produção e caracterização de biochar de palha de cana-de-açúcar (Saccharum sp.). Sorocaba: Universidade Federal de São Carlos, 45f. Dissertação Mestrado. Disponível em: https://bit.ly/2zuey2Y.

Rajkovich, S.; Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A. R.; Lehmann, J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48: 271-284. Doi: https://doi.org/10.1007/s00374-011-0624-7.

Schneider, B. G. 2016. Biochar de lodo de esgoto e sua influência nas propriedades químicas do solo cultivado com milho. Brasília: Faculdade de Agronomia e Medicina Veterinária da Universidade de Brasília, 50f. Trabalho de Conclusão de Curso. Disponível em: http://bdm.unb.br/bitstream/10483/16372/1/2016_BrunaGehrkeSchneider_tcc.pdf.

Sensöz, S.; Angin, D. 2008. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: Part 1. The effects of pyrolysis parameters on the product yields. Bioresource Technology, 99, 5492-5497. Doi: https://doi.org/10.1016/j.biortech.2007.10.046.

Shinogi, Y.; Kanri, Y. 2003. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90: 241-247. Doi: https://doi.org/10.1016/S0960-8524(03)00147-0.

Silva, H. W.; Pelícia, K. 2012. Manejo de dejetos sólidos de Poedeiras pelo processo de biodigestão anaeróbica. Revista Brasileira de Agropecuária Sustentável, 2: 151-155. Disponível em: file:///C:/Users/HP/Downloads/2669-12420-1-PB%20(1).pdf.

Silva, I. C. B.; Basílio, J. J. N.; Fernandes, L. A.; Colen, F.; Sampaio, R. A.; Frazão, L. A. 2017. Biochar from different residues on soil properties and common bean production. Scientia Agricola, 74: 378-382. Doi: https://dx.doi.org/10.1590/1678-992x-2016-0242.

Song, W.; Guo, M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138–145. Doi: https://doi.org/10.1016/j.jaap.2011.11.018.

Spokas, K. A.; Cantrell, K. B.; Novak, J. M.; Archer, D. W.; Ippolito, J. A.; Collins, H. P.; Boateng, A. A.; Lima, I. M.; Lamb, M. C.; Mcaloon, A. J.; Lentz, R. D.; Nicholss, K. A. 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environment Quality, 41: 973-989. Doi: https://doi.org/10.2134/jeq2011.0069.

Sun, H.; Hockaday, W.C.; Masiello, C. A.; Zygourakis, K. 2012. Multiple controls on the chemical and physical structure of biochars. Industrial & Engineering Chemistry Research, 51: 3587-3597. Doi: https://doi.org/10.1021/ie201309r.

Teixeira, W. G.; Kern, D. C.; Madari, B. E; Lima, H. N.; Woods, W. 2009. As terras pretas de índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas. Manaus: Embrapa Amazônia Ocidental. Disponível em: file:///C:/Users/HP/Downloads/terrapreta%20(1).pdf.

Tsai, W. T.; Chang, C. Y.; Lee, S. L. 1997. Preparation and characterization of activated carbons from corn cob. Carbon, 35: 1198-1200. Disponível em: https://scholars.lib.ntu.edu.tw/bitstream/123456789/76496/1/14.pdf.

Tsai, W. T.; Liu, S. C.; Chen, H. R.; Chang, Y. M.; Tsai, Y. L. 2012. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89: 198-203. https://doi.org/10.1016/j.chemosphere.2012.05.085.

Yue, Y.; Lin, Q.; Xu, Y.; Li, G.; Zhao, X. 2017. Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. Journal of Analytical and Applied Pyrolysis, 124: 355-361. Doi: https://doi.org/10.1016/j.jaap.2017.01.008.

Zárate, A. N. H.; Vieira, M. Do C.; Bratti, R. 2003. Efeitos da cama-de-frangos e da época de colheita sobre a produção e a renda bruta de cebolinha “todo ano”. Pesquisa Agropecuária Tropical, 33: 73–78. Disponível em: https://www.revistas.ufg.br/pat/article/view/2350.

Zhang, D.; Pan, G.; Wu, G.; Kibue, G. W.; Li, L.; Zhang, X.; Zheng, J.; Zheng, J.; Cheng, K.; Joseph, S.; Liu, X. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142: 106-113. Doi: https://doi.org/10.1016j.chemosphere.2015.04.088.

Zhang, J.; Liu, J.; Liu, R. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176: 288-291. Doi: https://doi.org/10.1016/j.biortech.2014.11.011.

Published

2020-01-18

Issue

Section

Research Papers

How to Cite

Temperature and residence time in the production of biochar from laying hens manure. (2020). Agrarian Sciences Journal, 12, 1-8. https://doi.org/10.35699/2447-6218.2020.15247

Most read articles by the same author(s)